
Incremental Placement for Timing Optimization

Wonjoon Choi Kia Bazargan
wjchoi@ece.umn.edu kia@ece.umn.edu

ECE Department , University of Minnesota, Minneapolis, MN, USA

Abstract
An incremental timing driven placement algorithm is presented.
We introduce a fast path-based analytical approach for timing
improvement. Our method achieves timing optimization by
reducing the enclosing bounding boxes of selected nets on
critical paths. Furthermore, this technique tries to minimize
modifications to the initial placement while improving the delay
of the circuit incrementally. Two contributions of this work are
1) efficient conversion of a path-based timing minimization
problem to a geometric net-constraint problem and 2) minimal
modification of a placement to improve timing. Our technique
can take an initial placement from any algorithm and improve
timing iteratively. The experiments show that the proposed
approach is very efficient.

1. Introduction
 Timing driven placement is an important step in physical
design of integrated circuits. In high-speed circuits, a significant
portion of timing minimization is performed in the placement
stage in the form of wire length minimization, followed by
further optimization techniques such as buffer insertion either
during placement or routing. In complex designs of today,
various qualities such as delay, power consumption, heat profile
and area are optimized in an intricate process that can strike a
balance between these metrics. Multiple iterations might be
needed for timing closure. Given the complexities of the designs
and tight time-to-market constraints, it is highly desired to have a
placement algorithm that 1) needs fewer iterations of the whole
optimization cycle, and 2) in minimizing a given metric such as
delay, disturbs the current placement minimally so that other
metrics such as heat prof ile of the design do not change
dramatically. For these reasons, incremental placement methods
that focus on the most critical paths in the design would be very
useful in design convergence.
 Timing optimization during placement has been an important
research topic especially since we entered the deep sub-micron
era. Research efforts on this problem can be classified into two
categories: path-based and net-based approaches. Path-based
techniques enumerate some critical paths and try to optimize
them, hence decreasing the overall delay of the circuit. Edge-
based methods assign each edge with a “criticality” number that
indicates how the edge contributes to the delay of the circuit
based on the paths that pass through it. Path-based methods
could suffer from large runtimes because of the potentially
exponential number of paths in a circuit. On the other hand,
edge-based methods suffer from the fact that they lose the big
picture: they no longer see paths, but only edges. Hence, the
efforts to minimize wire lengths corresponding to critical edges
might not be as harmonious as the path-based methods.
 Among works on timing driven placement, [1] puts higher

weights on timing critical nets in the framework of force directed
placement. Difficulty with this approach is to determine how
much weight should be increased and which particular nets along
the timing path should be weighted more, i.e., the slack
assignment problem. Delay from interconnection could be
estimated by the size of net bounding box during placement.
Direct control on the size of bounding box was presented in
[2][3]. They used linear programming to ensure all nets meet
their bounding box constraints. The work in [4] shows a post-
routing timing optimization technique with long runtimes. We
present a timing optimization technique applied during
placement that uses “net constraints” to reduce circuit delay.
“Net constraint” is the maximum size of the bounding box of a
net.
 The net constraint generation process should consider the path.
If one critical path consists of a few net segments, more
constraint should be put on individual nets on the path compared
to a case in which the path consists of many edges. In the latter
case, small contractions of the nets can add up to a significant
delay decrease, a luxury that the former case lacks. In the past,
heuristic methods (or user input) have been used to decide what
constraints to put on different nets. The quality of net constraint
generation is crucial to the effectiveness of a net-constraint-
based timing driven placement [3]. Here, we propose analytic
formulations to generate net constraints to reduce circuit delay in
such a way that placement disturbance is minimum.

2. Problem Formulation
 The delay of a net in the placement step is usually estimated
by the half perimeter of the net’s bounding box, which is the
smallest rectangle enclosing all pins connected by the net. The
maximum delay on any path from a primary input pin (or
memory element output) to a primary output pin (or a memory
element input) determines the delay of the circuit. If the delay is
more than the target delay of the design, the placement is invalid
and should be further optimized.
 If the initial placement misses the target delay goal by a small
amount, it has high chances of meeting the timing goal by
incremental changes. Figure 1 shows a simple illustration of our
proposed flow. The input to our flow is the placement generated
by any placement method (e.g., Dragon). Then, critical paths are
identified as part (a) next, the bounding boxes are contracted as
in part (b) and overlaps are removed as in part (c). Finally, the
new placement with better timing is obtained as in part (d).
Figure 1 illustrates one iteration (a-d) of our iterative algorithm.
 To improve timing, bounding boxes on the critical paths
should be reduced. The number of paths could increase
exponentially as the circuit size grows. So, to keep the problem
size manageable, we use intermediate target timing and consider
a certain number of critical paths and optimize placement for

these paths. Target timing can be achieved by iteratively
reducing the incremental target timing. Another benefit of this
iterative approach is that we can handle critical paths
dynamically. If only critical paths (i.e., those currently violating
delay bound) are considered during the whole optimization
process, other non-critical paths tend to become critical as we
move cells around and change bounding boxes of other nets. An
iteratively incremental approach can handle those new critical
paths in the following iterations.
 Two different approaches to the timing optimization are given
here. The first approach uses net bounding boxes as intermediate
variables in the timing optimization process: path negative slacks
are translated to net contractions in one linear programming
formulation, followed by another problem that achieves net
contractions by moving cells. The second approach uses a single
formulation to move cells directly in order to meet timing
constraints, while minimizing cell movements. Even though the
second approach is more intuitive, but it results in far worse
runtimes and is presented in the Appendix. Sections 2 and 3
describe the first approach.
 The details of our approach are presented in subsequent
sections in the following order. Section 3 shows how to identify
nets whose bounding boxes are to be reduced. In Section 4, we
show how cells are moved to other places with minimum impact
on the initial placement. The final step of the proposed technique
is legalization and is explained in Section 5. Experimental results
are in Section 6, followed by concluding remarks in Section 7.

 (a) initial placement (b) net contraction

 (c) legalization (d) after one iteration
Figure 1. Flow of the incremental placement

3. Net Constraint Generation
 In this section, we describe our incremental timing-
optimization technique. Our method is two-tier. In the first step,
we try distribute “net constraints” on net bounding boxes to
reduce delay on critical paths. The next section describes how
we translate bounding box changes to individual cell movements.
 Distributing negative slack of paths to individual nets has to be
done carefully. If many critical paths share some nets, timing on

those critical paths can be efficiently improved by reducing the
bounding-boxes of the shared nets. This strategy aims to
minimize the perturbation to the placement. The amount of
reduction of bounding boxes can be determined analytically
using linear programming.
 For a placement with a delay dinitial, and for incremental target
timing, dit (= dinitial - ∆t), all paths that violate the incremental
target timing are identified. If there are too many paths violating
this di t, only K paths are used and dit is adjusted accordingly (in
the experiment, K is set to 2000). For a path pathi with path
delay di, the amount of delay that should be decreased along
pathi is (di - dit). The objective of the linear program is to
minimize the net changes in order to minimize the impact on the
placement. In the following expression, ∆dij (> 0) is the decrease
of wire delay on the jth net on pathi. Consider k (≤ K) most
critical paths, whose delays are more than dit. To achieve the
target timing, the following constraints should be met:

 path1: ∆d11 + ∆d12 + ... + ∆d1|E1| ≥ d1 - dit

 path2: ∆d21 + ∆d22 + ... + ∆d2|E2| ≥ d2 - di t

…

 pathk: ∆dk1 + ∆dk2 + … + ∆dk|Ek| ≥ dk - dit (1)

 Here |Ei| is the number of nets on pathi. The delay reduction,
∆die is translated to bounding box changes, for a given delay
model D, as follows.

∆dij =
ijy

ijy
ijx

ijx

B
B

D
B

B

D ∆
∂
∂+∆

∂
∂ (2)

 ijxB∆ and ijyB∆ are the reductions in the bounding box size
of netj on pathi in the x- and y-direction respectively. Now (1) is
rewritten as expressions of bounding boxes, as shown in (3), and
used as a constraint in the linear programming formulation.

pathi:

yi
yi

xi
xi

B
B

D
B

B

D
1

1
1

1

∆
∂

∂+∆
∂
∂ + ...

+

iey
iey

iex
iex

B
B

D
B

B

D ∆
∂
∂+∆

∂
∂ ≥ di - dit (3)

The objective of the linear programming is

Min: *

,

)(ijy
ji

ijx BB ∆+∆� (4)

 In (4), we construct the objective function in a way that each
critical net appears only once, which is indicated with (*). As a
result, this objective function will give higher priority to
reducing the bounding boxes of the shared nets because they
appear in more (3) inequalities.
 To minimize the changes to the placement, each ∆Bijx and ∆Bijy
is bounded to small values, as follows.

∆Bi jx ≤ p Bijx,

∆Bi jy ≤ p Bijy

 for 0 < p < 1 (5)

 Bijx and Bi jy are the size of the bounding box of net j of pathi
from the current placement. To decide the minimum p in (5), we

try to solve the linear program using (3), (4) and (5) with a small
p. If no feasible solution is obtained, we increase it by a small
amount (in the experiment, 5%). Intuitively, large ∆Bij values are
likely to change the current placement significantly and may
cause more non-critical paths to become critical. Hence we opt
for small p. By forcing all B∆ ’s as non-negative reduction, no
net bounding boxes on critical paths will be expanded. The
output of the linear program will be ∆Bijx and ∆Bijy values that
have to be enforced to meet the incremental timing goal.

4. Contraction of the Cr itical Nets with

Minimal Placement Changes
 Using these tighter bounding boxes from the linear program in
Section 3, cells are moved to other positions to meet the net
constraints (i.e., bounding box changes are translated into cell
movements). The way that cells are moved to other positions
should be done with minimum perturbation to the current
placement. This problem can be modeled as an optimization
problem, whose objective is minimum placement perturbation
with constraints that all pair of connected bounding boxes by
some shared nodes should be kept as linked.

Min: �
∈

−
c

ii
Ni

new
net

old
net XcXc 2

,)(

such that.

cjiji Nji
new
net

new
net

new
net

new
net BxBxXcXc ∈∀+<− ,)(*5.0 (5)

 Here,

inetXc is the x-coordinate of the center of neti
bounding box and superscript old and new represent the current
known Xc value and the unknown new center point respectively.
Nc represents the nets on critical paths. And,

new
neti

Bx represents
the reduced bounding box of neti in the x-direction. This
objective function tends to keep the new placement as close to
the old one as possible and to maximize the overlap between the
new spans of net bounding boxes with their previous spans in the
old placement.
 By (5), the coordinate of each bounding boxes are determined.
Now the location and size of each bounding boxes are known.
So, critical cells can be moved to new location. The same idea is
applied to the y-direction.
 To better illustrate this idea, consider the example of Figure 2.
Net1 connects cell1, cell2, cell3 and cell4, net2 connects cell3, cell4
and cell5 and net3 connects cell5, cell6, cell7 and cell8. Assume
that the solution to the linear equations from Section 3 requires
that the horizontal length of the bounding box of net2 be reduced
by 30%, with no reductions on net1 and net3. The solution would
be something like part (b) in Figure 2. In this example, there are
overlaps between net1 and net2 and between net2 and net3.
 The solution would require only cell3 and cell5 to move toward
the center of net2. But if net2 is to be reduced by 60% in the
horizontal direction, the net contraction will result in part (c) in
Figure 2. In this case the centers of net2 and net3 will move as a
result of displacing cell3, cell5 and cell8.
 This technique reduces those critical nets at the expense of
other non-critical nets. Once cells are moved to other places
using the above technique, some overlaps are created. Hence,
after the net contraction phase, an overlap resolving step should

be followed.

 5. Over lap removal
 By contracting critical nets, overlaps are created. A simple
technique can be applied to remove overlaps. We applied a
simple bisection technique. First, after sorting cells by horizontal

 (a) part of a critical path

 (b) net2 contracted by 30%

 (c) net2 contracted by 60%
 Figure 2. Net contraction

(vertical) coordinates, cells are assigned to two child bins, which
are created by a vertical (horizontal) cut of the placement area.
This is followed by the same bisection placement in alternating
horizontal/vertical directions until all overlaps are removed. In
our experiment, during this process, white space was actively
utilized to keep the total wire length increase small. If initial
placement has uniformly distributed white space of 10%, we
relaxed the minimum white space of each child region to 5%.
The overlap removal method is fast because the only
computation involved is sorting of the cells by their coordinates.

6. Exper imental Results
 We have implemented the proposed analytic approach for
timing optimization and experimented on a Linux machine with
Intel Pentium 930 MHz processor with 512 MB memory. We
used lp_solver [5] to solve the linear program and OOQP [6] to
solve the quadratic program. We ran our implementation for 4
test circuits from [7] and 4 from [8]. The same wire delay model
as [7] and [8] were used respectively.
 As input to our approach, we got an initial placement by
running the placer of [7] and [8], followed by iterations of our
proposed algorithm (either 5 iterations or until wire length
increase was more than 10%). We set incremental target timing
as follows and the used number of critical paths was 2000.

ynoWireDelaynoWireDelacurrentit
tttt +×−= 8.0)(

 The results are shown in Table 1. As we continue iterating the
proposed optimization, we observed a trade-off curve, i.e. the
total wire length generally increases and circuit timing improves.

1

2

3

4

5

6

7

8

net2 net3 net1

1

2

3

4

5

6

7

net1 net2 net3

8

1

2

3

4

6

7

net2 net3 net1

8

5

An example of the trade-off curve is shown in Figure 3. In the
case of placements generated by Dragon, our approach resulted
in more than 10% increase in wire length in its first iteration, so
only one iteration was used. Runtimes reported in the “our
runtime” column are the total runtimes of all iterations.

7. Conclusion
 In this paper, we proposed an analytic incremental placement
technique to improve circuit timing. Our approach uses an
optimization technique to minimize the perturbation on the
placement. Experimental results show that the changes are small
while achieving timing improvement in very short runtimes.

References
[1] H. Eisenmann and F. M. Johannes, "Generic Global

Placement and Floorplanning", ACM/IEEE Design
Automation Conference, 1998.

[2] B. Halpin, C. Y. roger Chen, and Naresh Sehgal, "Timing
Driven Placement using Physical Net Constraints", Design
Automation Conference, pp.780-783. IEEE/ACM, June 2001.

 [3] K. Rajagopal et al., "Timing Driven Force Directed
placement with Physical Net Constraints", International
Symposium on Physical Design, pp 60-66. IEEE/ACM, April
2003.

[4] A. H. Ajami and M. Pedram, "Post-Layout Timing-Driven
Cell Placement Using an Accurate Net Length Model with
Movable Steiner Points", ASPDAC, 2001

[5] ftp://ftp.es.ele.tue.nl/pub/lp_solve/. Information and Comm-
unication Systems group at the Electrical Engineering
department of the Eindhoven University of Technology, 1998.

[6] http://www.cs.wisc.edu/~swright/ooqp/. University of Ch-
icago, 2001

[7] C. Ababei, N. Selvakkumaran, K. Bazargan, and G. Karypis,
"Multi-objective Circuit Partitioning for Cutsize and Path-
based Delay Minimization," ICCAD, 2002

[8] X. Yang, B.K. Choi, and M. Sarrafzadeh, "Timing-Driven
Placement using Design Hierarchy Guided Constraint
Generation", ICCAD, 2002.

Appendix
Formulation using cell location directly:
min: [] ��

∈∈

−+−+−+−
cc Nj

b
bj

t
bj

l
bj

r
bj

Ci

old
i

new
i

old
i

new
i yyxxyyxx)(α

such that

r
bi

l
bi xx ≤ , t

bi
b
bi yy ≤

cNi ∈∀ (a1)
r
bik xx ≤ , l

bik xx ≥ , t
bik yy ≤ , b

bik yy ≥ (a2)

inetk ∈∀ ,
cNi ∈∀

for pathi:

[] []�
=

=
−≤

��

�
�
�

��

�
�
�

−−
∂
∂+−−

∂
∂Ek

k
iti

b
bk

t
bk

old
iky

iky

l
bk

r
bk

old
ikx

ikx

ddyyB
B

D
xxB

B

D

1

)()(
(a3)

 A linear solver can solve this formulation. To get rid of the
absolute values in the objective function, we can introduce new
variables and constraints. We can replce |Z| by Zpositive in the
objective function. Constraints –Zpositive ≤ Z ≤ Zpositive have to be
added.
All notations in (a1)-(a3) are as follows.
xi

new, xi
old, y

i
new, yi

old: new and old x,y-coordinate of cell i
xbj

r, xbj
l, ybj

t, ybj
b: right, left, top and bottom coordinates of

 bounding-boxj
Cc, Nc: cells and nets on critical paths, respectively.
(a1) and (a2) represent the requirement of bounding box for the
cells of a net. (a3) represents the delay requirement. Our
experiments showed that this formulation gives a little worse
quality (for the same delay, wirelength increase is worse) and
very long run-time (2m vs 4h). This result is shown in Figure 3.

Figure 3. delay and wirelength change (“ direct”

formulation in appendix, “ indirect” formulation in Sections
3 and 4)

Table 1. Exper imental results

*: from our machine, **: using a placer based on [7] on a 1.5 GHz Pentium CPU, with 2GB of memory.

circuit Cells nets zero-wire
delay (ns)

initial
delay

runtime
[8]*

runtime
[7]**

Our
runtime

our
delay

wirelength
increase

matrix
VP2

32-MAC
64-MAC

pdc
too_large

b17s
b18s

3,083
8,714
8,902

25,616
4,821
6961

39,390
107,979

3,200
8,789
9,115

26,017
4,781
6,958

39,360
107,957

4.93
5.59
1.96
2.34
9.19
6.06

97.92
110.48

4.99
5.67
2.88
6.00
32.5

17.67
187.59
177.54

5 m
19 m
26 m

105 m

3 m
5 m

110 m
12 h

1 m
1 m
2 m
3 m
1 m
1 m
3 m
5 m

no improve
no improve

2.77
5.55

23.98
13.11

180.74
167.64

 NA
 NA

10.5 %
10.9 %
7.0 %
3.3 %
4.7 %
4.8 %

