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Many emerging applications such as the Internet of Things, wearables, implantables, and sensor networks are

constrained by power and energy. These applications rely on ultra-low-power processors that have rapidly

become the most abundant type of processor manufactured today. In the ultra-low-power embedded sys-

tems used by these applications, peak power and energy requirements are the primary factors that determine

critical system characteristics, such as size, weight, cost, and lifetime. While the power and energy require-

ments of these systems tend to be application specific, conventional techniques for rating peak power and

energy cannot accurately bound the power and energy requirements of an application running on a processor,

leading to overprovisioning that increases system size and weight. In this article, we present an automated

technique that performs hardware–software coanalysis of the application and ultra-low-power processor in

an embedded system to determine application-specific peak power and energy requirements. Our technique

provides more accurate, tighter bounds than conventional techniques for determining peak power and en-

ergy requirements. Also, unlike conventional approaches, our technique reports guaranteed bounds on peak

power and energy independent of an application’s input set. Tighter bounds on peak power and energy can

be exploited to reduce system size, weight, and cost.

CCS Concepts: • Hardware→ Power estimation and optimization; • Computing methodologies→
Modeling and simulation; • Hardware; • Computer systems organization → Embedded and cyber-

physical systems; • Software and its engineering;
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The main idea of this work on determining peak power and energy requirements first appeared in the 22nd ACM In-

ternational Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’17). This

manuscript extends that work with a detailed description and analysis of the underlying hardware–software coanalysis.

In particular, it provides motivation and examples of cases where a naïve coanalysis approach is intractable and how the

proposed scalable approach handles these cases. Several of the authors’ other prior works use the hardware-software co-

analysis technique. However, these works either use and describe a nonscalable coanalysis (“Exploiting Dynamic Timing

Slack for Energy Efficiency in Ultra-Low-Power Embedded Systems” in ISCA’16) or do not detail or analyze the underlying

hardware–software coanalysis in terms of scalability when applied on complex applications as this manuscript does (“En-

abling Effective Module-oblivious Power Gating for Embedded Processors” in HPCA’17, “Bespoke Processors for Applica-

tions with Ultra-low Area and Power Constraints” in ISCA’17, and “Software-based Gate-level Information Flow Security

for IoT Systems” to appear in MICRO’17). This article also provides analysis and results of cost savings enabled by tighter

bounds on peak power and energy for several real batteries and systems.
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1 INTRODUCTION

Ultra-low-power (ULP) processors have rapidly become the most abundant type of processor in
production today. New and emerging power- and energy-constrained applications—such as the
Internet of Things (IoT), wearables, implantables, and sensor networks—have already caused pro-
duction of ULP processors to exceed that of personal computers and mobile processors (Greenough
2015). The 2015 ITRS report projects that these applications will continue to rely on simple single-
core, ultra-low-power processors in the future, will be powered by batteries and energy harvest-
ing, and will have even tighter peak power and energy constraints than the power- and energy-
constrained ULP systems of today (ITRS 2015). Unsurprisingly, low-power microcontrollers and
microprocessors are projected to continue being the most widely used type of processor in the
future (IC Insights 2015; Greenough 2015; Evans 2011; Press 2014).

ULP systems can be classified into three types based on the way they are powered (Calhoun
et al. 2010). As illustrated in Figure 1, some ULP systems are powered directly by energy harvesting
(Type 1), while some are battery powered (Type 3). Another variant is powered by a battery and
uses energy harvesting to charge the battery (Type 2).

For each of the above classes, the size of energy harvesting and/or storage components deter-
mine the form factor, size, and weight. Consider, for example, the wireless sensor node shown
in Figure 2 (National Instruments 2013). The two largest system components that predominantly
determine the overall system size and weight are the energy harvester (solar cell) and the
battery.

Going one step further, since the energy harvesting and storage requirements of a ULP system
are determined by its power and energy requirements, the peak power and energy requirements
of a ULP system are the primary factors that determine critical system characteristics such as size,
weight, cost, and lifetime (Calhoun et al. 2010). In Type 1 systems, peak power is the primary
constraint that determines system size, since the power delivered by harvesters is proportional to
their size. In these systems, harvesters must be sized to provide enough power, even under peak
load conditions. In Type 3 systems, peak power largely determines battery life, since it determines
the effective battery capacity (Buchmann 2016). As the rate of discharge increases, effective battery
capacity drops (Buchmann 2016; Furset and Hoffman 2011). This effect is particularly pronounced
in ULP systems, in which near-peak power is consumed for a short period of time, followed by a
much longer period of low-power sleep, since pulsed loads with high peak current reduce effective
capacity even more drastically than sustained current draw (Furset and Hoffman 2011).

In Types 2 and 3 systems, the peak energy requirement matters as well. For example, energy
harvesters in Type 2 systems must be able to harvest more energy than the system consumes,
on average. Similarly, battery life and effective capacity are dependent on energy consumption
(i.e., average power) (Furset and Hoffman 2011). Figure 3 summarizes how peak power and energy
requirements impact sizing parameters for the different classes of ULP systems.

Finally, Tables 1 and 2 list the energy and power densities for different types of batteries and
energy harvesters, respectively. These data provide a rough sense of how size and weight of a
ULP system scale are based on peak energy and power requirements. A tighter bound on the peak
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Fig. 1. ULP systems are commonly powered by energy harvesting, battery, or a combination of the two, in

which harvesters are used to charge the battery.

Fig. 2. In most ULP systems, like this wireless sensor node, the size of the battery and/or energy harvester

dominates the total system size.

Table 1. Specific Energy and Energy Density for Different

Battery Types (bat 2015)

Battery Specific Energy Energy Density
Type [J/g] [MJ/L]
Li-ion 460 1.152

Alkaline 400 0.331
Carbon-zinc 130 1.080

Ni-MH 340 0.504
Ni-cad 140 0.828

Lead-acid 146 0.360
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Fig. 3. Harvester and battery size calculations for Types 1, 2, and 3 ULP systems depend on peak power and

energy requirements.

Table 2. Power Density for Different Types

of Energy Harvesters (Paradiso and

Starner 2005)

Harvester type Power Density
Photovoltaic (sun) 100mW /cm2

Photovoltaic (indoor) 100 μW /cm2

Thermoelectric 60 μW /cm2

Ambient airflow 1mW /cm2

power and energy requirements of a ULP system can result in a roughly proportional reduction in
size and weight.

How are Peak Power and Energy Determined Today?

There are several possible approaches to determining the peak power and energy requirements of
a ULP processor (Figure 4).1 The most conservative approach involves using the processor design
specifications provided in data sheets. These specifications characterize the peak power that can be
consumed by the hardware at a given operating point and can be directly translated into a bound
on peak power. This bound is conservative because it is not application specific; however, it is
safe for any application that might be executed on the hardware. A more aggressive technique for
determining peak power or energy requirements is to use a peak power or energy stressmark. A
stressmark is an application that attempts to activate the hardware in a way that maximizes peak
power or energy. A stressmark may be less conservative than a design specification, since it may

1Peak power and energy are sometimes referred to as worst-case power and energy.
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Fig. 4. The conventional methodology for sizing energy harvesting and storage components involves deter-

mining peak power and energy requirements for a processor and selecting components that will provide

enough power and energy to satisfy the requirements over the lifetime of the system.

Fig. 5. Different applications can have different activity profiles, resulting in peak power and energy require-

ments that are application specific.

not be possible for an application to exercise all parts of the hardware at once. The most aggressive
conventional technique for determining peak power or energy of a ULP processor is to perform
application profiling on the processor by measuring power consumption while running the target
application on the hardware. However, since profiling is performed with specific input sets under
specific operating conditions, peak power or energy bounds determined by profiling might be
exceeded during operation if application inputs or system operating conditions are different than
during profiling. To ensure that the processor operates within its peak power and energy bounds,
a guardband is applied to profiling-based results.

Our Proposal: Determining Application-Specific Peak Power and Energy Requirements

Most ULP embedded systems run the same application or computation over and over in a compute/
sleep cycle for the entire lifetime of the system (EEMBC 2017). As such, the power and energy
requirements of embedded ULP processors tend to be application specific. This is not surprising,
considering that different applications exercise different hardware components at different times,
generating different application-specific loads and power profiles. For example, Figure 5(a) and
Figure 5(b) show the active (toggling) gates for two different applications (tHold and PI; see
Table 3) during the cycles in which peak power is expended for each application. These figures
were generated by running gate-level simulations of the applications on openMSP430 (Girard
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2013) and marking all gates that toggled in the cycle in which each benchmark expended its peak
power. The figures show that PI exercises a larger fraction of the processor than tHold at its peak,
leading to higher peak power. However, while the peak power and energy requirements of ULP
processors tend to be application specific, many conventional techniques for determining peak
power and energy requirements for a processor are not application specific (e.g., design-based and
stressmark-based techniques). Even in the case of a profiling-based technique, guardbands must
be used to inflate the peak power requirements observed during profiling, since it is not possible to
generate bounds that are guaranteed for all possible input sets. These limitations prevent existing
techniques from accurately bounding the power and energy requirements of an application
running on a processor, leading to overprovisioning that increases system size and weight.

In this article, we present a novel technique that determines application-specific peak power
and energy requirements based on hardware–software coanalysis of the application and ultra-
low-power processor in an embedded system. Our technique performs a novel, scalable symbolic
simulation of an application on the processor netlist in which unknown logic values (Xs) are
propagated for application inputs.2 This allows us to identify gates that are guaranteed to not be
exercised by the application for any input. This, in turn, allows us to bound the peak power and
energy requirements for the application. The peak power and energy requirements generated
by our technique are guaranteed to be safe for all possible inputs and operating conditions.
Our technique is fully automated and provides more accurate, tighter bounds than conventional
techniques for determining peak power and energy requirements. Our article makes the following
contributions.

• We present an automated technique based on a novel, scalable symbolic simulation ap-
proach that takes an embedded system’s application software and processor netlist as inputs
and determines application-specific peak power and energy requirements for the processor
that are guaranteed to be valid for all possible application inputs and operating conditions.
This is the first approach to use symbolic simulation to determine peak power and energy
requirements for an application running on a processor.

• We show that the application-specific peak power and energy requirements determined by
our technique are more accurate, and therefore less conservative, than those determined
by conventional techniques. On average, the peak power requirements generated by our
technique are 27%, 26%, and 15% lower than those generated based on design specifications,
a stressmark, and profiling, respectively, and the peak energy requirements generated by
our technique are 47%, 26%, and 17% lower, respectively. Reduction in the peak power and
energy requirements of a ULP processor can be leveraged to improve critical system metrics
such as size and weight.

• Our technique can be used to guide optimizations that target and reduce the peak power of
a processor. Optimizations suggested by our technique reduce peak power by up to 10% for
a set of embedded applications.

2 A CASE FOR APPLICATION-SPECIFIC, INPUT-INDEPENDENT PEAK POWER

AND ENERGY REQUIREMENTS

We measured peak power consumption for a sample set of ULP benchmark applications (see
Table 3) running on an MSP430 F1610 processor.3 Benchmark applications were run repeatedly

2Peak power and energy analyses can be offered as a cloud compilation service by the hardware system vendor in settings

in which the application developer does not have access to the processor description (ARM Mbed 2017; Cloud Compiling

2013; National Instruments 2016).
3MSP430 is one of the most popular processors used in ULP systems (Borgeson 2012; Wikipedia 2016).
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Fig. 6. The test setup used to measure peak and average power on a ULP processor (MSP430).

with different inputs at an operating frequency of 8 MHz while sampling the voltage and current
of the processor at a rate of 10 MHz using an InfiniiVision DSO-X 2024A oscilloscope, to ensure
at least one sample per cycle. Power is calculated as the product of voltage and current. Figure 6
shows our test setup.

Figure 7(a) compares the peak power observed for different applications. The results show that
peak power can be different for different applications. Thus, peak power bounds that are not appli-
cation specific will overestimate the peak power requirements of applications, leading to overpro-
visioning of energy harvesting and storage components that determine system size and weight.
Figure 7(a) also shows that the peak power requirements of applications are significantly lower
than the rated peak power of the chip (4.8 mW); thus, using design specifications to determine peak
power requirements can lead to significant overprovisioning and inefficiency. The figure also con-
firms that peak power of an application depends on application inputs and can vary significantly
for different inputs. This means that profiling cannot be relied on to accurately determine the peak
power requirement for a processor, since not all input combinations can be profiled and the peak
power for an unprofiled input could be significantly higher than the peak power observed during
profiling. Since input-induced variations change peak power by over 25% for these applications
(Figure 7(a)), a profiling-based approach for determining peak power requirements should apply
a guardband of at least 25% to the peak power observed during profiling.

For energy-constrained ULP systems, such as those powered by batteries (Types 2 and 3),
peak energy and peak power determine the size of energy harvesting and storage components
(Section 1). Thus, it is also important to determine an accurate bound on the peak energy
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Fig. 7. The peak power and normalized peak energy (normalized to an application’s runtime in cycles) of a

ULP processor are different for different applications and different inputs. The bars represent average across

all inputs; error bars show the range of input-induced peak and average power variations. Measured variation

between multiple runs of the same application and same input is less than 2%.

Fig. 8. Measured instantaneous power of MSP430F1610 for the mult benchmark is significantly lower, on

average, than both the rated and observed peak power for the application.

requirements of a ULP processor. Figure 8 shows the instantaneous power profile for an appli-
cation (mult ), demonstrating that, on average, instantaneous power can be significantly lower
than peak power. Therefore, we can more accurately determine the optimal sizing of components
in an energy-constrained system by generating an accurate bound on peak energy rather than
conservatively multiplying peak power by execution time.

Figure 7(b) characterizes the peak energy, normalized to application runtime in cycles, for dif-
ferent applications and input sets, showing that the maximum rate at which an application can
consume energy is also application and input dependent. Therefore, conventional techniques for
determining the peak energy requirements of a ULP processor have the same limitations as con-
ventional techniques for determining peak power requirements. In both cases, the limitations of
conventional techniques require overprovisioning that can substantially increase system size and
weight.
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Fig. 9. Our technique performs input-independent activity analysis that enables determination of accurate

peak power and energy requirements for a ULP processor.

In the next section, we describe a novel technique for determining the peak power and peak
energy requirements of a ULP processor that is application specific yet also input independent.

3 APPLICATION-SPECIFIC INPUT INDEPENDENT PEAK POWER AND ENERGY

Figure 9 provides an overview of our technique for determining application-specific peak power
and energy requirements that are input independent. The inputs to our technique are the appli-
cation binary that runs on a ULP processor and the gate-level netlist of the ULP processor. The
first phase of our technique, described in Section 3.1, is an activity analysis that uses a novel sym-
bolic simulation technique to efficiently characterize all possible gates that can be exercised for
all possible execution paths of the application and all possible inputs. This analysis also reveals
which gates can never be exercised by the application. Based on this analysis, we perform input-
independent peak power (Section 3.2) and energy (Section 3.3) calculations to determine the peak
power and energy requirements for a ULP processor.

3.1 Input-Independent Gate Activity Analysis

Since the peak power and energy requirements of an application can vary based on application
inputs, a technique that determines application-specific peak power requirements must bound
peak power for all possible inputs. Exhaustive profiling for all possible inputs is not possible for
most applications; thus, we have created a novel approach for activity analysis that uses unknown
logic values (Xs) for inputs to efficiently characterize activity for all possible inputs with minimum
simulation effort.

Our technique, described in Algorithm 1, is based on symbolic simulation (Bryant 1991) of an ap-
plication binary running on the gate-level netlist of a processor, in which Xs are propagated for all
signal values that cannot be constrained based on the application. When the simulation begins, the
states of all gates and memory locations that are not explicitly loaded with the binary are initial-
ized to Xs. During simulation, all input values are replaced with Xs by our simulator. As simulation
progresses, the simulator dynamically constructs an execution tree describing all possible execu-
tion paths through the application. If an X symbol propagates to the inputs of the program counter
(PC) during simulation, indicating an input-dependent control sequence, a branch is created in the
execution tree. Normally, the simulator pushes the state corresponding to one execution path onto
a stack for later analysis and continues down the other path. However, a path is not pushed to the
stack or resimulated if it has already been simulated (i.e., if the simulator has seen the branch
(PC) before and the processor state is the same as it was when the branch was previously encoun-
tered). This allows Algorithm 1 to analyze programs with input-dependent loops. When simula-
tion down one path reaches the end of the application, an unsimulated state is loaded from the last

ACM Transactions on Computer Systems, Vol. 35, No. 3, Article 9. Publication date: December 2017.
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Fig. 10. Symbolic input-independent gate activity analysis involves using unknown logic values for ap-

plication inputs to characterize application-induced processor behavior for all possible executions of an

application.

ALGORITHM 1: Input-Independent Gate Activity Analysis

1. Procedure Create Symbolic Execution Tree(app_binary, design_netlist)

2. Initialize all memory cells and all gates in design_netlist to X

3. Load app_binary into program memory

4. Propagate reset signal

5. s ← State at start of app_binary

6. Symbolic Execution Tree T .set_root(s)
7. Stack of unprocessed execution paths, U .push(s)
8. while U != ∅ do

9. e ← U .pop()

10. while e .PC_next != X and !e .END do

11. e .set_inputs_X() // set all peripheral port inputs to Xs

12. e ′ ← propagate_gate_values(e) // simulate this cycle

13. e .annotate_gate_activity(e ,e ′) // annotate activity in tree

14. e .add_next_state(e ′) // add to execution tree

15. e ← e ′ // process next cycle

16. end while

17. if e .PC_next == X then

18. for all a ∈ possible_PC_next_vals(e) do

19. e ′ ← e .update_PC_next(a)

20. U .push(e ′)
21. T .insert(a)

22. end for

23. end if

24. end while

input-dependent branch in depth-first order and simulation continues. When all execution paths
have been simulated to the end of the application (i.e., depth-first traversal of the control flow
graph terminates), activity analysis is complete.

This naïve analysis cannot terminate for applications with complex control flow or infinite loops.
Figure 10 shows such an application, in which an unconditional branch jumps from the end basic
block back to the begin basic block, resulting in an infinite loop. Each time the branch (jl) instruc-
tion on Line 6 is encountered, the else block will be pushed onto the stack (Lines 17 and 18 in
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Algorithm 1), while simulation continues down the then block. However, since the end of the ap-
plication is never reached, the stack will never be popped and symbolic simulation will never finish.

A closer look at the application in Figure 10 provides an insight. The program consists of a loop
that reads an input, sets the value of either register r4 or r5, depending on the input value, then
subtracts the two registers. Although the loop iterates infinitely, only two possible simulation
states exist at instruction 10 (i.e., 〈r4, r5, r6〉 is either 〈1, 0, 1〉 or 〈0, 1,−1〉). These two states differ
in only a small fraction of the processor’s state (i.e., r6 and one bit each of r4 and r5). Thus, a
conservative state formed by merging the two states such that differing state variables are set
to unknown values (Xs) can represent both states with little loss of toggling information. After
simulating a conservative state that represents both possible states, any future simulation of
execution paths at Line 10 can safely be terminated since they will not identify any new toggling
behavior. In this way, even an application with an infinite execution tree can be analyzed while
still guaranteeing that the maximal set of gates that an application can toggle will be identified.

Algorithm 2 describes the proposed scalable symbolic coanalysis technique. The analysis ini-
tializes the symbolic simulation in the same way as Algorithm 1 (i.e., all nets and memory cells
are initialized to X, the PC is loaded with the application’s first address, and reset is toggled), with
one addition – Algorithm 2 also initializes a conservative system state map. This map holds the
conservative simulation values for each net and memory location in the design at any instruction
that alters the PC (besides incrementing). Only the states at PC-altering instructions (i.e., any in-
struction at which the resulting PC may not be PC++, such as a branch or jump) are stored since
they are the instructions that can cause path explosion due to input-dependent or infinite control
structures. Each map entry’s key is the PC value of the PC-altering instruction (i.e., a branch’s
address in program memory). The conservative value stored in the map for a state variable is as-
sumed to be unknown (X) for any net that has been observed to have different values (i.e., 0 and
1) in a state with the same PC. Assigning a value of X to a net carries the assumption that the net
can be toggled by the application for some input assignment.

Once initialization is complete, simulation begins, continuing until all paths have been explored
or have been determined to be covered by a previously simulated state. During each visit to a
PC-altering instruction, the current state is compared with the conservative state stored for that
instruction (PC). If the current state is a substate of the stored state (i.e., the states are identical
or the stored state has Xs in all state variables where the states differ), then all paths through the
current state have already been analyzed in a previous portion of the symbolic simulation and the
current execution path can be safely terminated. If the current state is not a substate of the stored
state, a new conservative symbolic state is generated by assigning any nets that differ in value
between the current state and the stored conservative state to X s.4 This new conservative state
is loaded as the processor state before continuing symbolic simulation and is also stored into the
conservative state map in place of the previous stored state. Symbolic simulation must continue
to explore this execution path from the new conservative state because it includes new toggled
gates and, therefore, the worst-case toggling activity may not have been observed yet. Symbolic
simulation then continues as described by Algorithm 2.

Figure 11 shows an example of the proposed technique analyzing an application (from Figure 10)
that Algorithm 1 is unable to analyze. The application contains an infinite loop of four basic blocks;
the execution of two of the basic blocks is dependent on the input value read on Line 4. Algorithm 1
would attempt to explore the entire infinite execution tree (including grayed-out blocks and be-
yond). However, inspecting the code, it is clear that there are two possible system states at the

4The reason an X produces the worst-case toggling behavior is that even if a net has an X value in two consecutive cycles,

the analysis tool considers it a possible toggle.
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ALGORITHM 2: Scalable Input-Independent Gate Activity Analysis

1. Procedure GateActivityAnalysis(app_binary, design_netlist)

2. Initialize all memory cells and all gates in design_netlist to X

3. Load app_binary into program memory

4. Propagate reset toggle signal

5. s ← State at start of app_binary

6. Symbolic Execution Tree T .set_root(s)
7. Unprocessed execution points stack, U .push(s)
8. Conservative system state map, C .init()

9. while U != ∅ do

10. e ← U .pop()

11. if e .altersPC() and e .PC ∈ C then

12. a ← C .getState(e .PC)

13. if e .isConservativeSubstateOf(a) then

14. continue

15. else

16. e ← buildConservativeState(a, e)

17. C ← C .update(e .PC, e)

18. end if

19. else

20. C ← C .add(e .PC, e)

21. end if

22. while e .nextPC != X and !e .END do

23. e .setInputsX() // set all peripheral port inputs to Xs

24. e ′ ← propagateGateValues(e) // perform simulation for this cycle

25. e .annotateGateActivity(e ,e ′) // annotate tree point with activity

26. e .addNextState(e ′) // add to execution tree

27. e ← e ′ // process next cycle

28. end while

29. if e .nextPC == X then

30. for all a ∈ possibleNextPCVals(e) do

31. e ′ ← e .updateNextPC(a)

32. U .push(e ′)
33. T .insert(e ′)
34. end for

35. end if

36. end while

end of one iteration of the loop – 〈r4, r5, r6〉 is either 〈1, 0, 1〉 or 〈0, 1,−1〉. Therefore, continuing
to explore the execution tree after these two states have been observed will not uncover any new
toggling behavior.

During scalable symbolic coanalysis, when the conditional branch instruction at Line 6 is first
reached, state S0 is added to the conservative system state map with a key of 6 (the branch’s PC).
At this point, r4, r5, and r6 are 0, while r15 is all X s (because its value is read from an input). As
symbolic simulation continues down the then path, entries S1 and S2 are added for the branches at
Lines 8 and 11, respectively. When symbolic simulation reaches the branch at Line 6 again, r6 has
a value of 1, which requires a new conservative state, S3, to replace S0, where r6’s value is 0...0X,
because the least significant bit of r6 was observed once as a 0 and once as a 1 during the branch
instruction at Line 6. Continuing, state S1 must be replaced by state S4, because the simulation

ACM Transactions on Computer Systems, Vol. 35, No. 3, Article 9. Publication date: December 2017.



Determining Application-Specific Peak Power and Energy Requirements 9:13

Fig. 11. Scalable input-independent gate activity analysis can analyze applications with infinite loops and

input-dependent branches by simulating conservative states that capture the activity of multiple possible

states.

Fig. 12. Simulating from a conservative state in our scalable input-independent gate activity analysis (Algo-

rithm 2) may result in identifying some gates as possibly exercisable that would not be reported as such by

the baseline approach (Algorithm 1). The conservative nature of this approach allows analysis of applications

with complex control structures while maintaining the guarantee that all exercisable gates will be identified.

value of r6 is 0...0X during the next simulation of the branch at Line 8. Since the value of r6 is
then overwritten to be 1 again prior to Line 11, this execution path observes state S2 for a second
time, indicating that no further exploration is required, and the path is terminated. Next, the last
else block is popped off the execution points stack. For this path, r6 becomes -1 (i.e., 1...11), which is
not a substate of the latest conservative state stored for the branch at line 11 – S2. Thus, a new state,
S5, replaces S2. At the end of the next iteration of the main loop, the current state is a substate of
S5;thus, exploration is halted for that path and the top of the execution points stack is popped. After
this, all states encountered are substates of previously explored states stored in the conservative
system state map. In this example, our scalable symbolic coanalysis technique simulates only 35
dynamic instructions rather than the infinite number that the previous coanalysis technique would
attempt to simulate. The proposed scalable symbolic coanalysis technique captures the worst-case
toggling activity of an application with O (n2 ∗m) complexity, where n is the number of basic
blocks in the application and m is the number of gates in the processor’s netlist.

One drawback of the scalable technique is the inaccuracy introduced by being conservative
when recording toggling activity. Consider Figure 12. Assume that states S0 and S1 are two different
states observed for the same PC, arrived at sequentially by the baseline coanalysis. In the proposed
scalable technique, when simulation arrives at state S1 after having previously observed S0 for the
same PC, a new conservative state, ConsS1, will be created and stored as the current conservative
state for this PC. ConsS1 is then used to continue symbolic simulation instead of S1. Therefore,
the scalable approach must conservatively assume that both gates a and b are toggling when the
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baseline coanalysis may show them to not toggle. Since usually only a small number of state
values differ between executions of the same static instruction, the difference between the scalable
and baseline symbolic coanalysis approaches is expected to be small. However, the inaccuracy
introduced by our scalable technique will only make analysis more conservative. This means that
the peak power bounds derived from this scalable coanalysis may be somewhat higher than the
naïve approach but will always represent a guaranteed bound.5

During symbolic simulation, the simulator captures the activity of each gate at each point in
the execution tree. A gate is considered active if its value changes or if it has an unknown value
(X) and is driven by an active gate; otherwise, the gate is idle. The resulting annotated symbolic
execution tree describes all possible instances in which a gate could possibly toggle for all possible
executions of the application binary. As such, a gate that is not marked as toggled at a particular
location in the execution tree can never toggle at that location in the application. As described in
the next sections, we can use the information gathered during activity analysis to bound the peak
power and energy requirements of an application.

3.2 Input-Independent Peak Power Requirements

The input to the second phase of our technique is the symbolic execution tree generated by input-
independent gate activity analysis. Algorithm 3 describes how to use the activity-annotated exe-
cution tree to generate peak power requirements for a ULP processor, application pair.

The first step in determining peak power from an execution tree produced during gate activity
analysis is to concatenate the execution paths in the execution tree into a single execution trace.
We use a value change dump (VCD) file to record the gate-level activity in the execution trace.
The execution trace contains Xs; the goal of the peak power computation is to assign values to
the Xs in a way that maximizes power for each cycle in the execution trace. The power of a gate
in a particular cycle is maximized when the gate transitions (toggles). Since a transition involves
two cycles, maximizing dynamic power in a particular cycle, c , of the execution trace involves
assigning values to any Xs in the activity profiles of the current and previous cycles, c and c − 1,
to maximize the number of transitions in cycle c .

The number and power of transitions are maximized as follows. When the output value of a
gate in only one of the cycles, c or c − 1, is an X, the X is assigned the value that assumes that a
transition happened in cycle c . When both values are Xs, the values are assigned to produce the
transition that maximizes power in cycle c . The maximum power transition is found by a look-
up into the standard cell library for the gate. Since constraining Xs in two consecutive cycles to
maximize power in the second cycle may not maximize power in the first cycle, we produce two
separate VCD files – one that maximizes power in all even cycles and one the maximizes power in
all odd cycles. To find the peak power of the application, we first run activity-based power analysis
on the design using the even and odd VCD files to generate even and odd power traces. We then
form a peak power trace by interleaving the power values from the even cycles in the even power
trace and the odd cycles in the odd power trace. This peak power trace bounds the peak power that
is possible in every cycle of the execution trace. The peak power requirement of the application is
the maximum per-cycle power value found in the peak power trace.6

5Four of our benchmarks (div, inSort, rle, and Viterbi) require this scalable technique in order to be analyzed in a

tractable amount of time. Other benchmarks see significant reductions in analysis time (e.g., binSearch’s analysis time

is reduced by 97%). The conservative inaccuracy results in <2% increase in gate toggling for those benchmarks that are

tractable for the naïve analysis. Despite this inaccuracy, Section 5 shows that this scalable technique can provide signifi-

cantly tighter peak power and energy bounds than application-agnostic approaches.
6It is possible that glitching between clock edges can impact the power profile for an application. This impact can be

accounted for by Primetime’s power analysis (Synopsys 2015).
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Fig. 13. To determine a bound on peak power, we generate two different activity profiles – one that maxi-

mizes power in even cycles (left) and one that maximizes power in odd cycles (right).

ALGORITHM 3: Input-Independent Peak Power Computation

1. Procedure Calculate Peak Power

2. {E|O}_VCD← Open {Even|Odd} VCD File // maximizes peak power in even|odd cycles

3. T← flatten(Execution Tree) // create a flattened execution trace that represents the execution tree

4. for all {even|odd} cycles c ∈ T do

5. for all toggled gates д ∈ c do

6. if value(g,c) == X && value(g,c-1) == X then

7. value(g,c-1)← maxTransition(g,1) // returns the value of the gate in the first cycle of the gate’s

maximum power transition

8. value(g,c)← maxTransition(g,2) // returns the value of the gate in the second cycle of the gate’s

maximum power transition

9. else if value(g,c) == X then

10. value(g,c)← !value(g,c-1)

11. else if value(g,c-1) == X then

12. value(g,c-1)← !value(g,c)

13. end if

14. end for

15. {E|O}_VCD← value(*,c-1)

16. {E|O}_VCD← value(*,c)

17. end for

18. Perform power analysis using E_VCD and O_VCD to generate even and odd power traces, PE and PO

19. Interleave even cycle power from PE with odd cycle power from PO to form peak power trace, Ppeak

20. peak power← max(Ppeak )

Our VCD generation technique is illustrated in Figure 13. We use the example of three gates
with overlapping Xs that need to be assigned to maximize power in every cycle. We show two
assignments – one that maximizes peak power in all even cycles (left) and one that maximizes
peak power in all odd cycles (right). Assuming, for the sake of example, that all gates have equal
power consumption and that the 0→ 1 transition consumes more power than the 1→ 0 transition
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for these gates, the highest possible peak power for this example happens in cycle 6 in the “even”
activity trace, when all the gates have a 0→ 1 transition.

3.3 Input-Independent Peak Energy Requirements

Our technique generates a per-cycle peak power trace characterizing all possible execution paths
of an application. The peak power trace can be used to generate peak energy requirements.
Figure 14 shows per-cycle peak power traces sampled from our benchmark applications. Since per-
cycle peak power varies significantly over the compute phases of an application, peak energy can
be significantly lower than assuming the maximum peak energy (i.e., peak power ∗ clock period ∗
number o f cycles). Instead, the peak energy of an application is bounded by the execution path
with the highest sum of per-cycle peak power multiplied by the clock period. To avoid enumerat-
ing all execution paths, we use several techniques. For an input-dependent branch, peak energy is
computed by selecting the branch path with higher energy. For a loop whose number of iterations
is input independent, peak energy can be computed as the peak energy of one iteration multi-
plied by the number of iterations. For cases in which the number of iterations is input dependent,
the maximum number of iterations may be determined either by static analysis or user input (as
suggested by prior work (Jayaseelan et al. 2006)).7 If neither is possible, it may not be possible to
compute the peak energy of the application; however, this is uncommon in embedded applications.
In fact, all 43 benchmarks we analyzed in Embedded Sensors (Zhai et al. 2009), EEMBC (2017), and
MiBench (Guthaus et al. 2001) suites have bounded execution time.

3.4 Validation of X-based Analysis

To demonstrate that our symbolic execution-based (X-based) activity analysis marks all gates that
could possibly be toggled by an application for all possible inputs, we performed a validation check
by comparing the sets of gates toggled by input-based simulations for several different input sets
against the set of gates marked as potentially toggled by symbolic simulation. Figure 15 illustrates
this comparison for two input-based simulations of themult benchmark with different input sets –
those that have the lowest and highest number of toggled gates. In the figure, toggled gates com-
mon to X-based and input-based simulation are shown as Xs and gates that are exclusively marked
by symbolic simulation as potentially toggled are shown as blue triangles. As expected, there are
no gates that are exclusively marked by input-based simulation. Our validation results show that
all the gates toggled by input-based simulation are also marked as potentially toggled by X-based
symbolic simulation, validating the correctness of our approach for characterizing toggle activity.

We perform a second validation of our technique by comparing the peak power traces generated
for benchmarks by our technique against power traces generated by input-based execution of the
benchmarks. The validation results confirm that our peak power trace always provides an upper
bound on the power of any input-based power trace. Figure 16 shows an example; the X-based
peak power trace for the mult application is always higher than the input-based power trace.
These validation results also show that the X-based peak power trace closely matches the input-
based trace, indicating that the peak power and energy requirements generated by our technique
are not overly conservative.

3.5 Enabling Peak Power Optimizations

Since our technique is able to associate the input-independent peak power consumption of a pro-
cessor with the particular instructions that are in the pipeline during a spike in peak power, we can

7The number of loop iterations is bounded for all evaluated benchmarks. In general, applications with unbounded runtimes

are uncommon in embedded domains.
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Fig. 14. The per-cycle peak power varies significantly over the course of an application, showing that the

worst-case average power can be significantly lower than peak power. Therefore, the peak energy can be

significantly lower than the product of peak power and application runtime would suggest.
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Fig. 15. Toggled gates for mult with low-activity inputs (top) and high-activity inputs (bottom) compared

against potentially toggled gates identified by X-based analysis. X-based simulation marks all gates that

can potentially toggle for an application for all possible inputs. This set of gates (unique_x ∪ common) is a

superset of the gates that toggle during an input-based application execution (common).
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Fig. 16. The X-based peak power trace generated by our technique for an application provides an upper

bound on all possible input-based power traces for the application (result shown for mult ).

use our tool to identify which instructions or instruction sequences cause spikes in peak power.
Our technique can also provide a power breakdown that shows the power consumption of the mi-
croarchitectural modules that are exercised by the instructions. These analyses can be combined to
identify which instructions executing in which modules cause power spikes. After identifying the
cause of a spike, we can use software optimizations to target the instruction sequences that cause
peaks and replace them with alternative sequences that generates less instantaneous activity and
power while maintaining the same functionality. After optimizing software to reduce a spike in
peak power, we can rerun our peak power analysis technique to determine the impact of optimiza-
tions on peak power. Guided by our technique, we can choose to apply only the optimizations that
are guaranteed to reduce peak power.

Figure 17 shows an example in which our technique identifies peak power spikes in cycles 146
and 150. Our technique also reports the instructions in each stage of the pipeline during those
cycles of interest (COIs) and the per-module power breakdown for those cycles, which identifies
the modules that are consuming the most power. This information can be used to guide optimiza-
tions that replace the instructions with different instruction sequences that induce less activity
and power in the modules that consume the most power. Since software optimizations can impact
performance as well as peak power, we will discuss optimizations that reduce peak power and
their impact on performance and energy in Section 5.1.

4 METHODOLOGY

4.1 Simulation Infrastructure and Benchmarks

We verify our technique on a silicon-proven processor – openMSP430 (Girard 2013), an open-
source version of one of the most popular ULP processors (Borgeson 2012; Wikipedia 2016). The
processor is synthesized, placed, and routed in TSMC 65GP technology (65nm) for an operat-
ing point of 1V and 100MHz using Synopsys Design Compiler (Synopsys 2015) and Cadence EDI
System (Cadence 2014). Gate-level simulations are performed by running full benchmark applica-
tions on the placed and routed processor using a custom gate-level simulator that efficiently tra-
verses the control flow graph of an application and captures input-independent activity profiles
(Section 3). We show results for all benchmarks from Zhai et al. (2009) and all EEMBC benchmarks
that fit in the program memory of the processor. These benchmarks are chosen to be representative
of emerging ultra-low-power application domains such as wearables, the Internet of Things, and
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Fig. 17. A snapshot of instantaneous power profiles for mult at two different COIs where peaks occur. Our

technique analyzes the instructions in the pipeline (top) to find each COI’s culprit instructions that cause

the peak power in each pipeline stage along with the per-module peak power breakdown (bottom) to identify

which instructions in which microarchitectural modules are responsible for a peak.

sensor networks (Zhai et al. 2009). The IPC of these benchmarks on our processor varies from 1.25
to 1.39, with an average of 1.29. Power analysis is performed using Synopsys Primetime (Synopsys
2015). Experiments were performed on a server housing two Intel Xeon E-2640 processors (8 cores
each, 2GHz operating frequency, 64GB RAM).
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Fig. 18. Different applications and different input sets for the same application have different peak power

and peak energy requirements (results for openMSP430).

Section 2 shows measured data for an MSP430F1610 processor demonstrating that different ap-
plications have different peak power and energy requirements and that the requirements of an
application can vary significantly for different inputs. The results motivate an application-specific,
input-independent technique for determining the peak power and energy requirements for ULP
processors. For the results in Section 5, we perform evaluations on the open source openMSP430
processor (Girard 2013). Figures 18(a) and 18(b) confirm that the peak power and energy require-
ments of openMSP430 also depend on the application and application inputs. Note that the re-
sults in Figure 7 and Figure 18 differ because they are for different implementations of the MSP430
architecture (MSP430F1610 and openMSP430), with different process technology (130nm vs. 65nm)
and operating frequencies (8MHz vs. 100MHz).
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Table 3. Benchmarks

Embedded Sensor Benchmarks (Zhai et al. 2009)
mult, binSearch, tea8, intFilt,
tHold, div, inSort, rle, intAVG

EEMBC Embedded Benchmarks (EEMBC 2017)
Autocorr, FFT, ConvEn, Viterbi
Control Systems Benchmark

Proportional Integral Controller (PI)

4.2 Baselines

For baselines, we compare against conventional techniques for determining the peak power and
energy requirements of processors. An overview of the baseline techniques can be found in
Figure 4. The design specification-based baseline (design tool) is determined by performing power
and energy analysis of the design using the default input toggle rate used by our design tools
(Synopsys 2015). The stressmark-based baselines (GB input-based) use stressmarks that target peak
instantaneous power and average power. Kim et al. (2012) used a genetic algorithm to automati-
cally generate stressmarks that target maximumdi/dt-induced voltage droop for a microprocessor.
We modified their framework to generate stressmarks that target peak instantaneous power and
average power for openMSP430. The profiling-based baseline (input-based) is generated by per-
forming input-based power and energy profiling for several input sets and applying a guardband-
ing factor of 4/3 to the peak power and energy observed during profiling. The guardbanding factor
is the same as in prior studies (Intel Corporation 2000; Kontorinis et al. 2009) and is appropriate
for the input-dependent peak power variability exhibited by our benchmarks (Figure 7(a)).

5 RESULTS

We use our technique described in Section 3 to determine peak power and energy requirements
for a ULP processor for different benchmark applications. Figure 19 compares the peak power
requirements reported by our technique against the conventional techniques for determining peak
power requirements, described in Section 4.2. The results show that the peak power requirements
reported by our X-based technique are higher than the highest input-based, application-specific
peak power for all applications, confirming that our technique provides a bound on peak power.
The results also show that our technique provides the most accurate bound on peak power
compared to conventional techniques for determining peak power requirements. For example,
the peak power requirements reported by our technique are only 1% higher than the highest
observed input-based peak power for the benchmark applications, on average. Other techniques
for determining peak power and energy requirements are significantly less accurate, which can
lead to inefficiency in critical system parameters, such as size and weight (see Section 1).

Our technique is more accurate than application-oblivious techniques, such as determining
peak power requirements from a stressmark or design specification, because an application con-
strains which parts of the processor can be exercised in a particular cycle. Our technique also
provides a more accurate bound than a guardbanded input-based peak power requirement be-
cause it does not require a guardband to account for the nondeterminism of input-based profiling
(shown in Figure 19 as error bars). By accounting for all possible inputs using symbolic simulation,
our technique can bound peak power and energy for all possible application executions without
guardbanding. The peak power requirements reported by our technique are 15% lower than guard-
banded application-specific requirements, 26% lower than guardbanded stressmark-based require-
ments, and 27% lower than design specification-based requirements, on average.
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Fig. 19. Our X-based technique for determining peak power requirements provides the most accurate (least

conservative) guaranteed bound on peak power.

Since our technique is application specific and does not require guardbands, one question is,
“Why is the bound provided by X-based analysis more conservative for some applications than
others?” The answer is that since X-based analysis provides a bound on power for all possible
inputs, it becomes more conservative when there is greater possibility for input-dependent
variation in power. For example, the multiplier is a relatively large, high-power module, with
high potential for input-dependent variation in power consumption. For some inputs (e.g., X ∗ 0),
power consumed by the multiplier is minimal since there are no partial products to compute.
For other inputs (e.g., two very large numbers), the power consumed by the multiplier is much
larger. Since our symbolic simulation technique assumes Xs for inputs, we always assume the
highest possible power for a multiple instruction. Therefore, X-based peak power requirements
for applications that contain a large number of multiplications may be more conservative than
X-based requirements for other applications.

Conversely, the tea8 application, which performs encryption, uses only low-power ALU mod-
ules – shift register and XOR – that have significantly less potential for input-induced power
variation. As a result, X-based analysis closely matches input-based profiling results for this
application. For all applications, even those with more potential for input-induced power vari-
ation, our X-based analysis technique provides a peak power bound that is more accurate than
those provided by conventional techniques.
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Fig. 20. Our X-based technique for determining peak energy requirement (normalized to application runtime

in cycles, i.e., the peak average power) is more accurate than existing conventional techniques.

Our technique also provides more accurate bounds on peak energy than conventional tech-
niques, partly because of the reasons mentioned above and because our technique is able to charac-
terize the peak energy consumption in each cycle of execution, generating a peak energy trace that
accounts for dynamic variations in energy consumption. Using a design specification to determine
peak energy is particularly inaccurate since it does not consider dynamic variations in the energy
requirements of an application. The guardbanded input-based technique, which does consider dy-
namic variations, provides a more accurate peak energy bound than the design specification for all
benchmarks. However, it does not always provide a more accurate bound than the design specifi-
cation for peak power since peak power is an instantaneous phenomenon that is less dependent on
dynamic variations. Figure 20 presents peak energy of different benchmarks normalized to applica-
tion runtime in cycles, i.e., peak average power, which characterizes the maximum rate at which the
application can consume energy. In Figure 20, the peak energy requirements reported by our tech-
nique are 17% lower than guardbanded application-specific requirements, 26% lower than guard-
banded stressmark-based requirements, and 47% lower than design specification-based require-
ments, on average. As expected, application-specific normalized peak energy (Figure 20) varies less
than peak power (Figure 19) since peak energy characterizes average peak power over the entire
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Table 4. Percentage Reduction in Harvester Area Compared to

Different Baseline Techniques, Averaged Over All Benchmarks, for

Different Percentage Contributions of the Processor Peak Power to

the System Peak Power

Baseline 10% 25% 50% 75% 90% 100%
GB-Input 1.49 3.73 7.47 11.21 13.45 14.94
GB-Stress 2.60 6.47 12.95 19.42 23.31 25.90
Design Tool 2.68 6.70 13.41 20.12 24.14 26.82

Table 5. Percentage Reduction in Battery Volume Compared to

Different Baseline Techniques, Averaged Over All Benchmarks, for

Different Percentage Contributions of the Processor Energy to the

Overall Energy of the System

Baseline 10% 25% 50% 75% 90% 100%
GB-Input 1.74 4.37 8.74 13.11 15.73 17.48
GB-Stress 2.59 6.49 12.98 19.48 23.37 25.97
Design Tool 4.66 11.66 23.32 34.98 41.97 46.64

execution of an application, whereas peak power corresponds to one instant in the application’s
execution.

As described in Section 1, more accurate peak power and energy requirements can be leveraged
to reduce critical ULP system parameters, such as size and weight. For example, reduction in a
Type 1 system’s peak power requirements allows a smaller energy harvester to be used. System
size is roughly proportional to harvester size in Type 1 systems. In Type 2 systems, it is the peak
energy requirement that determines the harvester size; reduction in peak energy requirement re-
duces system size roughly proportionally. Since required battery capacity depends on a system’s
peak energy requirement and effective battery capacity depends on the peak power requirement,
reductions in peak power and energy requirements both reduce battery size for Type 2 and Type 3
systems.

A ULP system may contain other components, such as transmitter/receiver, ADC, DAC, and
sensor(s), along with the processor. All of these components may contribute to the system’s peak
power and energy and, hence, the sizing of the harvester and battery. Tables 4 and 5 show the
percentage reduction in the harvester size and battery size, respectively, from our technique for
different fractions representing the processor’s contribution to the system’s peak power and en-
ergy. For a real system such as the one shown in Figure 2, which has a harvester area of 32.6cm2

and a battery volume of 6.95mm3, the area reduction of the harvester is 4.87, 8.44, or 8.75cm2 if the
system is designed using guardbanded input-based profiling, guardbanded stressmark, or design
tool, respectively, for estimating the peak power of the processor. Similarly, the volume reduction
of the battery is 0.42, 0.63, or 1.12mm3, respectively.8 As expected, savings from our technique are
higher when the processor is the dominant consumer of power and energy in the overall system.9

The reduction in battery capacity allowed by our tighter peak energy bound can have a direct
cost, weight, and size savings when specific components of a system are considered. An analysis

8The battery is a thin film battery of dimensions 5.7mm × 6.1mm × 200μm (area of 34.7mm2). Assuming that the height

of the battery does not change, the corresponding savings in battery area are 6.07, 9.01, and 16.18mm2, respectively.
9ITRS 2015 projections show that the microcontroller will be the dominant consumer of power in future IoT and IoE

systems (ITRS 2015).
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of relevant batteries from Digikey suggests that if peak energy requirements of a Type 3 system
(Figure 1) can be reduced by 10%, a switch can be made from a 50mAh lithium battery to a 45mAh
lithium battery, which, in turn, can result in a size reduction of 13% (23mm, coin to 20mm, coin),
a weight reduction of 37% (3.5g to 2.2g), and a cost reduction of 74% ($7.80 to $1.90). As another
example, a 15% reduction in peak energy requirements can allow a switch from 6mAh lithium bat-
tery to a 5.8mAh lithium battery, which, in turn, leads to a size reduction of 25% (9.5mm × 2.1mm
to 6.8mm × 2.2mm), a weight reduction of 50% (0.45g to 0.227g), and a cost reduction of 34% ($3.30
to $2.19). A modest size reduction in battery requirements can result in a large reduction in size
and cost of the components of a ULP system. Since the battery and/or harvester are often among
the largest and most expensive components in a ULP system, this can translate into significant
systems cost savings, which are especially critical in the volume market that ULP systems often
target. Similarly, saving the area of the harvester can also reduce the area of the entire system.
For example, we can reduce the PCB area of the system in Figure 2 by 9%, 15%, and 16% over the
baselines of GB input, GB stress, and Design Tool, respectively, for a Type 1 system.

5.1 Optimizations

As discussed in Section 3.5, our technique can be used to guide application-level optimizations that
reduce peak power. Here, we discuss three software optimizations suggested by our technique
that we applied to the benchmark applications to reduce peak power. The optimizations were
derived by analyzing the processor’s behavior during the cycles of peak power consumption. This
analysis involves (a) identifying instructions in the pipeline at the peak and (b) identifying the
power contributions of the microarchitectural modules to the peak power to determine which
modules contribute the most.

The first optimization aims to reduce a peak by “spreading out” the power consumed in a peak
cycle over multiple cycles. This is accomplished by replacing a complex instruction that induces
a lot of activity in one cycle with a sequence of simpler instructions that spread the activity out
over several cycles.

The second optimization aims to reduce the instantaneous activity in a peak cycle by delaying
the activation of one or more modules, previously activated in a peak cycle, until a later cycle. For
this optimization, we focus on the POP instruction, since it generates peaks in some benchmarks.
The peaks are caused by a POP instruction generating high activity on the data and address buses
and simultaneously using the incrementer logic to update the stack pointer. To reduce the peak,
we break down the POP instruction into two instructions – one that moves data from the stack and
one that increments the stack pointer.

The third optimization is based on the observation that, for some applications, peak power is
caused by the multiplier (a high-power peripheral module) being active simultaneously with the
processor core. To reduce peak power in such scenarios, we insert a NOP into the pipeline during
the cycle in which the multiplier is active.

The three optimizations we applied to our benchmarks to reduce peak power are summarized
below. The optimizations are shown in Figure 21.

• Register-Indexed Loads (OPT 1): A load instruction (MOV) that references the memory by
computing the address as an offset to a register’s value involves several micro-operations
– source address generation, source read, and execute. Breaking the micro-operations into
separate instructions can reduce the instantaneous power of the load instruction. The ISA
already provides a register indirect load operation in which the value of the register is
directly used as the memory address instead of as an offset. Using another instruction (such
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Fig. 21. Instruction optimization transforms.

Fig. 22. Peak power reduction (left axis) and peak power dynamic range reduction (right axis) achieved by

optimizations. These reductions are enabled by our analysis tool and provide further reduction in energy

harvester size.

as an ADD or SUB), we can compute the correct address and store it into another register. We
then use the second register to execute the load in register-indirect mode.

• POP instructions (OPT 2): The micro-operations of a POP instruction are (a) read value
from address pointed to by the stack pointer and (b) increment the stack pointer by two.
POP is emulated using MOV @SP+, dst. This can be broken down to two instructions –
MOV @SP, dst and ADD #2, SP.

• Multiply (OPT 3): The multiplier is a peripheral in openMSP430. Data is MOVed to the
inputs of the multiplier and then the output is MOVed back to the processor. For a 2-cycle
multiplier, all moving of data can be done consecutively without any waiting. However, this
involves a high power draw, since there will be a cycle when both the multiplier and the
processor are active. This can be avoided by adding a NOP between writing to and reading
from the multiplier.
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Fig. 23. A snapshot of instantaneous power profiles for mult before and after optimization.

Fig. 24. Performance degradation and energy overhead introduced by peak power optimizations is small

(average: 1%).

Figure 22 shows the reduction in peak power achieved by applying the optimizations motivated
by our technique. Results are quantified in terms of peak power reduction, as well as reduction in
peak power dynamic range, which quantifies the difference between peak and average power. Peak
power dynamic range decreases as peaks are reduced closer to the range of average power. Reduc-
tion in peak power dynamic range can improve battery lifetime in Type 2 and Type 3 systems, and
reduction in peak power requirements can be leveraged to reduce harvester size in Type 1 systems
(see Section 1). Our results show that peak power can be reduced by up to 10%, and 5% on average.
Peak power dynamic range can be reduced by up to 34%, and 18% on average. Figure 23 shows the
peak power traces for an example application before and after optimization, demonstrating that
optimization can reduce the peak power requirements for an application.

Since optimizations that reduce peak power can increase the number of instructions executed
by an application, we evaluated the performance and energy impact of the optimizations. Figure 24
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Table 6. Microarchitectural Features in Recent

Embedded Processors

Processor Branch Predictor Cache

ARM Cortex-M0 no no
ARM Cortex-M3 yes no

Atmel ATxmega128A4 no no
Freescale/NXP MC13224v no no

Intel Quark-D1000 yes yes
Jennic/NXP JN5169 no no

SiLab Si2012 no no
TI MSP430 no no

shows the results. Applying the optimizations suggested by our technique degrades performance
by up to 5% for one application and by 1%, on average. On average, the optimizations increase
energy by 3%. Although the optimizations increase energy slightly, they can still enable reduction
in size for Type 1 systems, in which harvester size is dictated by peak power, and may also reduce
the size of Type 2 and Type 3 systems, in which both peak power and energy determine the size
of energy storage and harvesting components (see Figure 3).

6 GENERALITY AND LIMITATIONS

We applied our techniques in the context of ULP processors that are already the most widely used
type of processor and are also expected to power a large number of emerging applications (Dunkels
et al. 2012; Magno et al. 2013; Park et al. 2006; Tessier et al. 2005; Yu and Watteyne 2013). Such
processors also tend to be simple, run relatively simple applications, and do not support nonde-
terminism (no branch prediction and caching; for example, see Table 6). This makes our symbolic
simulation-based technique a good fit for such processors. Below, we discuss how our technique
may scale for complex processors and applications, if necessary.

More complex processors contain more performance-enhancing features – such as large
caches, prediction or speculation mechanisms, and out-of-order execution – that introduce
nondeterminism into the instruction stream. Coanalysis is capable of handling this added nonde-
terminism at the expense of analysis tool runtime. For example, by injecting anX as the result of a
tag check, both the cache hit and miss paths will be explored in the memory hierarchy. Similarly,
since coanalysis already explores taken and not-taken paths for input-dependent branches, it can
be adapted to handle branch prediction. In an out-of-order processor, the ordering of instructions
is based on the dependence pattern between instructions. Thus, extending input-independent CFG
exploration to also explore the data flow graph (DFG) may allow analysis of out-of-order execution.

In other application domains, there exist applications with more complex CFGs. For more com-
plex applications, heuristic techniques may be used to improve scalability of hardware–software
coanalysis. While heuristics have been applied to improve scalability in other contexts (e.g., verifi-
cation) (Cadar and Sen 2013; Hamaguchi 2001), heuristics for hardware–software coanalysis must
be conservative to guarantee that no gate is marked as untoggled when it could be toggled. The
development of such heuristics is the subject of future work.

In a multiprogrammed setting (including systems that support dynamic linking), we take the
union of the toggle activities of all applications (caller, callee, and the relevant OS code in the
case of dynamic linking) to get a conservative peak power value. For self-modifying code, peak
power for the processor would be chosen to be the peak of the code version with the highest peak.
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In the case of fine-grained multithreading, any state that is not maintained as part of a thread’s
context is assumed to have a value of X when symbolic execution is performed for an instruction
belonging to the thread. This leads to a safe guarantee of peak power for the thread irrespective
of the behavior of the other threads.

Our technique naturally handles state machines that run synchronously with the microcon-
troller. For state machines that run asynchronously (e.g., ADCs, DACs, bus controllers), we assume
the worst-case power at any instant by separately analyzing the asynchronous state machine to
compute peak power and energy and adding the values to those of the processor. Asynchronous
state machines are generally much smaller than the actual processor, allowing us to not be overly
conservative.

A similar approach can be used to handle interrupts, i.e., offset the peak power with the worst
power consumed during interrupt detection. The effect of an asynchronous interrupt can be char-
acterized by forcing the interrupt pin to always read an X. Since this can potentially cause the PC
to be updated with an X, we can force the PC update logic to ignore the interrupt handling logic’s
output. This is achieved by monitoring a particular net in the design and forcing it to zero every
time its value becomes X. Interrupt service routines (ISRs) are regular software routines and can
be analyzed with the rest of the code.

7 RELATED WORK

Peak power has been analyzed in several settings in literature. In particular, several techniques
have been proposed to estimate the peak power of a design. Hsiao (1999) and Hsiao et al. (1997)
propose a genetic algorithm-based estimation of peak power for a circuit. Wang and Roy (1998)
use an automatic test generation technique to compute lower and upper bounds for maximum
power dissipation for a VLSI circuit. Sambamurthy et al. (2009) propose a technique that uses a
bounded model checker to estimate peak dynamic power at the module level. The technique is also
functionally valid at the processor level. Najeeb et al. (2007) propose a technique that converts a
circuit behavioral model to an integer constraint model and employs an integer constraint solver
to generate a power virus that can be used to estimate the peak power of the processor. To the
best of our knowledge, no prior work exists on determining application-specific peak power for a
processor based on symbolic simulation.

The above techniques require a low-level description of the processor (behavioral or gate level).
Techniques have also been proposed at the architecture level to predict when power exceeds the
peak power budget or to lower the peak-to-average power variation. Sartori and Kumar (2009)
propose the use of DVFS techniques to manage peak power in a multicore system. Kontorinis
et al. (2009) proposed a configurable core to meet peak power constraints with minimal impact
on performance. Our technique identifies the peak power and energy requirements of a processor
through hardware–software coanalysis.

Estimating peak energy of an application has been previously studied as the worst-case en-
ergy consumption (WCEC) problem (Jayaseelan et al. 2006; Seth et al. 2006; Wägemann et al.
2015). However, prior techniques do not use accurate power models, instead relying on microar-
chitectural models, which do not consider the detailed state of a processor or input values. As
observed by Morse et al. (2016), the power of an instruction can differ based on the previous in-
structions in the pipeline and its operand values. Our peak power computation technique ana-
lyzes an application on a gate-level processor netlist, allowing us to account for the fine-grained
interaction between instructions and the worst-case operand values. The result is an accurate
power model that can be used for WCEC analyses such as the example analysis in Section 5. Prior
work on worst-case timing analysis simply identified the timing-critical path through the program.
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However, the timing-critical path through a program may not be energy critical (Jayaseelan et al.
2006; Seth et al. 2006). We calculate energy across all paths through gate-level simulation to deter-
mine the path with highest energy.

Symbolic simulation has been applied in circuits for logic and timing verification as well as
sequential test generation (Bryant 1991; Feng et al. 2003; Jain and Gopalakrishnan 1994; Kolbi
et al. 2001; Liu and Vasudevan 2011) and determination of application-specific Vmin (Cherupalli
et al. 2016). Symbolic simulation has also been applied for software verification (Zhang et al.
2012). However, to the best of our knowledge, no existing technique has applied symbolic sim-
ulation to determine the peak power and energy requirements of an application running on a
processor.

8 CONCLUSION

In this article, we showed that peak power and energy requirements for an ultra-low-power embed-
ded processor can be application specific as well as input specific. This renders profiling methods
to determine the peak power and energy of ULP processors ineffective unless conservative guard-
bands are applied, increasing system size and weight. We presented an automated technique based
on symbolic simulation that determines a more aggressive peak power and energy requirement
for a ULP processor for a given application. We show that the application-specific peak power and
energy requirements determined by our technique are more accurate, and therefore less conserva-
tive, than those determined by conventional techniques. On average, the peak power requirements
determined by our technique are 27%, 26%, and 15% lower than those generated based on design
specifications, a stressmark, and profiling, respectively. Peak energy requirements generated by
our technique are 47%, 26%, and 17% lower, on average, than those generated based on design
specifications, a stressmark, and profiling, respectively. We also show that our technique can be
used to guide optimizations that target and reduce the peak power of a processor. Optimizations
suggested by our technique reduce peak power by up to 10% for a set of benchmarks.
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