
Statistical Timing Driven Partitioning for VLSI Circuits

Abstract – In this paper we present statistical-timing
driven partitioning for performance optimization. We
show that by using the concept of node criticality we can
enhance the Fiduccia-Mattheyses (FM) partitioning
algorithm to achieve more than 20% improvements in
terms of timing, among partitions with the same cut size.
By incorporating mechanisms for timing optimization at
the partitioning level, we facilitate wire-planning at high
levels of the design process. This is a different perspective
than the traditional approaches that use techniques such as
gate duplication, retiming and buffer insertion for delay
optimization in later stages of the design process.
Experimental results show that significant improvements
in terms of delay (up to 40%) can be obtained.

1. Introduction

Partitioning is an early and very important step during
the design process not only for the fact that it makes
successive design steps like placement, floorplanning and
routing manageable, but also because it influences the
overall performance of the circuit [1]. The conventional
objective of partitioning has been to minimize the number
of connections between partitions (cut size or congestion).
However, because timing has started to be dominated by
the wiring delay, it is imperative to account for timing
during partitioning.

Timing-driven partitioning approaches can be
categorized into two classes. The first class includes top-
down approaches that use netlist alteration (date
duplication, buffer insertion, etc.) in order to meet some
delay constraint while minimizing the cut size. They are
usually based on the Fiduccia-Mattheyses (FM) recursive
min-cut partitioning method followed by placement
algorithms [14] [17]. Timing optimization is done by
minimizing the delay of the most critical path.

The second class includes bottom-up clustering-based
approaches. They can be augmented by netlist alteration
or min-cut algorithms. As examples [10], [12] and [15]
use node labeling and replication for clustering with
minimum number of clusters along the critical paths. The
focus is on delay improvement but the cut size is not
considered and sometime gate replication can be massive.
The approach in [20] presents the optimization of both
delay and power. Retiming and gate duplication for cut
size/delay tradeoff can be used during [4] or after [14]
partitioning. Detailed surveys on partitioning can be
found in [1], [7].

For the purposed of timing-driven iterative partitioning,
statistical timing analysis [3] [6] [8] [9] is a better

alternative than static timing analysis for two reasons.
First, statistical timing analysis is more robust and can
capture variations in gate and wire delays due to
fabrication variations and changes in the supply voltage
and temperature [3] [6] [8] [9]. Second, static timing
analysis is a critical path-based technique. It has to
simultaneously observe all the critical paths in the circuit.
Furthermore, is should consider the effect of false paths,
which in turn is difficult and can result in huge
computation times. In contrast, statistical timing analysis
assigns to notion of criticality to nodes, and not paths.
Hence, it is able to globally optimize the timing in a short
period of time.

Until now, all previous timing-driven partitioning
approaches used static timing analysis. Due to the
advantages of the statistical timing analysis, we propose
to use the statistical timing analysis [3], [6] incorporated
in two modified versions of the FM algorithm [5]. This
methodology incorporates a better gate and wire delay
models at the partitioning level and provides better
estimates of the timing of the circuit.

Our main contribution is as follows:
• We first propose the statistical timing driven

partitioning. Using the concept of criticality (defined in
Section 2) we are able to obtain more realistic estimates
of the delay of all internal gates and all POs in reasonable
computational times.

• We show that considering statistical timing analysis
is worthwhile and motivate and formulate the
optimization problem.

• We propose two modified FM algorithms for
recursive bi-partitioning using a combination of timing
and cut size for optimization. Our approach is a different
way of performing timing-driven optimization: we drive
the partitioning such that the best timing is achieved
without performing any netlist alteration techniques (gate
duplication, retiming or buffer insertion) which increase
circuit area; though such techniques can be independently
applied to enhance the timing results of the circuit that is
partitioned by our method. Our approach enables us to
understand the trade-off between cut size and circuit
delay, which is not observable with critical-path based
methods [14].

The remainder of the paper is organized as follows.
Section 2 briefly presents the concept of criticality within
the framework of statistical timing analysis. Section 3
motivates our approach and formulates the optimization
problem. Section 4 describes the two different strategies
for statistical timing driven recursive bi-partitioning.

Experimental results are presented in Section 5. We
conclude the paper by suggesting further research
directions, in Section 6.

2. Statistical Timing Analysis
In this section we present the idea of criticality within

the framework of statistical timing analysis versus static
timing analysis. Such a notion will help in presenting the
motivation behind our approach in Section 3. The idea of
static timing analysis is to compute the slack for every
gate based on the difference between latest arrival times
and the required arrival times. Furthermore, each gate is
assumed to have a constant delay value. However, in
reality there are several uncertainties in both gate and
wire delays. Such sources are fabrication variations,
estimation error of wire capacitance and resistance,
uncertainties of wire capacitance during physical design,
changes in the supply voltage and temperature, diversity
in signal waveforms, etc. [6] [13] [18]. These
uncertainties are modeled in statistical timing analysis by
considering gate and wire delays as stochastic variables
with certain means and standard deviations. Different
approaches of statistical timing analysis have been
proposed [8] [11]. We adopt the statistical timing analysis
method proposed in [3] and later improved in [6] due to
the introduction of the criticality concept that fits well
into the partitioning framework, as we will see later.

The idea of statistical timing analysis is that gate and
wire delays are modeled as statistical variables.
Generally, for an n-input gate (see Fig.1.a), under the
assumption of stochastic independence of the inputs, the
maximum latest arrival time at all inputs can be modeled
with a normal distribution whose probability density
function is [6]:

∑ ∏ 










⋅=

≠

n

i

n

ij
jimaxPIs xFxfxf)()()((1)

where fi and Fj are the probability density function (pdf)
and cumulative density function (cdf) of input i
respectively.

tw1

T1

 T2

Tn

t1

 t2

 tn

Tout

twm

:

:

a) b)

G

:

infl1(G)

inflm(G)

G1

Gm

crit(G)
crit(G1)

crit(Gm)influence propagation

 criticality propagation
Fig.1 a) General gate b) Influence and criticality concepts

Since the internal gate delay (with the approximation

that the delay from each input to output is the same) is
also normally distributed, the gate output delay is
calculated as the sum of two normal distributions: the
maximum of all inputs and the internal gate delay. Wire
delays are also considered stochastic variables. Hence, we
can compute the probability density function of the

overall circuit delay by computing the pdf of each PO.
The notions of influence and criticality [6] are defined in
statistical timing analysis to serve as the concept of slack
in static timing analysis. In what follows we briefly
present the idea of influence and criticality. The term
between brackets in equation (1) represents the following
probability:

)()()()(xtTPxtTPxFxf
n

ij
jjii

n

ij
ji ≤+⋅=+=⋅ ∏∏

≠≠

 (2)

The probability P(Ti+ti=x) expresses the magnitude of the
influence that the i-th input gives to fmaxPIs at x. The
influence infli is defined as the influence proportion of the
i-th input in the range x>x1 as follows:

dxxCxFxfCinfl
n

ij
j

x
ii)exp()()(21

1

⋅⋅⋅= ∏∫
≠

∞

 (3)

where C1 is a normalization coefficient to
satisfy 1=∑i iinfl and C2 is a constant to emphasize the

region of large arrival time. Criticality is meant to
represent the timing criticality at each gate, i.e. the
contribution to the circuit delay of the paths that pass
through that gate, and is computed using the following
equation (see Fig.1.b):

)()()(j
m

j Gi GcritinflGcrit ⋅= ∑ (4)

Equation (4) defines influence infli(G) as how much the
i(G)-th input affects the timing at gate Gj for x≥x1. In other
words, infli(G) represents how easily the timing criticality
back-propagates from gate Gj to gate G. All influences are
computed by propagation from primary inputs (PIs)
towards POs. Criticalities are computed by back-
propagation from POs towards PIs. The gate(s) with the
largest criticality in a circuit is the most critical in terms
of timing since its contribution to the circuit output delays
is the most significant among all gates in the circuit.
Details can be found in [3], [6].

The complexity of this statistical timing analysis and
the calculation of all criticalities in the circuit are linear
with respect to the circuit size, which makes it appealing
especially for large circuit sizes.

In the next section, we motivate our criticality-based
timing analysis in the context of partitioning for
performance and formulate the statistical timing driven
partitioning for delay minimization.

3. Motivation and Problem Formulation

In this section we motivate our proposed statistical-
timing driven partitioning for performance and formulate
the problem that we try to solve in this paper.

To further motivate the use of statistical timing analysis
in partitioning, we consider circuit C17 as shown in
Fig.2.a.

G1

G2

G3

G4

G5

G6

 12

0

1

2

3

4

 7

 8

 9

 10

5

6

 11

0.25

1.25
0.5

0

1.25

1
 1

2
2

1.5

1.5

0.5

1

1

cut 1
cut 2

a) b)
Fig.2 a) Circuit C17 b) Associated DAG with shown

criticalities

Its associated directed acyclic graph (DAG) is shown in
Fig.2.b, which also shows all computed criticalities at the
output of all gates. Recalling the physical meaning of
criticality, Fig.2.b shows that the most critical gate in this
circuit is G2 (vertex 8 in DAG). That is, gate G2
contributes mostly to the output delays because its
criticality, which equals 2, is the largest among all gates
in the circuit

If the standard FM algorithm were used to partition this
circuit, there would be no difference between the case
when the hyperedge {8, 9, 10} is cut and the case when
the hyperedge {9, 5, 6} is cut. That is because in the
standard FM algorithm the cost function is simply the cut
size and the output delays are assumed to be the same no
matter which hyperedges are cut along the most critical
path, as long as the number of cut hyperedges are the
same. So, in a static timing analysis framework, cuts 1
and 2, shown in Fig.2.b, are equivalent. However, we
simulated the two cases with HSpice. Fig.3 shows the
waveform at the output of the gate G6 in both cases.

cut 1

cut 2

Time [ns]

V(11)
 [V]

Fig.3 Voltage at the output of G6 (vertex 11 in Fig.2.b)

We modeled the interconnections with the RC lumped

model for a 0.18u copper process technology (unit length
resistance r=0.115, unit length capacitance c=0.00015).

As it can be seen when the hyperedge with largest
criticality is cut (cut 1) the output delay is larger than the
case where a hyperedge with a smaller criticality is cut
(cut 2).

The above discussion leads us to the conclusion that we
need an appropriate timing measure to compare different
partitions. We propose to use the criticality concept to
drive the partitioning such that both delay and cut size are
minimized. By using criticality in the cost function of our

mincut-based partitioning algorithm, we use more global
information, in contrast to previous net-delay based
techniques, which suffer from exploiting only local
information. We can formulate the following statistical
timing driven partitioning problem.
Problem Formulation: Given a circuit represented by a
directed graph G=(V, E), where V is the set of all vertices
and E is the set of all hyperedges, and given delays for all
vertices (gates) as pdfs, find a k-way partitioning such
that the worst delay of any of the POs, the overall cut
criticality and the cut size (i.e. congestion) are minimized.

In the next section, we will present two different
strategies, both modifications of the standard FM, that try
to solve the above problem.

4. Statistical Timing Driven Partitioning

Approaches
In this section we justify the use of FM algorithm as the

starting point for the development of our proposed
statistical timing-driven partitioning algorithms. Our
approach uses a modified version of the FM algorithm.
Not only the speed and the quality of partitioning were the
reasons behind our choice, but also the fact that it can
easily incorporate modifications of the cost function
allowing us to implement more variations. Additionally,
the FM algorithm adapts well to recursive partitioning.

In what follows the reader is assumed to be familiar
with the FM algorithm and its data structure [5]. The
pseudo-code of the modified FM algorithm is as follows:

1. while (stopping criterion not met) { // this is a pass
2. Up-date criticalities // Str.I and Str.II
3. Partition(V, E) // generate the random initial partition
4. Find critical cells // Str.II
5. while (unlocked non-critical cells) { // “non-critical”
for Str.II only
6. Find best cell
7. Compute cutcrit // Str.I
8. Compute cutcrit gain of best cell // Str.II
9. Lock best cell
10. }
11. Find prefix up to which cutcrit is min with min decay

in cut size // Str.I
12. Find prefix up to which cut size is min // Str.II
13. Swap all best cells up to prefix
14. Unlock all cells
15. }
16. Up-date criticalities and find Delay

Through extensive experiments we found that the

following two simple strategies are fast and generate
satisfactorily accurate solutions:

• Strategy I. During each pass, we record the cut-
criticalities of the cells that are moved. When choosing
the sequence of moves to accept, we pick the one that
offers minimum cut-criticality at no more than a user set
percentage decay in cut size, compared with the standard
FM.

• Strategy II. We first order all hyperedges in non-
increasing magnitude of their weights, i.e. criticalities,
and then constrain the standard FM algorithm not to cut
any of the critical hyperedges. A hyperedge is critical if it
is among the first DONOTCUT% (set by the user) of all
hyperedges ordered in non-increasing order of their
associated criticalities. All vertices connected by critical
hyperedges are called critical cells.

In the next section we will present the experimental
setup for both proposed strategies that implement the
corresponding modified FM algorithms and report
experimental results.

5. Experimental Results

In this section we first present the delay model, and the
flow diagram of our modified FM algorithms and then we
report the experimental results.

5.1. Delay Model

The accuracy of our methodology depends on the delay
model that is used. At the early stage of partitioning there
is no layout information available. Because of that, we
cannot estimate the wire delays with high accuracy. On
the other hand, gate delays are known for any particular
technology. They can be taken from technology files
characterizing all gates in the cell library.

Our delay model has two components. The first
component is the gate delay. For all gates we consider a
typical intrinsic delay that is given for a typical input
transition and a typical output net capacitance. This delay
is actually the mean value of the pdf associated to the gate
delay. For all pdfs associated to the gates, we consider a
standard deviation of 15% from its mean. This standard
deviation is realistic for today’s technologies [18] though
smaller than 25%, which was considered in [9].

The second component is the wire delay. We use the
Elmore delay to model the wire delay. The Elmore delay
for an edge e (an edge corresponds to the wire connecting
the net source to one of its fanout sinks) is given by:

)
2

()(t
e

e C
C

ReDelay += (5)

where Re is the lumped wire resistance, Ce is the lumped
wire capacitance, and Ct is the total lumped capacitance of
the source node of each net. To compute Re and Ce we
need an estimate of the length of each edge. For that, we
use the statistical net-length estimation proposed in [21].
The average length of a net, connecting m cells enclosed
in a rectangular area whose width is a and whose height is
b, is given by:

)()(ba
ba
bamLav ++

+
⋅

−⋅≈ βα γ (6)

where α, β, and γ are fitting parameters computed in
[21] as α ≈ 1.1, β ≈ 2.0, γ ≈ 0.5. During recursive
partitioning, when a net is cut, it is assigned a pre-
computed wire delay that will be used to re-compute all
delays on the paths that include that net. The earlier a net

is cut during recursive partitioning, the larger the back-
annotated wire delay will be. In our case, any net that is
cut during the first bi-partitioning step (see Fig.4) is
assumed to be bounded by a rectangular area which is the
same as the chip area and for simplicity we consider an
aspect ratio equal to 1. At the second partitioning level, a
and b (see Fig.4) have different values that will ensure a
smaller delay than that assigned during a previous
partitioning level. The delay of each net is set only the
first time that it is cut. In our experiments we consider a
0.18u copper process technology (unit length resistance
r=0.115, unit length capacitance c=0.00015).

b’ b

a a’

1st
partition

2nd partition

3rd
partition

net cut during first partition

Fig.4 Recursive bi-partitioning

5.2. The Experimental Setup

Our proposed recursive bi-partitioning engines follow
the setup shown in Fig.5. The engine takes as input the
gate netlist of the circuit. Then, criticalities for all gates
are computed as explained in Section 2. Recursive bi-
partitioning, based on the standard FM algorithm or using
our proposed strategies, is performed. During recursive
partitioning we can up-date all criticalities by back-
annotating delays to wires corresponding to cut edges and
then propagating the effect of the delay forward to
compute the new criticalities on all affected hyperedges at
the current level of recursive bi-partitioning. Finally, we
choose the best partitioning in terms of timing, overall cut
size, and overall cut-criticality.

Gate Netlist

Criticalities
Computation

Recursive
Bi-partitioning

FM, Strategy I,II

Up-date
Criticalities

Choose Best
Timing

Partitioning

Fig.5 The experimental setup

5.3. Experimental Results

Because our approach is based on statistical timing
analysis, which is different from all previous approaches
and because we do not use netlist alteration in order to
meet a timing requirement (we simply provide a

mechanism to efficiently distinguish among different
partitions), we cannot make a fair comparison between
our results and previous works.

However, in what follows we provide experimental
results that we obtained with the standard FM algorithm
and with the two proposed modified algorithms. All
experiments were performed on a 450MHz Pentium III
PC with 128KB of memory.

First we optimize all benchmarks using the classic
script.rugged script in SIS [16]. Then, we run the
partitioning algorithms 10 times and record the average
values for cut size and cut criticality. These values are
shown in Table 1. The cut size is the total number of cut
hyperedges and the cut criticality is the summation of all
criticalities of all cut hyperedges. We use the cut
criticality (cutcrit in the tables) as an indicator directly
related to the output delay because, as we saw in the
motivation section, the fact that hyperedges with large
criticalities are not cut helps reduce the output delay. The
average delay and the computation times (in seconds,
rounded to the closest integer) are also shown in Table 1.

We can see that, both modified algorithms perform
better than the standard FM algorithm in terms of delay.
However, that is at the expense of a slightly increased cut
size. For example, for benchmark rd84 we obtained a
delay of 11.37 using the FM algorithm as opposed to
10.97 and 11.26 obtained with the modified algorithms.
The cut size is 269 for the case of the FM algorithm and
261 and 273 for the case of the modified algorithms. The
maximum delay difference between the FM approach and
the second algorithm is about 40% for the benchmark
apex2. The second modified FM algorithm offers a delay
improvement of 15.64% on average at 34.6% increase in
cut size relative to the standard FM algorithm. The first
modified FM algorithm offers insignificantly decreased
delay with the same cut size. In the majority of the cases,
the modified algorithms provide better cut criticalities,
which indicates improved circuit delays when these
modified algorithms are used.

We note that this difference tends to be more significant
for larger circuits, because the larger the circuit, the larger
the search space, and thus the better the chances of
finding a partition with minimum timing. The difference
between minimum and maximum delays can be
significant as we can see in Table 2, where we present the
minimum and the maximum values recorded during the
ten runs.

Since the second proposed algorithm performs slightly
better compared to the first one, we studied the delay
variation (see Fig.6 and Fig.7) when the percentage of
edges that are not allowed to be cut during partitioning is
varied between 0% and 7%. Note that the case 0%
corresponds to the simple FM algorithm. As we can see,

there exists an optimum value for DONOTCUT of about
1-5% for each circuit, which ensures significant delay
shifts. We mention that the same behavior is manifested
by all benchmarks. The following observations are in
order:

• Using criticality within the framework of timing
driven partitioning can result in significant delay
improvements.

• Timing improvement is significant even when the
delay difference is relatively small. That is due to the fact
that for all the experimented circuits the largest wire delay
is not much larger than the delay of a common cell. This
means that for instance in the case of circuit cordic in
Table 1, a difference of 2.75 between the delay obtained
with the standard FM algorithm and that obtained using
the second modified algorithm tells us that the most
critical path is not cut so many times with the partition
obtained with the second modified algorithm. Hence, we
expect the delay improvement to be more for larger
circuits.

• We noticed that the internal structure of the circuit is
very important. Circuits with many large fanout nets are
difficult to optimize for delay because most of the
partitions are similar. An example is benchmark des (see
Table 2). We can see that, all ten runs resulted in the same
timing.

We conclude this section with an observation about the
weak aspect of our methodology. The assumption of
event independence in the derivation of equation (1) is
erroneous because in reality circuits present spatial and
temporal correlations due to fanout reconvergence and
input pattern dependencies. However, it was shown in [3]
and [19] that for circuits with more than three logic levels
the error due to that assumption is less than 5%.

6. Conclusion

In this paper we proposed statistical-timing driven
partitioning. We showed that, by using the concept of
criticality, it is possible to efficiently distinguish between
partitions in terms of timing. We proposed two modified
versions of the standard FM algorithm, which offered
better timing results at the expense of an increase in cut
size. These algorithms are able to constrain the
optimization process in the FM algorithm such that the
cut-criticality is minimized and thus, the delay of all POs
is decreased.

We are currently working on speeding up the criticality
and delay up-date at any partitioning level by simplifying
influence computation using look up tables and on
implementing multilevel counterparts of all recursive
algorithm versions discussed in this paper.

Table 1:Recursive partitioning, balance ratio=0.48, 10 random run, minimum timing reported

Delay

DONOTCUT [%]
Table 2: Recursive partitioning, balance ratio=0.48, minimum and maximum timings Fig.6 DONOTCUT influence on timing

 FM Str.I Str.II
Circuit

No. of cells Cut size Cutcrit Delay CPU

(s)
Cut size Cutcrit Delay CPU

(s)
Cut size Cutcrit Delay CPU

(s)
rd73 114 59 19.4 5.89 0 58 16.59 5.87 0 58 14.13 5.8 0

9symml 145 69 12.6 11.38 0 68 10.99 11.2 0 72 11.1 11.19 0
alu4 276 120 53.73 17.62 0 120 51.91 17.5 0 141 47.73 16.56 0

C1355 293 124 352.27 11.4 0 123 320.16 11.07 0 124 308.77 11.4 0
t481 365 249 13.91 12.54 0 251 13.34 12.53 2 257 13.13 12.32 0
rd84 481 269 33.42 11.37 1 261 30.26 10.97 4 273 29.74 11.26 1

table3 686 426 185.26 16.57 1 421 168.7 15.92 10 444 142.7 16.22 1
mul8 820 164 202.4 94.39 2 161 182.07 92.65 12 176 199.47 98.94 2
cordic 856 383 18.29 41.33 2 361 15.62 40.53 12 437 14.59 38.58 2
apex2 2388 979 33.01 133.42 11 965 30.13 130.66 186 1444 14.59 79.82 12

des 2557 424 1493.1 193.71 16 446 1502 193.71 354 971 703.18 173.13 16
 Average 296.9 219.76 49.96 3 294 212.8 49.32 52.7 399.7 136.28 43.2 3.09

Delay

DONOTCUT [%]
Fig.7 DONOTCUT influence on timing

FM Str.I Str.II
Minimum Maximum Minimum Maximum Minimum Maximum

Circuit No. of
cells

PI/PO Mean Std.
Dev.

Mean Std.
 Dev.

Mean Std.
 Dev.

Mean Std.
Dev.

Mean Std.
Dev.

Mean Std.
Dev.

rd73 114 7/3 5.72 0.23 6.05 0.22 5.71 0.23 6.08 0.22 5.68 0.23 5.96 0.23
9symml 145 9/1 11.03 0.48 11.74 0.43 11.02 0.39 11.44 0.45 10.85 0.46 11.62 0.41

alu4 276 10/6 17.11 1.03 18.47 1.18 16.77 1.1 18.36 1.23 16.01 0.99 16.87 1.08
C1355 293 41/32 11.12 0.59 12.21 0.61 10.5 0.55 11.65 0.6 11 0.6 12.02 0.6
t481 365 16/1 11.73 0.81 14.34 1.01 11.31 0.81 14.34 1.03 11.64 0.84 13.1 0.92
rd84 481 8/4 10.94 0.51 12.06 0.54 9.92 0.53 11.84 0.48 10.43 0.55 11.85 0.47

table3 686 14/14 14.75 0.72 17.74 0.95 14.56 0.89 19.37 1.05 15.04 1.04 17.34 1.18
mul8 820 32/16 83.68 6.98 99.46 8.31 87.65 7.32 98.48 8.23 88.8 7.42 105.1 8.78
cordic 856 23/2 37.76 3.14 44.76 3.71 35.64 3.02 42.11 3.44 37.27 3.05 42.6 3.55
apex2 2388 39/3 132.75 11.33 135.33 11.63 124.71 10.71 134.79 10.76 78.48 6.49 80.38 6.63

des 2557 256/245 193.71 17.2 193.71 17.21 193.71 17.21 193.71 17.21 173.13 14.3 173.13 14.3

References

[1] C.J. Alpert, A.B. Kahng, ‘Recent Developments in Netlist
Partitioning: A Survey’, Integration: the VLSI Journal, 1995.

[3] M. Berkelaar, ‘Statistical Delay Calculation, a Linear Time Method’,
Proc. TAU, 1997.

[4] J. Cong, S.K. Lim, C. Wu, ‘Performance Driven Multi-level and
Multiway Partitioning with Retiming’, DAC2000.

[5] C.M. Fiduccia, R.M. Mattheyses, ‘A Linear-Time Heuristic for
Improving Network Partitions’, Proc. ACM/IEEE DAC, 1982.

[6] M. Hashimoto, H. Onodera, ‘A Performance Optimization Method
by Gate Resizing Based on Statistical Static Timing Analysis’, IEICE
Trans. Fundamentals, Dec. 2000.

[7] S. Hauck, G. Borriello, ‘An Evaluation of Bipartitioning
Techniques’, Chapel Hill Conference on Advanced Research in VLSI,
1995.

[8] H.-F. Jyu, S. Malik, S. Devadas, K.W. Keutzer, ‘Statistical Timing
Analysis of Combinational Logic Circuits’, IEEE Trans. VLSI
Systems, June 1993.

[9] H.-F. Jyu, S. Malik, ‘Statistical Delay Modeling in Logic Design and
Synthesis’, Proc. ACM/IEEE DAC, 1994.

[10] E.L. Lawer, K.N. Levitt, J. Turner, ‘Module Clustering to Minimize
Delay in digital Networks’, IEEE Trans. Computers, 1969.

[11] J.-J Liou, K.-T Cheng, S. Kundu, A. Krstic, ‘Fast Statistical Timing
Analysis By Probabilistic Event Propagation’, Proc. ACM/IEEE
DAC, 2001.

[12] J. Minami, T. Koide, S. Wakabayashi, ‘An Iterative Improvement
Circuit Partitioning Algorithm under Path Delay Constraints’, IEICE
Trans. Fundamentals, Dec. 2000.

[13] S.R. Nassif, ‘Modeling and Forecasting of Manufacturing
Variations’, Proc. ACM/IEEE ASPDAC, 2001.

[14] S.-L Ou, M. Pedram, ‘Timing-driven Partitioning Using Iterative
Quadratic Programming’, http://atrak.usc.edu/~massoud/,
Publications section (Coming attractions!)

[15] R. Rajaraman, D.F. Wong, ‘Optimum Clustering for Delay
Minimization’, IEEE Trans.CAD, Dec. 1995.

[16] E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon, R. Murgai, A.
Saldanha, H. Savoj, P.R. Stephan, R.K. Brayton, A. Sangiovanni-
Vincentelli, ‘SIS: A System for Sequential Circuit Synthesis’,
Technical Report UCB/ERL M92/41, University of California,
Berkeley, May1992.

[17] M. Shih, E.S. Kuh, ‘Quadratic Boolean Programming for
Performance-driven System Partitioning’, Proc. ACM/IEEE DAC,
1993.

[18] D. Sylvester, ‘Measurement Techniques and Interconnect
Estimation’, SLIP00, 2000.

[19] S. Tsukiyama, M. Tanaka, M. Fukui, ‘A Statistical Static Timing
Analysis Considering Correlations Between Delays’, Proc.
ACM/IEEE ASPDAC, 2001.

[20] H. Vaishnav, M. Pedram, ‘Delay Optimal Partitioning Targeting
Low Power VLSI Circuits’, IEEE Trans. CAD, June 1999.

[21] P. Zarkesh-Ha, J.A. Davis, J.D. Meindl, ‘Prediction of Net-Length
Distribution for Global Interconnects in a Heterogeneous System-on-
a-Chip’, IEEE Trans. VLSI Systems, Dec. 2000.

http://atrak.usc.edu/~massoud/

	Statistical Timing Driven Partitioning for VLSI Circuits
	5.3. Experimental Results
	
	References

