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Abstract 
An incremental timing driven placement algorithm is presented. 
We introduce a fast path-based analytical approach for timing 
improvement. Our method achieves timing optimization by 
reducing the enclosing bounding boxes of selected nets on 
critical paths. Furthermore, this technique tries to minimize 
modifications to the initial placement while improving the delay 
of the circuit incrementally. Two contributions of this work are 
1) efficient conversion of a path-based timing minimization 
problem to a geometric net-constraint problem and 2) minimal 
modification of a placement to improve timing. Our technique 
can take an initial placement from any algorithm and improve 
timing iteratively. The experiments show that the proposed 
approach is very efficient. 

1.  Introduction 
  Timing driven placement is an important step in physical 
design of integrated circuits. In high-speed circuits, a significant 
portion of timing minimization is performed in the placement 
stage in the form of wire length minimization, followed by 
further optimization techniques such as buffer insertion either 
during placement or routing. In complex designs of today, 
various qualities such as delay, power consumption, heat profile 
and area are optimized in an intricate process that can strike a 
balance between these metrics. Multiple iterations might be 
needed for timing closure. Given the complexities of the designs 
and tight time-to-market constraints, it is highly desired to have a 
placement algorithm that 1) needs fewer iterations of the whole 
optimization cycle, and 2) in minimizing a given metric such as 
delay, disturbs the current placement minimally so that other 
metrics such as heat prof ile of the design do not change 
dramatically. For these reasons, incremental placement methods 
that focus on the most critical paths in the design would be very 
useful in design convergence.  
  Timing optimization during placement has been an important 
research topic especially since we entered the deep sub-micron 
era. Research efforts on this problem can be classified into two 
categories:  path-based and net-based approaches. Path-based 
techniques enumerate some critical paths and try to optimize 
them, hence decreasing the overall delay of the circuit. Edge-
based methods assign each edge with a “criticality”  number that 
indicates how the edge contributes to the delay of the circuit 
based on the paths that pass through it. Path-based methods 
could suffer from large runtimes because of the potentially 
exponential number of paths in a circuit. On the other hand, 
edge-based methods suffer from the fact that they lose the big 
picture: they no longer see paths, but only edges. Hence, the 
efforts to minimize wire lengths corresponding to critical edges 
might not be as harmonious as the path-based methods. 
  Among works on timing driven placement, [1] puts higher 

weights on timing critical nets in the framework of force directed 
placement. Difficulty with this approach is to determine how 
much weight should be increased and which particular nets along 
the timing path should be weighted more, i.e., the slack 
assignment problem. Delay from interconnection could be 
estimated by the size of net bounding box during placement. 
Direct control on the size of bounding box was presented in 
[2][3]. They used linear programming to ensure all nets meet 
their bounding box constraints. The work in [4] shows a post-
routing timing optimization technique with long runtimes. We 
present a timing optimization technique applied during 
placement that uses “net constraints”  to reduce circuit delay. 
“Net constraint”  is the maximum size of the bounding box of a 
net.  
  The net constraint generation process should consider the path. 
If one critical path consists of a few net segments, more 
constraint should be put on individual nets on the path compared 
to a case in which the path consists of many edges. In the latter 
case, small contractions of the nets can add up to a significant 
delay decrease, a luxury that the former case lacks. In the past, 
heuristic methods (or user input) have been used to decide what 
constraints to put on different nets. The quality of net constraint 
generation is crucial to the effectiveness of a net-constraint-
based timing driven placement [3]. Here, we propose analytic 
formulations to generate net constraints to reduce circuit delay in 
such a way that placement disturbance is minimum. 

2.  Problem Formulation 
  The delay of a net in the placement step is usually estimated 
by the half perimeter of the net’s bounding box, which is the 
smallest rectangle enclosing all pins connected by the net. The 
maximum delay on any path from a primary input pin (or 
memory element output) to a primary output pin (or a memory 
element input) determines the delay of the circuit. If the delay is 
more than the target delay of the design, the placement is invalid 
and should be further optimized. 
  If the initial placement misses the target delay goal by a small 
amount, it has high chances of meeting the timing goal by 
incremental changes. Figure 1 shows a simple illustration of our 
proposed flow. The input to our flow is the placement generated 
by any placement method (e.g., Dragon). Then, critical paths are 
identified as part (a) next, the bounding boxes are contracted as 
in part (b) and overlaps are removed as in part (c). Finally, the 
new placement with better timing is obtained as in part (d). 
Figure 1 illustrates one iteration (a-d) of our iterative algorithm.  
  To improve timing, bounding boxes on the critical paths 
should be reduced. The number of paths could increase 
exponentially as the circuit size grows. So, to keep the problem 
size manageable, we use intermediate target timing and consider 
a certain number of critical paths and optimize placement for 



these paths. Target timing can be achieved by iteratively 
reducing the incremental target timing. Another benefit of this 
iterative approach is that we can handle critical paths 
dynamically. If only critical paths (i.e., those currently violating 
delay bound) are considered during the whole optimization 
process, other non-critical paths tend to become critical as we 
move cells around and change bounding boxes of other nets. An 
iteratively incremental approach can handle those new critical 
paths in the following iterations. 
  Two different approaches to the timing optimization are given 
here. The first approach uses net bounding boxes as intermediate 
variables in the timing optimization process: path negative slacks 
are translated to net contractions in one linear programming 
formulation, followed by another problem that achieves net 
contractions by moving cells. The second approach uses a single 
formulation to move cells directly in order to meet timing 
constraints, while minimizing cell movements. Even though the 
second approach is more intuitive, but it results in far worse 
runtimes and is presented in the Appendix. Sections 2 and 3 
describe the first approach.  
  The details of our approach are presented in subsequent 
sections in the following order. Section 3 shows how to identify 
nets whose bounding boxes are to be reduced. In Section 4, we 
show how cells are moved to other places with minimum impact 
on the initial placement. The final step of the proposed technique 
is legalization and is explained in Section 5. Experimental results 
are in Section 6, followed by concluding remarks in Section 7. 
 

 

 

 

 

 

   (a) initial placement          (b) net contraction 

 

 

 

 

 

 

    (c) legalization            (d) after one iteration 
Figure 1. Flow of the incremental placement 

3.  Net Constraint Generation 
  In this section, we describe our incremental timing-
optimization technique. Our method is two-tier. In the first step, 
we try distribute “net constraints”  on net bounding boxes to 
reduce delay on critical paths. The next section describes how 
we translate bounding box changes to individual cell movements. 
  Distributing negative slack of paths to individual nets has to be 
done carefully. If many critical paths share some nets, timing on 

those critical paths can be efficiently improved by reducing the 
bounding-boxes of the shared nets. This strategy aims to 
minimize the perturbation to the placement. The amount of 
reduction of bounding boxes can be determined analytically 
using linear programming.  
  For a placement with a delay dinitial, and for incremental target 
timing, dit (= dinitial - ∆t), all paths that violate the incremental 
target timing are identified. If there are too many paths violating 
this di t, only K paths are used and dit is adjusted accordingly (in 
the experiment, K is set to 2000). For a path pathi with path 
delay di, the amount of delay that should be decreased along 
pathi is (di - dit). The objective of the linear program is to 
minimize the net changes in order to minimize the impact on the 
placement. In the following expression, ∆dij (> 0) is the decrease 
of wire delay on the jth net on pathi. Consider k (≤ K) most 
critical paths, whose delays are more than dit. To achieve the 
target timing, the following constraints should be met: 
 

   path1: ∆d11 + ∆d12 +  ... + ∆d1|E1| ≥ d1 - dit 

   path2: ∆d21 + ∆d22 +  ... + ∆d2|E2| ≥ d2 - di t 

… 

   pathk: ∆dk1 + ∆dk2 + … + ∆dk|Ek| ≥ dk - dit            (1) 
 
  Here  |Ei| is the number of nets on pathi. The delay reduction, 
∆die is translated to bounding box changes, for a given delay 
model D, as follows. 
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  ijxB∆ and ijyB∆ are the reductions in the bounding box size 
of netj on pathi in the x- and y-direction respectively. Now (1) is 
rewritten as expressions of bounding boxes, as shown in (3), and 
used as a constraint in the linear programming formulation. 
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The objective of the linear programming is 
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  In (4), we construct the objective function in a way that each 
critical net appears only once, which is indicated with (*). As a 
result, this objective function will give higher priority to 
reducing the bounding boxes of the shared nets because they 
appear in more (3) inequalities. 
  To minimize the changes to the placement, each ∆Bijx and ∆Bijy 
is bounded to small values, as follows. 

∆Bi jx ≤ p Bijx, 

∆Bi jy ≤ p Bijy 

       for 0 < p < 1                           (5) 

  Bijx and Bi jy are the size of the bounding box of net j of pathi 
from the current placement. To decide the minimum p in (5), we 



try to solve the linear program using (3), (4) and (5) with a small 
p. If no feasible solution is obtained, we increase it by a small 
amount (in the experiment, 5%). Intuitively, large ∆Bij values are 
likely to change the current placement significantly and may 
cause more non-critical paths to become critical. Hence we opt 
for small p. By forcing all B∆ ’s as non-negative reduction, no 
net bounding boxes on critical paths will be expanded. The 
output of the linear program will be ∆Bijx and ∆Bijy values that 
have to be enforced to meet the incremental timing goal. 

4. Contraction of the Cr itical Nets with 

Minimal Placement Changes 
  Using these tighter bounding boxes from the linear program in 
Section 3, cells are moved to other positions to meet the net 
constraints (i.e., bounding box changes are translated into cell 
movements). The way that cells are moved to other positions 
should be done with minimum perturbation to the current 
placement. This problem can be modeled as an optimization 
problem, whose objective is minimum placement perturbation 
with constraints that all pair of connected bounding boxes by 
some shared nodes should be kept as linked.  
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  Here, 

inetXc  is the x-coordinate of the center of neti 
bounding box and superscript old and new represent the current 
known Xc value and the unknown new center point respectively. 
Nc represents the nets on critical paths. And,

new
neti

Bx  represents 
the reduced bounding box of neti in the x-direction. This 
objective function tends to keep the new placement as close to 
the old one as possible and to maximize the overlap between the 
new spans of net bounding boxes with their previous spans in the 
old placement.   
  By (5), the coordinate of each bounding boxes are determined. 
Now the location and size of each bounding boxes are known. 
So, critical cells can be moved to new location. The same idea is 
applied to the y-direction.  
  To better illustrate this idea, consider the example of Figure 2. 
Net1 connects cell1, cell2, cell3 and cell4, net2 connects cell3, cell4 
and cell5 and net3 connects cell5, cell6, cell7 and cell8. Assume 
that the solution to the linear equations from Section 3 requires 
that the horizontal length of the bounding box of net2 be reduced 
by 30%, with no reductions on net1 and net3. The solution would 
be something like part (b) in Figure 2. In this example, there are 
overlaps between net1 and net2 and between net2 and net3. 
  The solution would require only cell3 and cell5 to move toward 
the center of net2. But if net2 is to be reduced by 60% in the 
horizontal direction, the net contraction will result in part (c) in 
Figure 2. In this case the centers of net2 and net3 will move as a 
result of displacing cell3, cell5 and cell8.  
  This technique reduces those critical nets at the expense of 
other non-critical nets. Once cells are moved to other places 
using the above technique, some overlaps are created. Hence, 
after the net contraction phase, an overlap resolving step should 

be followed. 

 5.  Over lap removal 
  By contracting critical nets, overlaps are created. A simple 
technique can be applied to remove overlaps. We applied a 
simple bisection technique. First, after sorting cells by horizontal 
 
 
 
 
 
 
         (a) part of a critical path 
 
 
 
 
 
 
        (b) net2 contracted by 30% 

 

 

 

 

          (c) net2 contracted by 60% 
          Figure 2. Net contraction 
 
(vertical) coordinates, cells are assigned to two child bins, which 
are created by a vertical (horizontal) cut of the placement area. 
This is followed by the same bisection placement in alternating 
horizontal/vertical directions until all overlaps are removed. In 
our experiment, during this process, white space was actively 
utilized to keep the total wire length increase small. If initial 
placement has uniformly distributed white space of 10%, we 
relaxed the minimum white space of each child region to 5%.   
The overlap removal method is fast because the only 
computation involved is sorting of the cells by their coordinates. 

6.  Exper imental Results 
  We have implemented the proposed analytic approach for 
timing optimization and experimented on a Linux machine with 
Intel Pentium 930 MHz processor with 512 MB memory. We 
used lp_solver [5] to solve the linear program and OOQP [6] to 
solve the quadratic program. We ran our implementation for 4 
test circuits from [7] and 4 from [8]. The same wire delay model 
as [7] and [8] were used respectively. 
  As input to our approach, we got an initial placement by 
running the placer of [7] and [8], followed by iterations of our 
proposed algorithm (either 5 iterations or until wire length 
increase was more than 10%). We set incremental target timing 
as follows and the used number of critical paths was 2000.  

ynoWireDelaynoWireDelacurrentit
tttt +×−= 8.0)(  

  The results are shown in Table 1. As we continue iterating the 
proposed optimization, we observed a trade-off curve, i.e. the 
total wire length generally increases and circuit timing improves. 
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An example of the trade-off curve is shown in Figure 3. In the 
case of placements generated by Dragon, our approach resulted 
in more than 10% increase in wire length in its first iteration, so 
only one iteration was used. Runtimes reported in the “our 
runtime” column are the total runtimes of all iterations. 

7.  Conclusion 
  In this paper, we proposed an analytic incremental placement 
technique to improve circuit timing. Our approach uses an 
optimization technique to minimize the perturbation on the 
placement. Experimental results show that the changes are small 
while achieving timing improvement in very short runtimes. 
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Appendix 
Formulation using cell location directly: 
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 A linear solver can solve this formulation. To get rid of the 
absolute values in the objective function, we can introduce new 
variables and constraints. We can replce |Z| by Zpositive in the 
objective function. Constraints –Zpositive ≤ Z ≤ Zpositive have to be 
added. 
All notations in (a1)-(a3) are as follows.  
xi

new, xi
old, y

i
new, yi

old:  new and old x,y-coordinate of cell i 
xbj

r, xbj
l, ybj

t, ybj
b: right, left, top and bottom coordinates of  

              bounding-boxj 
Cc, Nc: cells and nets on critical paths, respectively. 
(a1) and (a2) represent the requirement of bounding box for the 
cells of a net. (a3) represents the delay requirement. Our 
experiments showed that this formulation gives a little worse 
quality (for the same delay, wirelength increase is worse) and 
very long run-time (2m vs 4h). This result is shown in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. delay and wirelength change (“ direct”  

formulation in appendix, “ indirect”  formulation in Sections 
3 and 4) 
 

Table 1. Exper imental results 

*: from our machine, **: using a placer based on [7] on a 1.5 GHz Pentium CPU, with 2GB of memory. 

circuit Cells nets zero-wire 
delay (ns) 

initial 
delay 

runtime 
[8]* 

runtime 
[7]** 

Our 
runtime 

our 
delay 

wirelength 
increase 

matrix 
VP2 

32-MAC 
64-MAC 

pdc 
too_large 

b17s 
b18s 

3,083 
8,714 
8,902 

25,616 
4,821 
6961 

39,390 
107,979 

3,200 
8,789 
9,115 

26,017 
4,781 
6,958 

39,360 
107,957 

4.93 
5.59 
1.96 
2.34 
9.19 
6.06 

97.92 
110.48 

4.99 
5.67 
2.88 
6.00 
32.5 

17.67 
187.59 
177.54 

5 m 
19 m 
26 m 

105 m 
  
  
  

  

  
  
  
  

3 m 
5 m 

110 m 
12 h  

1 m  
1 m 
2 m 
3 m 
1 m 
1 m 
3 m 
5 m 

no improve
no improve

2.77
5.55

23.98
13.11

180.74
167.64

           NA 
          NA 

10.5 %
10.9 %
7.0 %
3.3 %
4.7 %
4.8 %


