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ABSTRACT

Floorplanning is an early phase in chip planning. It pro-
vides information on approximate area, delay, power, and
other performance measures. Careful floorplanning is thus
of extreme importance. In many applications while a good
floorplan is needed, not all modules’ information are avail-
able, or even worse, part of the provided information is
inaccurate. Floorplanning with uncertainty is the problem
of obtaining a good floorplan under uncertainty. In this
paper, the floorplanning problem with uncertainty is for-
mulated. It is established that traditional floorplanners are
incapable of handling uncertainty. An effective method for
dealing with uncertain data is proposed. Experiments show
that, for example, with up to 30% input uncertainty an area
estimate with less than 7% error can be obtained.

1. INTRODUCTION

Floorplanning is a fundamental problem in the design pro-
cess of complex chips. It is the highest level of the physical
design process. Floorplanning, thus has a profound impact
on the area, delay, power, and many other design parame-
ters. To ensure an effective and reliable design, careful and
accurate floorplanning is necessary.

Effective approaches to the floorplanning problem have
been proposed in the past two decades. Among them are
simulated annealing methods [17, 10], bottom-up and top-
down hierarchical methods [2, 6, 15], linear and quadrat-
ics programming based techniques [12], force directed
paradigms [13], clustering method [3], and techniques based
on geometric dualization of the netlist [4, 1, 19, 20]. For
other research related to floorplanning, see, e.g. [14, 18, 7].
For a detailed list of existing floorplanning methods see
textbooks on physical design, e.g., [5, 11, 9].

Traditionally it has been assumed that the entire design
(the netlist and the database library) was completely spec-
ified and available at the time of floorplanning. This is not
a valid assumption anymore and will be less valid as de-
signs are getting more complex. Floorplanning with uncer-
tainty is the process of obtaining an accurate floorplan with
missing data. More specifically, the netlist is known, how-
ever, dimensions of the modules are specified using proba-
bility distributions. There are many sources of uncertainty,
among them:

1. Missing cells: After the architecture of a chip is defined

it is necessary to obtain area and performance measures
to assess whether the architecture is acceptable or if it
has to be completely or partially redesigned. At this
stage, not all cells/blocks have been designed. Esti-
mates from the previous designs can be used to fill the
missing data. For example, if a filter is being used in
the design and it is known that a similar unit in the
previous design had area A, and the new one is some-
what more complex than the previous one, the area of
the new unit can be estimated as: 1.1A with probabil-
ity .6 and 1.2A with probability .4. These estimates
can be adjusted based on many other factors. For ex-
ample, if the designer in charge is not experienced, area
estimates can be adjusted to 1.2A with probability .4
and 1.3A with probability .6.

2. Evolving library: At the floorplanning stage, the exist-
ing library might be incomplete, for more instances of
cells are being, or will be, designed (for better perfor-
mance). Area of these cells can be estimated based on
existing implementations of the cells and based on re-
quirements of the new implementation. For example, if
the new cell is to be faster than existing ones, its area
can be estimated to be larger than existing ones.

A straightforward approach to floorplanning with uncer-
tainty would be to use the expected area of a block and use
that information in the floorplanning process. Experiments
show that this is very naive and inaccurate (see Section 3.).
A more conservative approach, where maximum possible
area of a cell is used, is also highly inaccurate.

We propose a method that aims to minimize a linear
combination of the expected value and the standard devi-
ation of the final area. The proposed technique carries the
modules’ probability distribution functions (pdf) through-
out the floorplanning process. At each stage, all dominant
floorplans (i.e., those that may contribute to a minimum
area floorplan) are obtained and redundant floorplans are
discarded. Including standard deviation as part of the cost
function will “hide” modules with uncertain shapes inside
fixed modules. For example, if the expected width of a mod-
ule is between 10 and 15, placing it below another module
with width 16 would “hide” the uncertainty. The proposed
floorplanning scheme achieves exactly that.

We also study the relationship between input and out-
put uncertainty. It is shown that in some cases the two
are highly correlated and in other cases they are not as
correlated. Numerous results, some counter-intuitive, are
demonstrated.

The rest of the paper is organized as follows: In Section
2., we formulate the problem of floorplanning with uncer-
tainty, and explain how it differs from the traditional floor-
planning problem. In Section 3., we show how to enable
the traditional floorplanning algorithms to deal with uncer-
tainty. We will also show why these methods cannot gener-
ate an accurate floorplan. Then we will present our method,



called Nostradamus, which tries to minimize the expected
value and standard deviation of the floorplan. In Section
4., we will formulate the correlation of standard deviation
in input data to that of the final floorplan. Detailed ex-
periments are shown in Section 5.. Different floorplanning
parameters and cost functions are compared. A simulation
environment is developed to test different paradigms. Sec-
tion 6. contains conclusion and future work.

2. PROBLEM FORMULATION

The traditional floorplanning problem takes as input a set
of modules (blocks), their widths and heights, and intercon-
nections between them. It tries to find a floorplan such that
the total area, delay, and power is minimized. Our work fo-
cuses only on area minimization, However, extending it to
deal with other optimization goals is straightforward.

In this paper, we consider floorplanning with uncertain
data. Such data will consist of width distribution lists Wi

(1 ≤ i ≤ n) and height distribution lists Hi (1 ≤ i ≤
n), where n is number of modules. Each distribution list
contains pairs of numbers: width (or height) of a module
and its probability.

Wi = {(wi1, p(wi1)), (wi2, p(wi2)), . . . ,

(wimwi
, p(wimwi

))}

mwi
∑

j=1

p(wij) = 1

Hi = {(hi1, p(hi1)), (hi2, p(hi2)), . . . ,

(himhi
, p(himhi

))}

mhi
∑

j=1

p(hij) = 1

Equivalently, we can also consider the case where each
width/height pair has a probability. Such a distribution
would look like:

Li = {(wi1, hi1, pi1), (wi2, hi2, pi2), . . . , (wimi
, himi

, pimi
)}

We will use distributions Wi and Hi throughout this paper,
because they are easier to describe. However, the results are
applicable to distributions Li.

A slicing floorplan is a rectangular floorplan that can be
recursively partitioned into two floorplans by a horizontal
or vertical line. Throughout the paper, we will focus on
slicing floorplans because they can be demonstrated better.
Results are readily generalizable to non-slicing floorplans.
(For a discussion on how to transform non-slicing floorplans
to slicing ones see [8].)

In traditional floorplanning, when two slices of dimen-
sions (w1, h1) and (w2, h2) are clustered vertically into a
larger block (w1,2, h1,2) (or in other words, block (1,2) is
sliced vertically into slices 1 and 2, the dimensions of block
(1,2) can be calculated using the following two equations:

w1,2 = w1 + w2 (1)

h1,2 = max(h1, h2) (2)

When the same slices are clustered horizontally,

w1,2 = max(w1, w2) (3)

h1,2 = h1 + h2 (4)

Different clusterings of the initial modules results in dif-
ferent floorplans. Different algorithms aimed at minimiz-
ing the area of the final floorplan have been proposed. As
an example, see [16, 5, 11, 9]. We have revised the simu-
lated annealing method to solve the floorplanning problem
with uncertainty. The simulated annealing algorithm starts
with an arbitrary sliceable floorplan. Polish expressions can
be used to represent sliceable floorplans. An example of

such expression together with the corresponding floorplan
is shown in Figure 1. The annealing algorithm takes a nor-
malized polish expression as input, and performs the follow-
ing “moves” on it to get another expression:

1. Exchange two operands when there are no other
operands in between.

2. Complement a series of operators between two
operands, i.e., change horizontal signs (H in Figure 1)
to vertical ones (V in Figure 1) and vice versa.

3. Exchange adjacent operand and operator if the result-
ing expression is still a normalized polish expression.

H

V

1

2 3

(b)

123HV

(c)

1

2

3

(a)

Figure 1. (a) a floorplan (b) slicing tree (c) corre-
sponding polish expression

Details of the annealing algorithm can be found in [16,
17, 5, 11, 9]. Here we will highlight the modifications we
have made to the algorithm to deal with uncertainty. To
take uncertainty into consideration, the vertical clustering
of module 1, as characterized by distributions W1 and H1,
and module 2, as characterized by distributions W2 and H2,
will yield the following distributions of widths and heights
for module (1, 2) :

W1,2 = W1 ⊕W2 (5)

H1,2 = H1©mH2 (6)

The operations ⊕ and ©m are distribution addition and dis-
tribution maximum operations, respectively, and are defined
as follows:

D1 ⊕D2 =
{

(

d1i+d2j , p(d1i) ∗ p(d2j)
)

∣

∣

∣

(d1i, p(d1i)) ∈ D1 and (d2j , p(d2j)) ∈ D2

}

(7)

D1©mD2 =

{

(

d1i, p(d1i) ∗
∑

j:d2j≤d1i

p(d2j)
)

∣

∣

∣

∣

(d1i, p(d1i)) ∈ D1 and (d2j , p(d2j)) ∈ D2

}

⋃

{

(

d2j , p(d2j) ∗
∑

i:d1i<d2j

p(d1i)
)

∣

∣

∣

∣

(d1i, p(d1i)) ∈ D1 and (d2j , p(d2j)) ∈ D2

}

(8)

Equation 7 implies that in order to add two random vari-
ables with distributions D1 and D2, we should create a new
distribution whose elements are pairwise “addition” of el-
ements from the two distribution lists. This “addition” of
two elements is done by adding values and multiplying their
probabilities. At the end, if two elements of the distribution
list D1 ⊕ D2 have the same value, we should replace them
with a new one whose value is the same as their values and
its probability is the addition of their probabilities.



As an example, suppose W1 = {(5, .3), (7, .5), (8, .2)} and
W2 = {(2, .9), (3, .1)}. When we cluster them vertically, the
resulting distribution will be:

W1,2 = {(5 + 2, .3 ∗ .9), (5 + 3, .3 ∗ .1), (7 + 2, .5 ∗ .9),

(7 + 3, .5 ∗ .1), (8 + 2, .2 ∗ .9), (8 + 3, .2 ∗ .1)}

= {(7, .27), (8, .03), (9, .45), (10, .05), (10, .18),

(11, .02)}

= {(7, .27), (8, .03), (9, .45), (10, .23), (11, .02)}

The distribution list of D1©mD2 consists of elements
which are “maximum” of pairwise elements of the two distri-
bution lists. The value of the “maximum” of two elements
is the maximum of their values and its probability is the
product of their probabilities. Equation 8 is a formal way
of describing the relation.

As an example, suppose H1 = {(1, .1), (2, .2), (7, .7)} and
H2 = {(4, .4), (6, .6)}. If we cluster them vertically, the
resulting distribution would be:

H1,2 = {(7, .7 ∗ .4), (7, .7 ∗ .6), (4, .4 ∗ .1), (4, .4 ∗ .2),

(6, .6 ∗ .1), (6, .6 ∗ .2)}

= {(7, .7 ∗ (.4 + .6)), (4, .4 ∗ (.1 + .2)),

(6, .6 ∗ (.1 + .2))}

= {(7, .7), (4, .12), (6, .18)}

3. FLOORPLANNING METHODS FOR
UNCERTAIN DATA

In this section, we will describe how to enable traditional
floorplanning algorithms to handle uncertainty. We propose
three methods to convert uncertain data to deterministic
ones so that they can be fed in traditional algorithms. We
will show why these methods do not yield accurate floor-
plans. In Subsection 3.2. we will describe an efficient ap-
proach.

3.1. Traditional Method

The traditional floorplanning algorithms take a list of mod-
ule dimensions which contains one entry for each module’s
width and one for its height. In order to enable these algo-
rithms to solve the problem with uncertain data, we have no
way but to select one candidate for width and one for height
of each cell. We propose three methods of performing this
task:

1. Optimistic method: For each cell, pick the minimum
value from the width list and minimum value from the
height list and use them as width and height of the cell.

2. Conservative method: For each cell, pick the maximum
value from the width list and the maximum value from
the height list and use them as width and height of the
cell.

3. Expected value method: For each cell, calculate the ex-
pected value of the width distribution and the expected
value of the height distribution and use them as width
and height.

After this transformation, we can run any traditional
floorplanning program and hope for an accurate floorplan.
Intuitively, the optimistic and the conservative methods will
not yield realistic results and designers cannot rely on them
to make high-level decisions. The actual floorplan will most
probably have smaller area than the optimistic method and
larger area than the conservative method.

As an example of poor performance of the optimistic and
conservative methods, consider the following distributions
of modules 1-3:

W1 = {(3,.1),(5,.9)} H1 = {(1,1.0)}
W2 = {(2,1.0)} H2 = {(4,1.0)}
W3 = {(3,.85),(5,.15)} H3 = {(3,1.0)}

The optimistic method will choose 3 as the width of mod-
ules 1 and 3. The resulting floorplan is shown in Figure 2a.
The estimated area is 20. However, if the actual width of
module 1 happens to be 5 (when it is completely designed),
the area of this floorplan will be 28, as shown in Figure 2b.

The conservative method chooses 5 as the width of mod-
ules 1 and 3. Figure 2c shows the floorplan generated by the
conservative method. The area estimated by this method is
28, which is the same as the area of the floorplan when the
actual values are used, but larger than the optimal floor-
plan. (See Figure 2d.) Although in this example both
optimistic and conservative methods generated the same
floorplan, this is not true in general.

The expected value method chooses 4.8 as the width of
module 1, and 3.3 as the width of module 3. The floorplan
generated by this method is the optimal floorplan for the
final design, although the estimated area is larger than the
actual optimal floorplan. Figure 2e shows the estimated
floorplan generated by this method, and Figure 2f shows the
optimal floorplan after all the modules have been designed.
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Figure 2. The numbers adjacent to the borders show the
width and height of the modules. (a) floorplan by optimistic
method assumes that w1 = w3 = 3 in final chip. (b) the ac-
tual size of optimistic floorplan after the modules are designed.
(c) The floorplan generated by conservative method and its esti-
mated area. w1 and w3 were estimated to be 5. (d) The actual
conservative floorplan size after the modules are designed. (e)
The floorplan generated by expected value method. It assumes
that the final w1 will be 4.8 and the final w2 will be 3.3. (f)
Minimum size floorplan for the actual dimensions

One might run both the optimistic and the conservative
methods on the problem and look at both results to make
design decisions. This cannot be a general solution. The
difference between the two floorplan sizes might be so huge
that no judgment can be made using those results. Using
the expected value for widths and heights seems to be more
reasonable. In subsequent sections, we will show that even
this method does not generate compact floorplans.

3.2. The Nostradamus Floorplanner

Our algorithm, Nostradamus, is a modification of the tradi-
tional simulated annealing floorplanning algorithm [17]. We
start with the distribution lists of width and height of cells,
and a sliceable floorplan. Then we use Equations 5 and 6
and their horizontal counterparts to calculate distributions
of the clustered modules. The clustering and calculating
the corresponding distributions will be performed in a hier-
archical manner until we get the distributions of width and
height of the whole floorplan.

Reporting the distributions of the floorplan dimensions
will provide more information to the user than simply re-
porting a width value and a height value, as is the case



in the optimistic, the conservative or the expected value
method described in Section 3.1..

If the only objective of the user is to get the distribu-
tion and try to minimize the area, the cost function during
the annealing process would be E(W)∗E(H), where E(W)
and E(H) are respectively the expected value of width and
height of the whole floorplan.

We can add variance to cost function and try to min-
imize both expected value and the variance of the area.
The cost function which can be used is λ ∗ E(Area) + (1 −
λ) ∗ var(Area) where E(Area) is the expected value of the
floorplan area and var(Area) is the variance of it. In order
to get area distribution, one has to “multiply” 1 the width
and height distributions. Since this process is both time
and memory consuming, and should be done at every move
in the annealing process, Nostradamus uses the following
simpler cost function instead:

cost = λ ∗ E(W) ∗ E(H) + (1 − λ)(var(W) ∗ var(H)) (9)

In the next section we will discuss details of our studies.

4. CORRELATING OUTPUT UNCERTAINTY
TO INPUT UNCERTAINTY

To understand the nature of problem and how Nostradamus
behaves to different input parameters, we have generated
different sets of input data each with a different distribution.
For example, data sets b1 – b4 contain uniform distributions
of values within a range for each module’s width/height.
The range of values has fixed length and its starting point
is selected randomly. As another example, set f1 contains
distributions {(a − l, .05), (a, .9), (a + l, .05)}. l is a fixed
number, and a is selected randomly for each width/height
of each module.

Each input set contains width and height distributions
for 50 modules. At first, we set λ to 1 (i.e., no effort in
minimizing the variance) and try to find the relationship
between input parameters and output parameters.

We ran Nostradamus with λ = 1 on each of the input
sets. The final floorplan generated by Nostradamus is called
“output” or “Nostradamus floorplan”.

Figure 3 shows the width and height distributions of some
Nostradamus floorplans. The figure contains distributions
for two data sets. These floorplans are generated with λ =
1.
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Figure 3. Nostradamus floorplan’s width and height distri-
bution for data sets c2 and c4 when λ = 1. Note that X and Y
scales of the graphs are not the same.

A designer (or, a design team) would like to have a floor-
plan with as minimum a deviation as possible. A floorplan
similar to c4 is practically useless. (See Figure 3b.) The
user is provided with a very flat curve showing the possi-
ble values for width/height. The designer cannot make a
concrete decision based on such floorplans.

1By “multiplication” we mean an operation similar to ⊕ which
multiplies the values instead of adding them.

Figure 4 shows the relationship between input width de-
viation and Nostradamus floorplan’s width deviation. Dif-
ferent data sets can be found on the x-axis of the graph.
All the input deviations of data sets are scaled by 3.13 to
make the comparison between input and output deviation
easier. As can be seen, the output deviation follows input
deviation very closely. Although we have not included the
deviation graphs of height distributions here, the output
height deviation also follows input height deviation.
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Figure 4. Width standard deviation of input sets and the
corresponding width deviation of the Nostradamus floorplan. X-
axis shows different input sets. λ = 1.

5. EXPERIMENTAL RESULTS

In this section experimental results on the effectiveness of
the proposed floorplanner will be shown. In particular, we
will show the effect of parameter λ on the final floorplan.
We will also show that the input characteristic, e.g., the
number of modules with uncertainty, has a profound impact
on the final result.

We will describe a simulation environment, developed to
measure the effectiveness of Nostradamus and compare it
with other techniques proposed earlier (e.g., the conserva-
tive method).

5.1. Effect of λ on Nostradamus Floorplans

Different values of λ in Equation 9 generate different floor-
plans with distinct area and varying variance. Among all
possible floorplans, it is not obvious which floorplan the
user prefers: one with minimum expected value or one with
minimum variance, or a solution in between. All floorplans
generated for data sets g1 and h1 are shown in Figure 5.
It shows different points with different expected value and
standard deviation. The numbers next to the points show
the value of λ which was used to generate the floorplan.
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Figure 5. Different points show different expected
value/standard deviation of Nostradamus floorplans. User might
choose any of the floorplans inside the dominant set, shown by
dotted curves.

The dotted curves highlight the dominant set. A floor-
plan is in the dominant set if and only if there is no other



floorplan which has smaller area and smaller standard de-
viation than it. All members of the dominant set are can-
didate floorplans; none of them can be easily preferred over
the other. For example, referring to Figure 5a, a designer
might choose the floorplan generated with λ = 0.8 instead
of λ = 0.9 since paying a small penalty in the expected area,
the worst case (e.g., the variance) can be controlled.

5.2. Design Simulation Environment

To see how well Nostradamus might work in practice, we
have developed a simulation environment as demonstrated
in Figure 6. At first, width/height distributions are gener-
ated for each of the modules. In reality, the design team or
the design manager provides these data based on the sce-
narios described in Section 1. In our experiments, random
data and the controlled data described in Section 4. have
been used.
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Nostradamus Stimuli Generator

Figure 6. Design simulation process. The floorplan generated
by Nostradamus from module distributions is sized by actual
width and height generated by stimuli generator. Nostradamus
can be replaced by other methods such as the optimistic method
so that we can compare the resulting floorplans.

Then we run Nostradamus on probabilistic data. Differ-
ent values of λ are tried out and an arbitrary floorplan in
the dominant set is selected. This process is shown as box
2 in Figure 6.

We also ran the optimistic, conservative and expected
value methods (see Section 3.1. for a description of these
methods) on the same input data. Each of the methods
generates a floorplan. Although we have not shown them,
the boxes corresponding to these steps are similar to box 2
in Figure 6, that is, a floorplan distribution is generated.

After running Nostradamus and the other methods, we
test the process by choosing a stimuli. The stimuli is gen-
erated by finding a point in the distribution list of each
module in accordance with the dictated probabilities. The
stimuli represent the values of the completed, and com-
pletely specified design. See box 3 in Figure 6. Considering
these dimensions, we calculate the area of the sized floor-
plans generated by Nostradamus, optimistic, conservative
and expected value methods. This is shown in box 4 in
Figure 6.

5.3. Comparing Different Methods

Another important parameter in input data is “uncertainty
percentage”. We say an input data set is x% uncertain if

x% of its modules have probabilistic dimensions and the
other modules have deterministic dimensions, i.e., the rest
have exactly one width and one height value.

Figures 7 to 10 show the actual area of optimistic, con-
servative, expected value and Nostradamus floorplans for
different uncertainty values of input data. The actual area
is calculated using the method described in Section 5.2..

As can be seen, when all (or almost all) module dimen-
sions’ are uncertain then it is not possible to “hide” uncer-
tain ones inside the rest. Therefore, all methods generate
more or less the same result, as shown in Figure 10. In the
other extreme, when all (or almost all) module dimensions’
are known, again it is not possible to “hide” uncertain ones
inside the rest since there are not many uncertain ones.
Again, in this case, all methods generate more or less the
same result, as shown in and Figure 7. When uncertainty
is between, 30 to 70 percent, the proposed method is very
effective in generating compact floorplans by anticipating
the final result, as shown in Figures 9 and 8.

Finally Figure 11 shows a summary of how Nostradamus
behaves under different uncertainty measures. As one might
expect, the more uncertainty results in less accurate predic-
tion capability.

6. CONCLUSION

We have proposed a floorplanner that is capable of dealing
with modules’ uncertainty. It generates a compact floorplan
by anticipating the final dimensions of the modules. The
proposed floorplanner, called Nostradamus, can be tuned
for minimum expected area or for minimum variance. Ex-
periments show that planning for uncertainty does pay off
and results in compact floorplans.

Our research is a start on floorplanning with uncertainty.
Obtaining analytical bounds on the area of the final floor-
plan, based on the amount and type of uncertainty in input,
remains open. There are many other uncertainty factors,
for example, uncertainty on the number and types of nets.
This is an interesting and challenging problem. In this case,
even the modeling aspect of the problem is non-trivial.

Ratio of actual area of traditional methods to area 
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Figure 7. The ratio of actual floorplan size of traditional meth-
ods to the actual floorplan size of Nostradamus. Level of uncer-
tainty is 10%.
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Ratio of actual area of traditional methods to area 
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ods to the actual floorplan size of Nostradamus. Level of uncer-
tainty is 30%.
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Figure 9. The ratio of actual floorplan size of traditional meth-
ods to the actual floorplan size of Nostradamus. Level of uncer-
tainty is 50%.
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