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Abstract| The advances in the programmable hardware
have lead to new architectures, where the hardware can be
dynamically adapted to the application to gain better per-
formance. One of many challenging problems in realizing a
general-purpose recon�gurable system is the placement of
the modules on the recon�gurable functional unit (RFU).
In recon�gurable systems, we are interested both in online
template placement, where arrival time of tasks is not known
until runtime and o�ine in which the operations are sched-
uled at compile time. In this paper, we present online and
o�ine heuristic template placement methods for both hard
and soft templates, which can be developed internally or
obtained externally (IPs). The proposed online algorithm is
faster by a linear factor (about 15-30 times in practice) than
the best known online algorithms, but its placement quality
is comparable or slightly worse. For o�ine placement, we
present algorithms based on simulated annealing and greedy
methods and show the superiority of their placements over
the ones generated by an online algorithm.

I. Introduction

As the FPGAs get larger and faster, both the number
and complexity of the modules to load on them increases,
hence better speedups can be achieved by exploiting FP-
GAs in hardware systems. Gokhale et. al. report speedups
of 200x in [9] for the string matching problem. Adario et.
al. [1] achieve 3 times the pipelined implementation of
image processing applications by exploiting dynamic re-
con�guration of the hardware. Furthermore, the ability
to recon�gure the chip as it is running enables the imple-
mentation of dynamically recon�gurable hardware systems
which adapt themselves to the application for better perfor-
mance [9], [15], [25]. Hauck has reported many applications
in recon�gurable systems in [11]. Such systems usually con-
sist of a host processor and an FPGA \co-processor" called
Recon�gurable Functional Unit (RFU). The RFU can be
programmed in the course of the running time of the pro-
gram with varying con�gurations in di�erent stages of the
program.
An example is shown in Figure 1. As shown in Figure

1-a, three parts of the code are mapped to RFU operations
(RFUOPs, also called modules). When the program is run-
ning the loop containing RFUOP2 (time t1), two RFUOPs
are loaded on the chip. Later, when the program is about
to enter the loop at time t2, there is no space on the RFU
to place RFUOP3. Hence, RFUOP2 is swapped out of the
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chip and RFUOP3 is loaded. RFUOP1 is still on the chip
and may be reused later in the program.
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Fig. 1. (a) The running code (b) RFU con�guration at time t1
(c) RFU con�guration at a later time t2

Unfortunately, rather long delays in reprogramming re-
con�gurable functional units (RFUs) keep us from achiev-
ing very high speedups for general purpose computing [8].
Wirthlin and Hutchings [25] report an overall speedup of
23x, while the speedup could be 80x if con�guration time
was zero (the con�guration time is 16% to 71% of the total
running time).
A number of methods have been proposed to overcome

the delays in recon�guring the RFUs. Among them are:

1. Compiler techniques such as prefetching [10] and con�g-
uration compression [13]. The prefetching method overlaps
RFU con�guration with computation. The con�guration
compression reduces the con�guration time by transferring
fewer bits to the RFU and hence decreasing the con�gura-
tion time.
2. Hardware Caching techniques keep most frequently used
operations on the RFU and hence eliminate the need for
reprogramming it when such operations are called. The au-
thors know of no concrete results published on such meth-
ods.

Although these algorithms are necessary for a practical
recon�gurable system, we still need fast and powerful phys-
ical design CAD tools to do con�guration management of
the RFUs both o�ine and online. In the o�ine version, the

ow of the program is known in advance (e.g., in DSP ap-
plications, or loops containing basic blocks) and hence the
scheduler and con�guration management component can
do various optimizations in the con�guration of the RFU
before the system starts running. On the contrary, in the
online version the decision on what operations should be
launched is not known beforehand. The 
ow of the program
is not known in advance and hence the RFU con�guration
management should be done on the 
y. An example of
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such a case is multi-threading, where the 
ow of the code
cannot be determined beforehand.

Both online and o�ine versions of the template place-
ment algorithms are important for recon�gurable comput-
ing systems. The online is important since it is intrinsi-
cally hard to accurately predict the run time behavior of
a general program at compile time; hence one needs online
placement methods for at least parts of the RFU man-
ager kernels. The importance of the fast online placement
methods lies in the di�erence between software caching and
hardware caching. In software caching (the traditional data
caching in programs), when a requested page is not in the
cache, the penalty to load it is in terms of tens of CPU
instructions. But in case of hardware caching (using a rel-
atively small RFU to load and run many hardware mod-
ules), if an RFU operation is missing, loading con�guration
into a speci�c location on the RFU might be hundreds or
thousands of cycles. The delay consists of two parts: load-
ing the con�guration bits onto the recon�gurable device,
and �nding an appropriate location for the con�guration.

The o�ine algorithm can be exploited to generate com-
pact placements for a group of RFU operations, which will
execute in sequence (e.g., part of the code in a basic block).
The compact placement of the group of RFU modules can
be seen as one atomic module when the online placement
method is running. Furthermore, placements generated by
an o�ine method can serve as baseline solutions for the on-
line versions, and help us devise better online algorithms.
Hence, the most important feature of an o�ine placement
algorithm is the quality of placement it generates, even
though it might be a slow method.

To this date the place and route algorithms proposed for
FPGAs, which are mostly modi�cations of the traditional
algorithms for ASIC designs, are generally very slow or do
not generate high quality placements. Examples are [18],
[22], [19]. The only fast placement algorithm reported in
the literature is a work by Callahan et. al. [5] which is a
linear time algorithm for mapping and placement of data

ow graphs on FPGAs, but limited to data paths only. In
fact, the only way to gain major speed-ups in recon�gurable
computing systems is to use template placement/routing
(the traditional on-the-
y synthesis/placement/routing of
individual units would make the system several orders of
magnitude slower).

For the online version, our goal is to devise e�cient meth-
ods for placing RFU operations on the chip in a fast manner
to be used in a recon�gurable computing system. In ad-
dition to being fast, such methods should be able to pack
the modules on the RFU tightly to use the chip area e�-
ciently. The e�ect of placing more modules on the RFU is
similar to having a large data cache on a computer: it is
more likely that a requested RFUOP is already on the chip
and hence there is no need for reloading it.

In the case of o�ine placement, our goal is to �nd meth-
ods for placing RFU operations on the chip as compactly
as possible. The o�ine methods can be used both as a
subroutine by the online algorithm (e.g., in pre-placing op-
erations in a basic block as a single online module) and

as a baseline for assessing the quality of online methods.
We propose simulated annealing as well as greedy o�ine
algorithms for the placement of the modules on RFU, and
show the e�ectiveness of the proposed methods by compar-
ing their placements with those of our online version.
The rest of the paper is organized as follows: In Sec-

tion II we have described our model of the recon�gurable
system. We have also de�ned measures to compare e�ec-
tiveness of di�erent RFUOP placement algorithms. Section
III deals with the online placement. The o�ine algorithm
is presented in Section IV. Section V is the conclusion and
suggestions for further research on the subject.

II. Our Model of a Reconfigurable Computing

System

Brebner [4] suggests an environment in which the run-
time system dynamically chooses between hardware (RFU
operation) and software (main host CPU instructions) im-
plementations of the same function based on pro�le data
or other criteria. We use the same paradigm in our model.
An RFUOP ri can be either accepted or rejected based on
availability of RFU real estate. If an RFUOP is rejected,
the same function should be performed by the host CPU
and hence a running time penalty is incurred. We use set
ACC to represent RFUOPs which are accepted (See Equa-
tion 1).
In our model, we assume there is no communication be-

tween RFUOPs. The data to be processed by an RFUOP
is loaded on the RFU before the RFUOP starts execution,
and after it is done, the result is read into CPU registers (as
an example for this communication scheme, see Chimaera
[12] architecture). Assuming there are no signi�cant con-
nections between the modules, the placement problem can
be solved much faster than the case where there are lots of
wires between methods.
Furthermore, the RFUOP can be hard or soft module

(template) either developed internally or obtained exter-
nally (IPs). A hard module has �xed shape. On the other
hand, a soft module has di�erent implementations, with
approximately the same area, but di�erent aspect ratios.
Our model which deals with the placement engine of the

RFU con�guration management interface, assumes that
the RFUOPs have been scheduled during compile time.
Furthermore, it does not consider any caching of the mod-
ules on the chip during the run-time.
The set

RFUOPS =
�
r1; r2; � � � ; rn j ri = (wi; hi; si; ei)

	

represents all the RFU operations de�ned in the system,
where wi; hi; si and ei are all positive integers with the ad-
ditional constraint that si < ei. wi and hi are the width
and height of the implementation of the RFUOP ri in the
library respectively. si is the time the operation ri is in-
voked and ei � si is the time-span it is resident in the
system.
The placement engine can be invoked in only two ways:

insert a module which is not currently on the chip (at time
si) and delete a currently placed module from the chip (at
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Penalty(P ) =
X

ri2RFUOPS and 69(ri;x;y)2P

penalty(ri) (3)

The overlap of a placement P 2 ACC is de�ned as the
total overlapping volume of all the RFUOP boxes:

Overlap(P ) =
X

(ri;xi;yi);(rj;xj ;yj)2P;i 6=j

box(ri) \ box(rj) (4)

O�ine placement or 3-D template placement is the prob-
lem of �nding the placement P 2 ACC with minimum
Penalty(P ) and the additional constraint that no two
RFUOP boxes overlap, i.e.,Overlap(P ) = 0. Online place-
ment is similar to the o�ine version, but di�ers in the fact
that at any given time, the decisions are made only on the
horizontal cut at that time. In other words, the modules
are processed in the time they start and the algorithm only
looks at the current cut plane when deciding on whether
there is room for a new module or where to place it.

III. Online Placement

This section deals with the online (two-dimensional)
placement problem [3]. We summarize the results of the
previous works on two-dimensional bin-packing in Subsec-
tion III-A, and investigate their applications to the problem
of placing modules on RFUs. Our method is described in
Section III-B. Experimental results for the online version
are shown in Section III-E.

A. Previous Work on Two-Dimensional Bin-Packing

The problem of packing RFUOPs on a chip is similar
to the well-studied two-dimensional bin-packing problem.
The latter is an extension of the classical one-dimensional
bin-packing (for a survey on bin-packing algorithms, re-
fer to [17], [16]). The one-dimensional bin-packing prob-
lem is similar to placing modules in rows of con�gurable
logic, as done in the standard cell architecture. The two-
dimensional bin-packing problem can be used when the op-
erations to be loaded on the RFU are rectangles which can
be placed anywhere on the chip.
The algorithms for the o�-line version of the problem can

be used when the 
ow of a program is known in advance
(e.g., in a loop with a rather simple data 
ow graph). We
can run an e�cient o�-line bin-packing algorithm to �nd a
compact placement for a given set of RFUOPs.
Although our interest mostly lies in the two-dimensional

version of the problem, we have studied the one-
dimensional form as well. The reason is that the 1D form,
due to its simpler nature, has been extensively studied in
the past and many results have been published on the qual-
ity of the packing generated by di�erent algorithms. Fur-
thermore, the results are extendible to two-dimensions.
Two well known online algorithms for the one-

dimensional bin-packing problem are the First Fit (FF)
and Best Fit (BF) [16]. The FF algorithm puts the arriving
module in the lowest indexed bin which can accommodate
the module. The BF algorithm chooses the bin which has

the smallest room to accommodate the module (to mini-
mize the wasted space). Since both FF and BF consider all
the currently used bins for placing the new module, they
require O(n) time for each insertion operation in the worst
case, n being number of bins. In practice, FF is faster
than BF. It has been shown that the quality of BF and
FF is fairly close to the lower bound for online bin-packing
algorithms [7], [16], [20], [23].
There are di�erent evolutions of the BF and FF for

the two-dimensional version of bin-packing or the strip
packing problem reported in [7]. Among them are Next-
Fit-Level, Next-Fit-Shelf, Harmonic-Shelf and Best-Fit
Aligned. These algorithms have asymptotically small
wasted space, but for small number of modules and bins
waste considerable amount of space in order to reserve
room for future modules.
Another fast successful algorithm for strip packing is the

bottom-left (BL) heuristic implemented in total quadratic
time (O(n) time for each insertion, where n is the number of
modules currently placed) by Chazelle [6]. The algorithm
generates a placement which has at most three times the
optimal area in the worst case, however, the author claims
much better quality in practice. The new items are placed
in the lowest possible location that they �t and placed as
much to the left as possible. Chazelle's implementation
preserves a property of the placement called bottom-left
stability, which cannot be met when items can leave the
system as well as arrive, hence Chazelle's implementation
cannot be used in dynamically-recon�gurable computing.
Healy and Creavin present an algorithm in [14] with time
complexity O(n logn) for each insertion.
In the next subsection, we present our online method

that is a generalization of the BF and FF heuristics for
the two-dimensional bin-packing and has time complexity
O(logn), but does not consider all candidate empty rect-
angles when placing a new item. In Subsection III-E, we
show how much quality loss is caused by this simpli�cation.

B. Our Online Placement Method

As we mentioned in earlier sections, our goal is to devise
a fast, but not necessarily optimal placement method to
work as the placement engine of the architecture described
in Section II. The important question is, how much qual-
ity loss one can tolerate for a faster method. The answer
lies with the application requirements. If there are not so
many modules needed on the chip simultaneously (and not
the total number of modules in the system), we can a�ord
wasting more space on the chip. The reason is that there
would probably be enough empty space on the chip for the
new modules, and RFU area would not be very important.
In such cases, a fast placement algorithm is preferred to a
slow, but high-quality one.
The methods we have proposed are two-dimensional ex-

tensions of the FF, BF and BL algorithms. The generic
algorithm consists of two parts: (a) An empty space parti-
tioning manager both for insertion and deletion and (b) A
search engine and bin-packing rule. The partitioning part
divides the empty region (sometimes referred to as \holes"



IEEE DESIGN & TEST OF COMPUTERS, VOL. XX, NO. Y, FEB. 2000 104

in the literature) on the chip into, not necessarily disjoint,
rectangles called \empty rectangles". Part (b) is respon-
sible for selecting an empty rectangle to accommodate a
module whose insertion is requested. All empty rectangles
which can accommodate the module, are candidates for the
location of the module on the chip. The bin-packing rule
is used to favor one over the others. Finally, the module
will be placed at the lower-left corner of the selected empty
rectangle. For example the criteria could be to choose the
empty rectangle with minimum area (Best Fit), or to pick
the one with the lowest bottom side, breaking the tie by
choosing the one with the leftmost left edge (bottom-left
heuristic).
In Subsections III-C { III-C.5 we describe di�erent parts

of the algorithm in more detail. Subsection III-D discusses
the time complexity of the method.

C. Handling Empty Rectangles

An important part of the algorithm is the way it handles
the empty space. An empty rectangle is a rectangle, which
does not overlap any of the modules on the chip. A max-
imal empty rectangle (MER) is an empty rectangle, which
is not contained by other empty rectangles. Four maximal
empty rectangles are shown in Figure 4 (not all MERs are
shown). The top-right corner of all four is point 'A', and
their bottom-left corners are 'B', 'C', 'D' and 'E'. The in-
tersection of rectangles (B,A) and (E,A) is an example of
an empty rectangle.
In the worst case, number of MERs could be quadratic

in terms of number of modules. An example of such a case
is shown in Figure 5. In this �gure, there are n

2 MERs
with 'A' as their bottom-right corners (the other corners
are 'B', 'C', 'D', 'E' and 'F'), n2�1 with 'G' as their bottom-
right corner, n

2 � 2 with 'H', . . . . So on the whole, there
are O(n2) MERs. If a placement algorithm stores all the
MERs explicitly, the maximum required space would be
quadratic in terms of number of modules.

D

E

AC
B

Fig. 4. A placement and maximal empty rectangles (MERs).

Both [6] and [14] use doubly connected edge list (DCEL)
data structure [21] (Section 1.2.3.2) to store the empty
space as a set of \holes" which take linear space in terms of
number of modules. The reason for the linear space com-
plexity (versus quadratic) is that the DCEL data structure
keeps the maximal empty rectangles implicitly. To obtain
the list of MERs from DCEL, one has to spend linear time.

H G
A

F
E

D

B
C

Fig. 5. A placement in which number of MERs is quadratic in terms
of number of modules.

Hence to �nd a location for a newly arrived module, one
can search the DCEL list in linear time (provided a good
implementation like [6]) to report all possible candidates
for a bottom-left placement.

We, on the contrary, keep the empty rectangles explicitly
in a list. We have implemented two categories of methods:
1. Keeping all the MERs (only one implementation) and
2. Keeping disjoint empty rectangles (di�erent implemen-
tations, each using a di�erent heuristic). As stated earlier,
the �rst approach takes quadratic space in terms of number
of modules on the chip, while the second one needs only lin-
ear space. Since the �rst method keeps all the MERs and
hence checks all of them for placing an arriving module,
the quality of its placement is better than any method of
the second category, provided that the same bin-packing
rule is used (see Subsection III-C.4). However, methods of
the second category are faster. In Subsections III-C.1 and
III-C.2 the implementations of these two categories are ex-
plained in more detail.

C.1 Keeping All Maximal Empty Rectangles (KAMER)

As we stated earlier, keeping all the MERs (KAMER)
increases the space requirement of the algorithm by a lin-
ear factor and also slows down the insertion and deletion
operations. When implementing a placement method of
this type, we are obviously not looking for the fastest, but
rather the best quality placement algorithm. The KAMER
algorithm can be used as a baseline for comparison against
faster algorithms. Since the KAMER algorithm consid-
ers more candidates for placing a newly arrived module,
the placement it generates is superior in quality than the
methods that keep only linear number of empty rectangles
(provided that a good bin-packing rule is used).

The following example shows how we have implemented
the insertion operation in KAMER. Suppose we have cho-
sen the MER with corners (A,D) to place the lightly-shaded
module and the module is going to be inserted at the
bottom-left corner of the MER (Figure 6). Before the
module is inserted, there are 15 MERs in the placement.
The newly-arrived module overlaps, in some cases partially,
with 11 of the 15 (e.g., (A,E), (A,D), (H,C), . . . ) MERs.
Each MER, which has some intersection with the module,
should split into smaller MERs. For example, Figure 6-(b)
shows how MER (G,B) splits into four smaller MERs. In
this example, total number of MERs after insertion of the
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module will be 36. As this example shows, many MERs
should be checked for overlapping the module and more
than one could split after insertion.

(a) (b)

BB
C

D
E

F

A
G

H

G

Fig. 6. (a) The lightly shaded rectangle is going to be placed on the
lower-left corner of the MER (A,D). (b) The way MER (G,B)
will be split after insertion.

Note that if just after insertion of the new module we
delete it, the deletion operation should merge 21 empty
rectangles into 11 (the reverse of what we did for inser-
tion). Since we are not trying to �nd a running time ef-
�cient algorithm when keeping all MERs, we can simplify
the deletion operation by starting with an empty chip and
inserting all the modules one by one except for the recently
deleted one.

C.2 Keeping Non-overlapping Empty Rectangles

In order to avoid quadratic space requirement and in-
creased running time, we can keep only linear number of
empty rectangles in terms of number of modules. These
empty rectangles are not necessarily maximal and hence
we might lose some quality in the placement. The rea-
son for quality loss in comparison to KAMER is that each
non-maximal empty rectangle in the linear partitioning is
contained by at least one MER in the quadratic partition-
ing of the empty space. If a module can be placed in the
linear partitioning (i.e., there is at least one non-maximal
empty rectangle large enough to contain the new module),
then it can be placed in the MER partitioning. Obviously,
the reverse is not true.
An example of non-overlapping partitioning of the empty

region is shown in Figure 7-a. As an example of quality loss,
suppose we have partitioned the empty space in Figure
7-b using segment Sb (assume Sa does not exist for the
moment). Now, if a module whose dimensions are slightly
less than those of (E,D), it can in fact be placed on the chip,
but since it does not �t in neither of (A,B) and (C,D), the
placement method rejects it.
When a new module arrives, the algorithm searches in

the list of empty rectangles for all empty rectangles which
can accommodate the module. Then uses a bin- packing
rule to choose one. More details can be found in Subsection
III-C.4). Finally, the module is placed on the lower-left
corner of the selected empty rectangle.
Since the empty rectangles are non-overlapping, only the

selected empty rectangle should split into two smaller ones.
Figure 7-b shows an example. Suppose the module (shown
in the empty rectangle) is just inserted in empty rectan-
gle (A,D). The empty rectangle can split into two smaller

E

B

D

C

A

(a) (b)

Sa

Sb

Fig. 7. A placement and O(n) partitioning of the empty space.

ones by splitting on either of the segments Sa and Sb (but
not both). If Sa is selected, then the \L"-shaped region
is split into empty rectangles (A,B) and (C,D), and if Sb
is selected, it is split into rectangles (A,C) and (E,D). Us-
ing this scheme, one can guarantee that number of empty
rectangles considered for placing each module is linear in
terms of number of modules on the chip [14].

We have tried di�erent heuristics for how to choose be-
tween the two segments. Let the two rectangles formed
by choosing Sa be a1 and a2 and the rectangles formed by
choosing Sb be b1 and b2. LetW (r) and H(r) be the width
and the height of rectangle r respectively. The heuristics
we have tried are de�ned as follows:

1. Shorter Segment (SSEG): Choose the shorter segment
of the two.
2. Longer Segment (LSEG): Choose the longer segment of
the two.
3. Square empty rectangles (SQR): Let A(r) be the \nor-
malized" aspect ratio of rectangle r de�ned as: A(r) =
maxfW (r);H(r)g
minfW (r);H(r)g . Let f(s) be the maximum normalized as-

pect ratio of the two rectangles formed by segment s. For
example, f(Sa) = maxfA(a1); A(a2)g. The heuristic re-
turns the segment with minimum f(s). Intuitively, this
heuristic tries to form empty rectangles which are close to
squares. The reason behind favoring square empty rectan-
gles is that for most of the modules, the square implemen-
tation has the least area among all di�erent rectangular
shapes and hence it is more likely that the library contains
more square modules than those with very high/low aspect
ratios.
4. Large square empty rectangles (LSQR): This heuristic
is similar to the previous one, except that f(s) is set to
the normalized aspect ratio of the larger rectangle of the
two formed by segment s. Intuitively, this heuristic tries
to make the larger rectangles to be close to squares. This
might result in a large aspect ratio for the smaller empty
rectangle.
5. Large empty rectangles (LER): Let f(Sx) be de�ned as
f(Sx) = jW (x1)H(x1)�W (x2)H(x2)j, where x1 and x2 are
the two rectangles formed by choosing Sx. The heuristic
chooses the segment which has greater f(s). Intuitively,
this heuristic tries to form larger empty rectangles.
6. Balanced Empty Rectangles (BER): Similar to the
above, but chooses the segment with smaller f(s).





IEEE DESIGN & TEST OF COMPUTERS, VOL. XX, NO. Y, FEB. 2000 107

D. Time Complexity of the Algorithm

Here, we discuss the time complexity of the online algo-
rithm which takes only linear (in terms of number of mod-
ules currently on the chip) number of empty rectangles.
The operations done when insertion a module are looking
for empty rectangles which have room for the new mod-
ule, choosing one, splitting the empty rectangle and �nally
updating the adjacency graph. As discussed in Subsection
III-C.3, searching for empty rectangles to accommodate a
new module takes logarithmic time. Since the adjacency
graph of the placement is planar, updating the graph after
inserting the new module takes constant time. So, on the
average, it takes logarithmic time (in terms of number of
modules currently on the chip) to insert a module on the
RFU.
When deleting a module, we should update the adja-

cency graph and also do the merge operation (merge two
neighboring empty rectangles to form a larger one) and pos-
sibly switch the segment used to split an L-shaped empty
region into two rectangles (see Figure 9). All these oper-
ations take amortized constant time due to the fact that
there are always only linear number of empty rectangles
on the chip at any time. However, the insertion of the
newly formed empty rectangle (after all the merging and
switching operations) in the \range tree data structure"
(see Subsection III-C.3) takes logarithmic time.
So, on the whole, both insertion and deletion operations

take amortized logarithmic time for each incident. On the
whole, we have n modules and hence the overall time com-
plexity of the algorithm is O(n logn).

E. Experimental Results for Online Placement

We have used the model described in Section II for our
insert/delete events. We have generated di�erent data sets
containing the invocation of the RFUOPs. Each data set is
a sequence of insertion and deletion of RFUOPs sorted by
the time they occur. The events are uniformly distributed
on the timeline with average density of 30 RFUOPs on
the chip at any given time. We have simulated the run-
ning of a program on the recon�gurable computing sys-
tem for di�erent combinations of empty space partitioning
(KAMER - Keep all MERs, SSEG, LSEG, SQR, LSQR,
LER, BER. See Subsection III-C.2) and bin-packing heuris-
tics (FF, BF and BL). With our current implementation of
the placement engine, it takes about 120�sec. to place an
RFUOP using SSEG-FF method, and about 2.16msec. us-
ing KAMER-BF on the average. We ran the code on a
Pentium-II 130.
The data �les are called Cnnnn where 'C' is the class

of RFUOP module width/height distributions (one of A,
B, C and D) and 'nnnn' is number of insertion events (we
have done experiments with 'nnnn' being 2048, 4096, 8192
and 16384). Table I describes distribution of module di-
mensions for di�erent classes of events. Please note that
the average width/height of data classes 'A' and 'B' are the
same, so are the average dimensions of 'C' and 'D' modules.
The penalty reported in the graphs is the same as what

was described in Equation 2. The tables show the percent-

Data class Min len Max len Avg len Distribution

A 3 30 16.5 Uniform
B 14 19 16.5 Uniform
C 2 40 21 Uniform
D 2 64 21 Powers of 2

TABLE I

Description of different data classes.

age of the accepted events as well. Subsections III-E.1{III-
E.3 present the results of di�erent experiments.

E.1 Empty Rectangle Management Heuristics

In this subsection we report the percentage of accepted
insertion events (i.e., jACCj=jRFUOPSj) as well as penal-
ties (i.e., Penalty(P ) as de�ned in Equation 3) for data set
'Annn' when di�erent empty space partitioning heuristics
are used. The chip size is set to 100x100 (the average total
area of the modules on the chip is 30� 1=4� (3 + 30)2 =
8167).
Table II shows the percentage of acceptance in insertion

events for di�erent combinations of the bin-packing rules
and partitioning heuristics. One can notice that the rate
of acceptance is fairly constant for di�erent sizes of the
data set when a particular combination of bin-packing and
partitioning heuristics is used. Figure 10 shows the penal-
ties only for BF. Although might not be easily seen in the
graph, SSEG and LSQR are the best among partitioning
heuristics which keep only O(n) empty rectangles. It is
counter-intuitive that BER and LSEG heuristics generate
very bad placements. The reason is that their placements
partition the empty space into narrow strips which cannot
accommodate most of the modules.

Penalties for different partitioning heuristics when 
BF is used
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Fig. 10. Penalties for di�erent class 'A' data sets when each of the
partitioning heuristics are used. The chip size is 100x100.
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Bin-Pack Data set KAMER SSEG BER LSQR LSEG LER SQR

FF A2048 79.25 74.2600 61.52 70.3600 52.83 73.8700 70.36
FF A4096 84.59 79.1000 66.84 74.3900 58.37 79.4900 74.73
FF A8192 79.71 73.3900 63.23 69.8700 55.87 74.8800 68.11
FF A16384 81.35 75.0800 63.59 70.4200 55.73 76.1300 69.38

BF A2048 82.52 77.49 67.18 75.05 58.93 76.46 74.66
BF A4096 87.06 81.76 73.22 80.32 64.57 81.66 79.78
BF A8192 82.28 77.57 67.85 73.91 59.04 76.12 73.77
BF A16384 84.04 78.81 68.5 75.36 60.92 78.25 75.44

BL A2048 81.84 76.22 61.72 73.29 55.57 76.07 71.83
BL A4096 86.18 81.93 70.29 78.56 62.33 81.42 78.54
BL A8192 81.17 75.71 65.04 72.9 59.71 76.54 72.18
BL A16384 83.46 77.39 64.97 74.53 58.23 78.29 73.25

TABLE II

Percentage of accepted modules for different data of class 'A' for different partitioning heuristics.

FF BF BL
Chip Sizes KAMER SSEG LER SQR KAMER SSEG LER SQR KAMER SSEG LER SQR

80x80 66.36 60.3 62.08 56.43 68.14 63.27 63.97 60.18 67.55 61.96 63.21 58.93
100x100 81.35 75.08 76.13 69.38 84.04 78.81 78.25 75.44 83.46 83.46 78.29 73.25
151x66 81.23 74.47 72.68 68.84 83.85 77.95 72.73 75.25 82.47 76.48 74.44 73.15
120x120 92.6 87.63 87.86 81.2 95.43 91.65 90.04 88.52 94.82 90.47 89.89 86.77

TABLE III

Percentage of accepted modules for different chip sizes.

FF BF BL
Data set Chip size KAMER SSEG LER LSQR KAMER SSEG LER LSQR KAMER SSEG LER LSQR

ra16384 100x100 81.35 75.08 76.13 70.22 84.04 78.81 78.25 75.37 83.46 83.46 78.29 74.53
rb16384 100x100 81.65 78.43 73.77 73.67 82.76 80.35 73.95 76.64 82.9 79.39 74.48 74.14

rc16384 128x128 88.84 82.25 84.12 76.2 91.66 85.74 86.34 81.97 91.27 84.95 86.51 80.89
rd16384 128x128 89.61 79.7 85.42 76.45 92.08 85.5 88.75 82.76 91.78 86.54 87.62 85.38

TABLE IV

Percentage of insertion events accepted for different data sets.

Penalties for different chip sizes when partitioning 
heuristics are used on A16384
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Fig. 11. Penalties for di�erent chip sizes when partitioning heuristics are applied to data set A16384.
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Data Min Max Avg Chip
class len len len D Size Distribution

Tiny 3 30 16.5 5 50� 50 Uniform
Small 3 30 16.5 10 70� 70 Uniform
A 3 30 16.5 30 100� 100 Uniform

TABLE V

Data classes used for the offline experiments.

� Post-condition:

xinew � 0 and xinew < W � wi

yinew � 0 and yinew < H � hi

Overlap(P ) = 0

The selection of the RFUOPs to add to the ACC list
(i.e., accept) or remove from the ACC list (i.e., reject) or
displace is done randomly. In Section V we will discuss
the e�ect of choosing RFUOPs with di�erent probabilities.
We have also discussed the e�ect of choosing the annealing
operations with di�erent probabilities.

Penalty(Pi) is used as the cost for each placement.
Note that we could have allowed overlaps between RFUOP
boxes and try to resolve it towards the end of the an-
nealing process. In that case, the cost would have been
Penalty(P )+�(T )�Overlap(P ), where � is an increasing
function of annealing temperature T , to ensure that the
overlap cost converges to zero at the end of the annealing
process. We did perform experiments with this method,
but the method which allows no overlaps to occur is faster.
(The authors in [24] report that 2-D placement methods
which allow/prevent overlaps generate placements of fairly
equal qualities).

B. Experimental Results for O�ine Placement

We use the model described in Section II for our in-
sert/delete events. We generated di�erent data sets con-
taining the invocation of the RFUOPs. Each data set is
a sequence of insertion and deletion of RFUOPs sorted by
the time they occur. The events are uniformly distributed
on the timeline with average density of D RFUOPs on the
chip at any given time, D being a parameter of the in-
put �le. We have simulated the running of a program on
the recon�gurable computing system by placing as many
RFUOP boxes on the 3-D placement as we can. The mod-
ules, which we cannot place on the RFU-time volume are
rejected.

The data �les are called Cnnnn, where 'C' is the class of
RFUOP module width/height distributions (one of Tiny,
Small and A) and 'nnnn' is number of insertion events. We
have done experiments with 'nnnn' being 50, 100, 200, 1024
and 2048. (see Table V). D in column 4 of Table V is the
density, which is the average number of RFUOPs in the
system at any time-slice. The reason we have not used the
same data �les as in the online case is that those �les were
so large for the annealing process that the program took
several hours to �nish.

Data LTSA-100 Online Ratio
Set acc. rate acc. rate

Tiny50 70 84 83.33%
Tiny100 72 83 86.75%
Small100 86 84 102.38%
Small200 81 89.5 90.50%
Small1024 84.47 84.57 99.88%
A100 87 89 97.75%

Data LTSA-100 Online Ratio
Set penalty penalty

Tiny50 147287 213153 69.10%
Tiny100 253566 307879 82.36%
Small100 464049 508923 91.18%
Small200 539435 612623 88.05%
Small1024 4468662 4643786 96.23%
A100 427761 456627 93.68%

TABLE VI

Comparison between LTSA-100 and KAMER-BFD

The penalty reported in the following tables is the same
as Equation 3 (sum of box volumes of rejected RFUOPs).
The tables show the ratio of accepted RFUOPs to the total
number of RFUOPs (i.e., jACCj=jRFUOPSj) as well.

The experiments with di�erent values of X for KAMER-
BF Decreasing method showed that using X < 93 result
in higher penalties than X = 100. In the cases where
X � 93, slight improvements in the penalty of the place-
ment was seen, and hence we did not report the results of
these experiments. Also, pure annealing took long times
(e.g., hours for Small100 data set) and hence we did not
report the results of SA either. However, LTSA and ZTSA
methods yielded good results.

Table VI shows the ratio of accepted RFUOPs when
the output of KAMER-BF Decreasing with X=100% is
used as input to the low-temperature annealing method.
The results of LTSA are compared to the online algo-
rithm (KAMER-BFD with X=100). In the same table,
the penalties of the two methods are also shown. As can
be seen, the acceptance rate decreases in some cases but
the penalty always improves. The reason is that smaller
RFUOP boxes are replaced with larger ones, hence increas-
ing number of rejected modules but decreasing the penalty.
Table VII is similar to Table VI, but X is set to 20, instead
of 100. As can be seen, the LTSA method is able to improve
the online results substantially.

Table VIII shows the acceptance rate and penalties for
the case where KAMER-BF Decreasing with X = 20% is
run �rst, and its placement is used as starting point for
the ZTSA method. The ZTSA only accepts the RFUOPs
which are not placed by the online algorithm, and hence
is very fast. It can be seen that although it is a greedy
method, it still can improve the results of the online
method.
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Data LTSA-20 Online Ratio
Set acc. rate acc. rate

Tiny50 76 84 90.48%
Tiny100 82 83 98.79%
Small100 81 84 96.43%
Small200 85.5 89.5 95.53%
A100 81 89 91.01%

Data LTSA-20 Online Ratio
Set penalty penalty

Tiny50 148975 213153 69.89%
Tiny100 225603 307879 73.28%
Small100 287153 508923 56.42%
Small200 359980 612623 58.76%
A100 213036 456627 46.65%

TABLE VII

Comparison between LTSA-20 and KAMER-BFD.

Data ZTSA-20 Online Ratio
Set acc. rate acc. rate

Tiny50 74 84 88.09%
Tiny100 79 83 95.18%
Small100 74 84 88.09%
Small200 77 89.5 86.03%
A100 73 89 82.02%

Data ZTSA-20 Online Ratio
Set penalty penalty

Tiny50 149194 213153 69.99%
Tiny100 261549 307879 84.95%
Small100 486376 508923 95.57%
Small200 571716 612623 93.32%
A100 282587 456627 61.88%

TABLE VIII

Comparison between ZTSA-20 and KAMER-BFD.

V. Conclusion and Future Work

We summarized the results of previous work on 
oor-
planning for recon�gurable systems and showed why it is
important to deal with both online and o�ine placement
algorithms. For the online problem, we presented a class
of fast, but not optimal and a slow but high-quality place-
ment algorithm. For the o�ine problem, We devised simu-
lated annealing and greedy placement methods for the 3-D
placement of the RFUOPs and showed their e�ectiveness.
For the online problem, we showed that by giving

up slightly on the quality (SSEG-BF in comparison to
KAMER-BF), one can gain about 16x speedup (138�sec.
vs. 2.16msec.). Since we normally have extra RFU re-
sources available, this trade-o� would not degrade the per-
formance. In fact, most recon�gurable computing systems
utilize about 60-70% of the RFU resources.

We also showed that the variance of the module shapes
a�ects the quality of the placement one can get. We have
also done experiments in which an RFUOP has di�erent
representations in the library, which is the case with soft
modules, both in the online and the o�ine cases and gained
quality improvements of up to 60% in penalties and 5-10%
in acceptance rate. In these experiments, we modi�ed the
algorithm to try all shapes of a module upon insertion, and
pick the one with minimum wasted area. Slightly worse
results would be achieved if the algorithm uses the �rst
shape which can be placed (and not go through all available
shapes to pick the best). Details of these experiments is not
included in the paper for brevity.

Another important issue to be addressed is the e�ect of
weighting di�erent modules when choosing them for inser-
tion into or deletion from the active tasks. Currently, our
online method follows the temporal insertion/deletion re-
quests from cache manager, and adds modules to the active
task list if there is room for them. A look-ahead scheme
might avoid inserting a small module (even though it has
room for it) to avoid fragmentation of the space. The small
modules probably fragment the placement box and cause
rejection of larger modules and hence increase the overall
penalty. Our current implementation of the o�ine method
treats all modules equally when choosing one for insertion
into or deletion from the active task list. It would be in-
teresting to observe how the result of placement changes
if modules with smaller volumes are more likely to be re-
moved from the active task list. Also, the e�ect of selecting
the four annealing moves in the o�ine algorithm (See Sec-
tion IV-A) with di�erent probabilities should be examined.

We intend to combine our o�ine placement method with
a scheduling algorithm to see how we can gain from the

exibility of the modules on the time axis. The o�ine
algorithm can give estimates on the availability of RFU
area, and the scheduler can use this information as the
available RFU resources to schedule the operations.
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