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Abstract – In this paper we present statistical-timing 
driven partitioning for performance optimization. We 
show that by using the concept of node criticality we can 
enhance the Fiduccia-Mattheyses (FM) partitioning 
algorithm to achieve more than 20% improvements in 
terms of timing, among partitions with the same cut size. 
By incorporating mechanisms for timing optimization at 
the partitioning level, we facilitate wire-planning at high 
levels of the design process. This is a different perspective 
than the traditional approaches that use techniques such as 
gate duplication, retiming and buffer insertion for delay 
optimization in later stages of the design process. 
Experimental results show that significant improvements 
in terms of delay (up to 40%) can be obtained. 

 
1. Introduction 

Partitioning is an early and very important step during 
the design process not only for the fact that it makes 
successive design steps like placement, floorplanning and 
routing manageable, but also because it influences the 
overall performance of the circuit [1]. The conventional 
objective of partitioning has been to minimize the number 
of connections between partitions (cut size or congestion). 
However, because timing has started to be dominated by 
the wiring delay, it is imperative to account for timing 
during partitioning.  

Timing-driven partitioning approaches can be 
categorized into two classes. The first class includes top-
down approaches that use netlist alteration (date 
duplication, buffer insertion, etc.) in order to meet some 
delay constraint while minimizing the cut size. They are 
usually based on the Fiduccia-Mattheyses (FM) recursive 
min-cut partitioning method followed by placement 
algorithms [14] [17]. Timing optimization is done by 
minimizing the delay of the most critical path.  

The second class includes bottom-up clustering-based 
approaches. They can be augmented by netlist alteration 
or min-cut algorithms. As examples [10], [12] and [15] 
use node labeling and replication for clustering with 
minimum number of clusters along the critical paths. The 
focus is on delay improvement but the cut size is not 
considered and sometime gate replication can be massive. 
The approach in [20] presents the optimization of both 
delay and power. Retiming and gate duplication for cut 
size/delay tradeoff can be used during [4] or after [14] 
partitioning. Detailed surveys on partitioning can be 
found in [1], [7]. 

For the purposed of timing-driven iterative partitioning, 
statistical timing analysis [3] [6] [8] [9] is a better 

alternative than static timing analysis for two reasons. 
First, statistical timing analysis is more robust and can 
capture variations in gate and wire delays due to 
fabrication variations and changes in the supply voltage 
and temperature [3] [6] [8] [9]. Second, static timing 
analysis is a critical path-based technique. It has to 
simultaneously observe all the critical paths in the circuit. 
Furthermore, is should consider the effect of false paths, 
which in turn is difficult and can result in huge 
computation times. In contrast, statistical timing analysis 
assigns to notion of criticality to nodes, and not paths. 
Hence, it is able to globally optimize the timing in a short 
period of time.  

Until now, all previous timing-driven partitioning 
approaches used static timing analysis. Due to the 
advantages of the statistical timing analysis, we propose 
to use the statistical timing analysis [3], [6] incorporated 
in two modified versions of the FM algorithm [5]. This 
methodology incorporates a better gate and wire delay 
models at the partitioning level and provides better 
estimates of the timing of the circuit. 

Our main contribution is as follows: 
• We first propose the statistical timing driven 

partitioning. Using the concept of criticality (defined in 
Section 2) we are able to obtain more realistic estimates 
of the delay of all internal gates and all POs in reasonable 
computational times. 

• We show that considering statistical timing analysis 
is worthwhile and motivate and formulate the 
optimization problem.  

• We propose two modified FM algorithms for 
recursive bi-partitioning using a combination of timing 
and cut size for optimization. Our approach is a different 
way of performing timing-driven optimization: we drive 
the partitioning such that the best timing is achieved 
without performing any netlist alteration techniques (gate 
duplication, retiming or buffer insertion) which increase 
circuit area; though such techniques can be independently 
applied to enhance the timing results of the circuit that is 
partitioned by our method. Our approach enables us to 
understand the trade-off between cut size and circuit 
delay, which is not observable with critical-path based 
methods [14]. 

The remainder of the paper is organized as follows. 
Section 2 briefly presents the concept of criticality within 
the framework of statistical timing analysis. Section 3 
motivates our approach and formulates the optimization 
problem. Section 4 describes the two different strategies 
for statistical timing driven recursive bi-partitioning. 



Experimental results are presented in Section 5. We 
conclude the paper by suggesting further research 
directions, in Section 6. 
 

2. Statistical Timing Analysis  
In this section we present the idea of criticality within 

the framework of statistical timing analysis versus static 
timing analysis. Such a notion will help in presenting the 
motivation behind our approach in Section 3. The idea of 
static timing analysis is to compute the slack for every 
gate based on the difference between latest arrival times 
and the required arrival times. Furthermore, each gate is 
assumed to have a constant delay value. However, in 
reality there are several uncertainties in both gate and 
wire delays. Such sources are fabrication variations, 
estimation error of wire capacitance and resistance, 
uncertainties of wire capacitance during physical design, 
changes in the supply voltage and temperature, diversity 
in signal waveforms, etc. [6] [13] [18]. These 
uncertainties are modeled in statistical timing analysis by 
considering gate and wire delays as stochastic variables 
with certain means and standard deviations. Different 
approaches of statistical timing analysis have been 
proposed [8] [11]. We adopt the statistical timing analysis 
method proposed in [3] and later improved in [6] due to 
the introduction of the criticality concept that fits well 
into the partitioning framework, as we will see later.  

The idea of statistical timing analysis is that gate and 
wire delays are modeled as statistical variables. 
Generally, for an n-input gate (see Fig.1.a), under the 
assumption of stochastic independence of the inputs, the 
maximum latest arrival time at all inputs can be modeled 
with a normal distribution whose probability density 
function is [6]: 
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where fi and Fj are the probability density function (pdf) 
and cumulative density function (cdf) of input i 
respectively. 
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Fig.1 a) General gate b) Influence and criticality concepts 

 
Since the internal gate delay (with the approximation 

that the delay from each input to output is the same) is 
also normally distributed, the gate output delay is 
calculated as the sum of two normal distributions: the 
maximum of all inputs and the internal gate delay. Wire 
delays are also considered stochastic variables. Hence, we 
can compute the probability density function of the 

overall circuit delay by computing the pdf of each PO. 
The notions of influence and criticality [6] are defined in 
statistical timing analysis to serve as the concept of slack 
in static timing analysis. In what follows we briefly 
present the idea of influence and criticality. The term 
between brackets in equation (1) represents the following 
probability: 
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The probability P(Ti+ti=x) expresses the magnitude of the 
influence that the i-th input gives to fmaxPIs at x. The 
influence infli is defined as the influence proportion of the 
i-th input in the range x>x1 as follows: 
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where C1 is a normalization coefficient to 
satisfy 1=∑i iinfl and C2 is a constant to emphasize the 

region of large arrival time. Criticality is meant to 
represent the timing criticality at each gate, i.e. the 
contribution to the circuit delay of the paths that pass 
through that gate, and is computed using the following 
equation (see Fig.1.b): 
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Equation (4) defines influence infli(G) as how much the 
i(G)-th input affects the timing at gate Gj for x≥x1. In other 
words, infli(G) represents how easily the timing criticality 
back-propagates from gate Gj to gate G. All influences are 
computed by propagation from primary inputs (PIs) 
towards POs. Criticalities are computed by back-
propagation from POs towards PIs. The gate(s) with the 
largest criticality in a circuit is the most critical in terms 
of timing since its contribution to the circuit output delays 
is the most significant among all gates in the circuit. 
Details can be found in [3], [6].  

The complexity of this statistical timing analysis and 
the calculation of all criticalities in the circuit are linear 
with respect to the circuit size, which makes it appealing 
especially for large circuit sizes.  

In the next section, we motivate our criticality-based 
timing analysis in the context of partitioning for 
performance and formulate the statistical timing driven 
partitioning for delay minimization.  

 
3. Motivation and Problem Formulation 

In this section we motivate our proposed statistical-
timing driven partitioning for performance and formulate 
the problem that we try to solve in this paper. 

To further motivate the use of statistical timing analysis 
in partitioning, we consider circuit C17 as shown in 
Fig.2.a. 
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Fig.2 a) Circuit C17 b) Associated DAG with shown 

criticalities  
 

Its associated directed acyclic graph (DAG) is shown in 
Fig.2.b, which also shows all computed criticalities at the 
output of all gates. Recalling the physical meaning of 
criticality, Fig.2.b shows that the most critical gate in this 
circuit is G2 (vertex 8 in DAG). That is, gate G2 
contributes mostly to the output delays because its 
criticality, which equals 2, is the largest among all gates 
in the circuit 

If the standard FM algorithm were used to partition this 
circuit, there would be no difference between the case 
when the hyperedge {8, 9, 10} is cut and the case when 
the hyperedge {9, 5, 6} is cut. That is because in the 
standard FM algorithm the cost function is simply the cut 
size and the output delays are assumed to be the same no 
matter which hyperedges are cut along the most critical 
path, as long as the number of cut hyperedges are the 
same. So, in a static timing analysis framework, cuts 1 
and 2, shown in Fig.2.b, are equivalent. However, we 
simulated the two cases with HSpice. Fig.3 shows the 
waveform at the output of the gate G6 in both cases. 

cut 1 
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Time [ns] 

V(11)  
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Fig.3 Voltage at the output of G6 (vertex 11 in Fig.2.b)  

 
We modeled the interconnections with the RC lumped 

model for a 0.18u copper process technology (unit length 
resistance r=0.115, unit length capacitance c=0.00015). 

As it can be seen when the hyperedge with largest 
criticality is cut (cut 1) the output delay is larger than the 
case where a hyperedge with a smaller criticality is cut 
(cut 2).  

The above discussion leads us to the conclusion that we 
need an appropriate timing measure to compare different 
partitions. We propose to use the criticality concept to 
drive the partitioning such that both delay and cut size are 
minimized. By using criticality in the cost function of our 

mincut-based partitioning algorithm, we use more global 
information, in contrast to previous net-delay based 
techniques, which suffer from exploiting only local 
information. We can formulate the following statistical 
timing driven partitioning problem. 
Problem Formulation: Given a circuit represented by a 
directed graph G=(V, E), where V is the set of all vertices 
and E is the set of all hyperedges, and given delays for all 
vertices (gates) as pdfs, find a k-way partitioning such 
that the worst delay of any of the POs, the overall cut 
criticality and the cut size (i.e. congestion) are minimized. 

In the next section, we will present two different 
strategies, both modifications of the standard FM, that try 
to solve the above problem.  

 
4. Statistical Timing Driven Partitioning 

Approaches 
In this section we justify the use of FM algorithm as the 

starting point for the development of our proposed 
statistical timing-driven partitioning algorithms. Our 
approach uses a modified version of the FM algorithm. 
Not only the speed and the quality of partitioning were the 
reasons behind our choice, but also the fact that it can 
easily incorporate modifications of the cost function 
allowing us to implement more variations. Additionally, 
the FM algorithm adapts well to recursive partitioning. 

In what follows the reader is assumed to be familiar 
with the FM algorithm and its data structure [5]. The 
pseudo-code of the modified FM algorithm is as follows:  
 
1. while (stopping criterion not met) {   // this is a pass  
2.   Up-date criticalities   // Str.I and Str.II 
3.   Partition(V, E) // generate the random  initial partition 
4.   Find critical cells   // Str.II 
5.   while (unlocked non-critical cells) {   // “non-critical” 
for Str.II only 
6. Find best cell 
7. Compute cutcrit   // Str.I 
8. Compute cutcrit gain of best cell   // Str.II 
9. Lock best cell 
10. } 
11. Find prefix up to which cutcrit is min with min decay 

in cut size   // Str.I 
12. Find prefix up to which cut size is min   // Str.II 
13. Swap all best cells up to prefix 
14. Unlock all cells 
15. } 
16. Up-date criticalities and find Delay 

 
Through extensive experiments we found that the 

following two simple strategies are fast and generate 
satisfactorily accurate solutions: 

• Strategy I. During each pass, we record the cut-
criticalities of the cells that are moved. When choosing 
the sequence of moves to accept, we pick the one that 
offers minimum cut-criticality at no more than a user set 
percentage decay in cut size, compared with the standard 
FM. 



• Strategy II. We first order all hyperedges in non-
increasing magnitude of their weights, i.e. criticalities, 
and then constrain the standard FM algorithm not to cut 
any of the critical hyperedges. A hyperedge is critical if it 
is among the first DONOTCUT% (set by the user) of all 
hyperedges ordered in non-increasing order of their 
associated criticalities. All vertices connected by critical 
hyperedges are called critical cells.  

In the next section we will present the experimental 
setup for both proposed strategies that implement the 
corresponding modified FM algorithms and report 
experimental results.  

 
5. Experimental Results 

In this section we first present the delay model, and the 
flow diagram of our modified FM algorithms and then we 
report the experimental results. 
 
5.1. Delay Model 

The accuracy of our methodology depends on the delay 
model that is used. At the early stage of partitioning there 
is no layout information available. Because of that, we 
cannot estimate the wire delays with high accuracy. On 
the other hand, gate delays are known for any particular 
technology. They can be taken from technology files 
characterizing all gates in the cell library. 

Our delay model has two components. The first 
component is the gate delay. For all gates we consider a 
typical intrinsic delay that is given for a typical input 
transition and a typical output net capacitance. This delay 
is actually the mean value of the pdf associated to the gate 
delay. For all pdfs associated to the gates, we consider a 
standard deviation of 15% from its mean. This standard 
deviation is realistic for today’s technologies [18] though 
smaller than 25%, which was considered in [9].  

The second component is the wire delay. We use the 
Elmore delay to model the wire delay. The Elmore delay 
for an edge e (an edge corresponds to the wire connecting 
the net source to one of its fanout sinks) is given by: 
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where Re is the lumped wire resistance, Ce is the lumped 
wire capacitance, and Ct is the total lumped capacitance of 
the source node of each net. To compute Re and Ce we 
need an estimate of the length of each edge. For that, we 
use the statistical net-length estimation proposed in [21]. 
The average length of a net, connecting m cells enclosed 
in a rectangular area whose width is a and whose height is 
b, is given by: 
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where α, β, and γ are fitting parameters computed in 
[21] as α ≈ 1.1, β ≈ 2.0, γ  ≈ 0.5. During recursive 
partitioning, when a net is cut, it is assigned a pre-
computed wire delay that will be used to re-compute all 
delays on the paths that include that net. The earlier a net 

is cut during recursive partitioning, the larger the back-
annotated wire delay will be. In our case, any net that is 
cut during the first bi-partitioning step (see Fig.4) is 
assumed to be bounded by a rectangular area which is the 
same as the chip area and for simplicity we consider an 
aspect ratio equal to 1. At the second partitioning level, a 
and b (see Fig.4) have different values that will ensure a 
smaller delay than that assigned during a previous 
partitioning level. The delay of each net is set only the 
first time that it is cut. In our experiments we consider a 
0.18u copper process technology (unit length resistance 
r=0.115, unit length capacitance c=0.00015). 
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Fig.4 Recursive bi-partitioning 

 
5.2. The Experimental Setup 

Our proposed recursive bi-partitioning engines follow 
the setup shown in Fig.5. The engine takes as input the 
gate netlist of the circuit. Then, criticalities for all gates 
are computed as explained in Section 2. Recursive bi-
partitioning, based on the standard FM algorithm or using 
our proposed strategies, is performed. During recursive 
partitioning we can up-date all criticalities by back-
annotating delays to wires corresponding to cut edges and 
then propagating the effect of the delay forward to 
compute the new criticalities on all affected hyperedges at 
the current level of recursive bi-partitioning. Finally, we 
choose the best partitioning in terms of timing, overall cut 
size, and overall cut-criticality. 

Gate Netlist 
 

Criticalities 
Computation 

 

Recursive 
Bi-partitioning 

FM, Strategy I,II 
 

Up-date 
Criticalities 

 

Choose Best 
Timing 

Partitioning 
 

Fig.5 The experimental setup 
 
5.3. Experimental Results 

Because our approach is based on statistical timing 
analysis, which is different from all previous approaches 
and because we do not use netlist alteration in order to 
meet a timing requirement (we simply provide a 



mechanism to efficiently distinguish among different 
partitions), we cannot make a fair comparison between 
our results and previous works.  

However, in what follows we provide experimental 
results that we obtained with the standard FM algorithm 
and with the two proposed modified algorithms. All 
experiments were performed on a 450MHz Pentium III 
PC with 128KB of memory. 

First we optimize all benchmarks using the classic 
script.rugged script in SIS [16]. Then, we run the 
partitioning algorithms 10 times and record the average 
values for cut size and cut criticality. These values are 
shown in Table 1. The cut size is the total number of cut 
hyperedges and the cut criticality is the summation of all 
criticalities of all cut hyperedges. We use the cut 
criticality (cutcrit in the tables) as an indicator directly 
related to the output delay because, as we saw in the 
motivation section, the fact that hyperedges with large 
criticalities are not cut helps reduce the output delay. The 
average delay and the computation times (in seconds, 
rounded to the closest integer) are also shown in Table 1.  

We can see that, both modified algorithms perform 
better than the standard FM algorithm in terms of delay. 
However, that is at the expense of a slightly increased cut 
size. For example, for benchmark rd84 we obtained a 
delay of 11.37 using the FM algorithm as opposed to 
10.97 and 11.26 obtained with the modified algorithms. 
The cut size is 269 for the case of the FM algorithm and 
261 and 273 for the case of the modified algorithms. The 
maximum delay difference between the FM approach and 
the second algorithm is about 40% for the benchmark 
apex2. The second modified FM algorithm offers a delay 
improvement of 15.64% on average at 34.6% increase in 
cut size relative to the standard FM algorithm. The first 
modified FM algorithm offers insignificantly decreased 
delay with the same cut size. In the majority of the cases, 
the modified algorithms provide better cut criticalities, 
which indicates improved circuit delays when these 
modified algorithms are used. 

We note that this difference tends to be more significant 
for larger circuits, because the larger the circuit, the larger 
the search space, and thus the better the chances of 
finding a partition with minimum timing. The difference 
between minimum and maximum delays can be 
significant as we can see in Table 2, where we present the 
minimum and the maximum values recorded during the 
ten runs. 

Since the second proposed algorithm performs slightly 
better compared to the first one, we studied the delay 
variation (see Fig.6 and Fig.7) when the percentage of 
edges that are not allowed to be cut during partitioning is 
varied between 0% and 7%. Note that the case 0% 
corresponds to the simple FM algorithm. As we can see, 

there exists an optimum value for DONOTCUT of about 
1-5% for each circuit, which ensures significant delay 
shifts. We mention that the same behavior is manifested 
by all benchmarks. The following observations are in 
order:  

• Using criticality within the framework of timing 
driven partitioning can result in significant delay 
improvements. 

• Timing improvement is significant even when the 
delay difference is relatively small. That is due to the fact 
that for all the experimented circuits the largest wire delay 
is not much larger than the delay of a common cell. This 
means that for instance in the case of circuit cordic in 
Table 1, a difference of 2.75 between the delay obtained 
with the standard FM algorithm and that obtained using 
the second modified algorithm tells us that the most 
critical path is not cut so many times with the partition 
obtained with the second modified algorithm. Hence, we 
expect the delay improvement to be more for larger 
circuits. 

• We noticed that the internal structure of the circuit is 
very important. Circuits with many large fanout nets are 
difficult to optimize for delay because most of the 
partitions are similar. An example is benchmark des (see 
Table 2). We can see that, all ten runs resulted in the same 
timing. 

We conclude this section with an observation about the 
weak aspect of our methodology. The assumption of 
event independence in the derivation of equation (1) is 
erroneous because in reality circuits present spatial and 
temporal correlations due to fanout reconvergence and 
input pattern dependencies. However, it was shown in [3] 
and [19] that for circuits with more than three logic levels 
the error due to that assumption is less than 5%.  

 
6. Conclusion  

In this paper we proposed statistical-timing driven 
partitioning. We showed that, by using the concept of 
criticality, it is possible to efficiently distinguish between 
partitions in terms of timing. We proposed two modified 
versions of the standard FM algorithm, which offered 
better timing results at the expense of an increase in cut 
size. These algorithms are able to constrain the 
optimization process in the FM algorithm such that the 
cut-criticality is minimized and thus, the delay of all POs 
is decreased.  

We are currently working on speeding up the criticality 
and delay up-date at any partitioning level by simplifying 
influence computation using look up tables and on 
implementing multilevel counterparts of all recursive 
algorithm versions discussed in this paper.  
 



Table 1:Recursive partitioning, balance ratio=0.48, 10 random run, minimum timing reported 

Delay 

DONOTCUT [%] 
Table 2: Recursive partitioning, balance ratio=0.48, minimum and maximum timings               Fig.6 DONOTCUT influence on timing 

 FM Str.I Str.II 
Circuit 

 
No. of  cells Cut size Cutcrit Delay CPU 

(s) 
Cut size Cutcrit Delay CPU

(s) 
Cut size Cutcrit Delay CPU

(s) 
rd73 114 59 19.4 5.89 0 58 16.59 5.87 0 58 14.13 5.8 0 

9symml 145 69 12.6 11.38 0 68 10.99 11.2 0 72 11.1 11.19 0 
alu4 276 120 53.73 17.62 0 120 51.91 17.5 0 141 47.73 16.56 0 

C1355 293 124 352.27 11.4 0 123 320.16 11.07 0 124 308.77 11.4 0 
t481 365 249 13.91 12.54 0 251 13.34 12.53 2 257 13.13 12.32 0 
rd84 481 269 33.42 11.37 1 261 30.26 10.97 4 273 29.74 11.26 1 

table3 686 426 185.26 16.57 1 421 168.7 15.92 10 444 142.7 16.22 1 
mul8 820 164 202.4 94.39 2 161 182.07 92.65 12 176 199.47 98.94 2 
cordic 856 383 18.29 41.33 2 361 15.62 40.53 12 437 14.59 38.58 2 
apex2 2388 979 33.01 133.42 11 965 30.13 130.66 186 1444 14.59 79.82 12 

des 2557 424 1493.1 193.71 16 446 1502 193.71 354 971 703.18 173.13 16 
  Average 296.9 219.76 49.96 3 294 212.8 49.32 52.7 399.7 136.28 43.2 3.09

Delay 

DONOTCUT [%]
Fig.7 DONOTCUT influence on timing    

FM Str.I Str.II  
Minimum Maximum Minimum Maximum Minimum Maximum 

Circuit No. of 
cells 

PI/PO Mean Std.  
Dev. 

Mean Std. 
 Dev. 

Mean Std. 
 Dev. 

Mean Std. 
Dev.

Mean Std. 
Dev.

Mean Std. 
Dev.

rd73 114 7/3 5.72 0.23 6.05 0.22 5.71 0.23 6.08 0.22 5.68 0.23 5.96 0.23
9symml 145 9/1 11.03 0.48 11.74 0.43 11.02 0.39 11.44 0.45 10.85 0.46 11.62 0.41

alu4 276 10/6 17.11 1.03 18.47 1.18 16.77 1.1 18.36 1.23 16.01 0.99 16.87 1.08
C1355 293 41/32 11.12 0.59 12.21 0.61 10.5 0.55 11.65 0.6 11 0.6 12.02 0.6 
t481 365 16/1 11.73 0.81 14.34 1.01 11.31 0.81 14.34 1.03 11.64 0.84 13.1 0.92
rd84 481 8/4 10.94 0.51 12.06 0.54 9.92 0.53 11.84 0.48 10.43 0.55 11.85 0.47

table3 686 14/14 14.75 0.72 17.74 0.95 14.56 0.89 19.37 1.05 15.04 1.04 17.34 1.18
mul8 820 32/16 83.68 6.98 99.46 8.31 87.65 7.32 98.48 8.23 88.8 7.42 105.1 8.78
cordic 856 23/2 37.76 3.14 44.76 3.71 35.64 3.02 42.11 3.44 37.27 3.05 42.6 3.55
apex2 2388 39/3 132.75 11.33 135.33 11.63 124.71 10.71 134.79 10.76 78.48 6.49 80.38 6.63

des 2557 256/245 193.71 17.2 193.71 17.21 193.71 17.21 193.71 17.21 173.13 14.3 173.13 14.3
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