
HW/SW Codesign Incorporating Edge Delays Using Dynamic Programming

Karthikeyan Bhasyam Kia Bazargan
ECE Department

University of Minnesota
Minneapolis, MN 55455

{karthik, kia} @ece.umn.edu

Abstract
We present an algorithm based on dynamic programming
to perform the HW/SW partitioning and scheduling of a
given task graph for minimum latency subject to resource
constraint. The major contribution of this paper is to
consider the edge communication delays in the dynamic
programming solution of the problem. The algorithm has a
polynomial run time complexity on trees. We also
introduce a pruning technique to reduce the runtime of the
worst-case scenario of directed acyclic graphs (DAGs).
The algorithm has been implemented and the results are
reported. A very fast quality heuristic is also proposed and
implemented to provide good solutions in negligible run
time.

1. INTRODUCTION

 The hardware/software (HW/SW) co-design problem
involves the allocation of operations in a data flow graph
(DFG) to computing resources to optimize a particular
optimization objective. This gives rise to several
conceptually related problems in codesign depending on
the objective being optimized and the modeling of the
resources and operations in the data flow graph. The two
popular problems are latency minimization for given
resource constraints and resource minimization with a
given latency constraint. HW/SW codesign is a very
important step in the design flow and greatly influences the
performance of the final design. Thus efficient and high
quality solutions are required to the HW/SW codesign
problem.
 There has been extensive research in the area of
HW/SW codesign. Jantsch et al proposed a dynamic
programming solution for latency minimization subject to
resource constraints [1]. They map the problem to a
knapsack problem and propose a dynamic programming
solution to meet resource constraints. However, they do
not perform any graph traversals, i.e., they do not consider
the interaction between different nodes but consider the

speed up obtained by mapping an operation in HW
(FPGA, ASIC) independently. This does not account for
the resource binding for the fanin and fanout nodes of an
operation. A dynamic programming approach is proposed
by Knudsen et al [2] where they move resources to HW
until the resource constraints are met without performing
any graph traversal.
 Bender et al [12] proposed a MILP based model, which
has high runtime complexity. Several approaches ([4], [5],
[10]) depend on greedy heuristics, code profiling etc,
which assign operations to resources greedily. Chang et al
propose a dynamic programming solution to the codesign
problem [3]. They use the classic dynamic programming
approach, which has been used extensively for problems
not only in codesign but also in buffer insertion,
technology mapping etc. The solution proposed is
extensive and is used for codesign of communication
systems. However they target area minimization given
latency constraint and do not have resource constraints.
Also their approach is for coarse-grained HW/SW
partitioning while this work targets fine-grained HW/SW
partitioning. More importantly they do not consider delays
associated with edges in the task graph between two
processes and hence their approach is different from the
problem formulation in this work. In embedded system
design the communication delay between operations
especially those placed in different partitions is significant.
Hence incorporating these communication costs in the
dynamic programming framework is essential. In this
paper we propose a dynamic programming approach to
perform the resource constrained HW/SW partitioning for
minimum latency considering these edge delay costs.

2. PROBLEM FORMULATION

 A task is defined by its Data Flow Graph, which is
represented by a DAG. The DAG consists of a set of
operations and communicating edges between operations.

A set of possible implementations for each operation in
HW and SW is also given. Also the communication
between two operations incur a delay depending on the
partitions in which the two communicating nodes are
placed. The resource constrained minimum latency
problem is to assign the operations to HW or SW and
schedule them for minimum latency subject to a finite HW
resource constraint.
 The task graph represents the high level system to be
implemented. It consists of a set of nodes and a set of
edges and is represented by G=(V, E) where V is the set of
nodes and E is the set of edges. Each node represents an
operation (ADD, MULTIPLY, MEMREAD, etc.) that has
a specific cost of implementation and speed of execution
on HW, which could be HW (e.g., FPGA, ASIC) and SW
(e.g., general-purpose processor, DSP chip).
 The edges in the data flow graph have communication
delays depending on the partitions in which the two nodes
incident on the edge are present. The delay can take
different values depending on whether the two nodes are
present in SW/SW or SW/HW or HW/HW. The resource
constrained scheduling problem is intractable as shown in
[11]. However the dynamic programming solution
provides good solution quality for some special case
problems in polynomial time as shown in this paper. A
highly effective heuristic is also provided for task graphs
that have exponential runtimes in the dynamic
programming solution.

3. DYNAMIC PROGRAMMING

 Our method considers the directed acyclic dependency
graph (DAG) in a bottom-up fashion. Partial solutions of
subtrees are kept as non-dominating lists and merged as
the graph is traversed towards the primary outputs. For
each node, a list of non-redundant delay/resource usage
pairs is kept, and used in forming the non-dominating
solutions of the successor nodes.
 A solution S for node n is defined as the pair (T, L)
where T is the time at which n is scheduled to complete
and L is the amount of finite resource used for this solution
(e.g., amount of memory or functional units). Each
solution also corresponds to the node being placed either in
HW/SW. This solution is obtained by combining the
solution sets of all its fanin nodes. Thus given a solution
for a node j mapped to HW or SW we can obtain the time
step at which it is scheduled and resource assignment of
every node in the fanin cone of this node. Thus each
solution for a node corresponds a particular HW/SW
partitioning of the sub-graph rooted at node j. The load
then corresponds to the amount of HW used for this
particular partitioning solution of the sub-graph. If a node
is placed in SW then its cost is zero since HW partition has
finite resource constraint while the SW partition is

assumed to have infinite resources. Each node has a
solution set which corresponds to a set of solutions of the
type described above. The solution set can be represented
as a load delay curve with the corner points being the non-
inferior points. A queue of nodes is created by performing
a topological sort on the graph and the nodes are processed
in that order to obtain their load-delay curves. The
topological sort ensures that primary inputs are processed
first and the solution sets for the nodes are by combining
the solution set of its fanin nodes. When the sink of the
DAG is reached the solution set obtained represents all the
non-inferior solutions to this task graph. The solution with
minimum latency is selected from this set and represents
our final (optimum) solution. If the original given task
graph has multiple primary outputs (PO) i.e. sinks then a
dummy node is added to the graph and edges are created
between this dummy node and all the primary outputs. The
cost of implementation and delay of this dummy node in
both HW and SW is assumed to be zero. Further the edges
connecting this dummy node to the original primary
outputs are assigned zero delays. The topological sort is
then performed on this modified task graph.

3.1 MERGE OPERATION

 Merge operation is the process of forming a solution of
a node by combining the solution sets of its fanin nodes.
The merge operation is described below. For the purpose
of illustration we assume the task graph is a balanced tree
with no re-convergent fanouts. Consider a node A with
two parents B and C as shown in Figure 1. Let Sb and Sc be
the solution sets (delay-load curves) for the two fanin
nodes. Also let the HW resource constraint be Lmax

Figure 1. Merge Operation

 Initially assign node A to the HW partition. Let Sn

i be
the ith solution in the solution set for node n. Then for a
solution say Sb

1 (Tb, Lb) in Sb find the resulting schedule
time Ta at A i.e. the time at which A gets the input from
this fanin node (B) by adding the edge delay between A
and B. So T=Tb+ (edge delay between A and B). The value
of the edge delay between A and B depends on the
partition in which B is placed corresponding to the solution

point S1
b. This is a valid schedule time at A if there is a

solution in Sc (Tc, Lc) such that:

 Tc+ edge delay between A and C ≤ T. (1)
 Lc +Lb+ cost of implementation of A ≤ Lmax (2)

 If there is no such solution in Sc then Ta is not a feasible
solution for A. If more than one such solution exists in C
then the solution with minimum load is chosen. Then the
total load used by this solution La is Lb+ Lc+ cost of
implementation of A in HW1. The time at which A
completes operation is Ta=T + delay of node A in HW. So
one of the possible solutions for A is (Ta La). This process
is performed for all solution points of B and C. Thus we
obtain a solution set for node A when it is assigned to HW
partition. This process is again repeated by now assigning
node A to the SW partition. Note that now node A does
not contribute to the final load as it is placed in SW and
only affects the delay of the schedule, including possible
communication delays. Thus we obtain the complete
solution set for A which consists of two load-delay curves
corresponding to HW or SW implementation of node A.
Whenever a solution is formed for node A it is checked for
non-inferiority with the current solutions of A. If it is non-
inferior, it is added to the solution set of A, else discarded.
 The most important property of this process is that if the
solution set of B has p solutions and solution set of C has q
solutions then each load-delay curve for A can have at
most (p+q) solutions, which results in polynomial time
complexity for trees and most practical cases of DAGs.

3.2 EDGE DELAYS

 The presence of edge delays requires reformulation of
feasibility constraint as shown in (1) with respect to the
constraint in [3]. More importantly it requires a different
pruning approach to be used in the merge operation. In the
absence of edge delays, a solution S1 (T1, L1) of a node j is
said to be inferior to another solution S2 (T2, L2) of the
same node if it meets the following constraint, used by
some previous works:
 T1≥T2 && L1≥L2 (3)
 We show that this condition can lead to pruning of
optimal solutions and potentially result in significant
quality degradation. The main issue that pruning condition
(3) misses is the consideration of edge delays: it does not
require that S1 and S2 be in the same partition. S1 may be a

1 Note that adding these three terms as presented here assumes no

resource sharing is allowed. However, resource sharing can be added to
this formulation at increased runtime cost by keeping track of resource
usages at each node and combining the schedules of the parent nodes.

solution when j is placed in HW while S2 may correspond
to a solution when j is placed in SW. The following
example illustrates why this could lead to quality
degradation.

Figure 2. Edge Delay

 Assume nodes A and B are operations of different types
in Figure 2. Types here refer to functionality of the node
say ADD, MULT, SHIFT etc. Let the edge delay for
communication between HW and SW be 10. The edge
delay for communication between SW and SW or HW and
HW is 1. Note that time steps are counted from zero so if a
node is a primary input and has a delay of 2 in HW then it
will finish its operation at time step 1. Let the HW capacity
constraint be 10 units

Table 1. Delay and Cost of Operations
Node Delay in

HW
Delay in
SW

Cost in HW

A 3 3 2

B 2 7 2

Table 1 gives the delay and cost of implementing each
node in SW/HW. Note that the cost of implementing in
any node in SW is zero since only HW has resource
constraint

Table 2. Solution Sets for nodes

Solution for A Solution for B

(5,4) B is in HW
(2,2) A is in HW

(19,2) B is in SW

(14,2) B is in HW
(2,0) A is in SW

(10,0) B is in SW

 Table 2 gives the solution set formed without any
pruning. Since A is a primary input the solution set of A is
just the set of possible implementations for A. For each of
these solutions of A the corresponding solution for B is
calculated assuming it is placed in HW and in SW. This is
the exhaustive solution set for both A and B

Table 3. Solution sets of nodes after pruning
Incorrec
t
Pruning
(A)

Incorrec
t
pruning
(B)

Correct
Pruning
(A)

Correct Pruning
(B)

(2,2) in
HW (5,4) in HW

(2,0) in
SW

(10,0) in
SW (2,0) in

SW (10,0) in SW

 Table 3 gives the solution set of nodes by incorrect and
correct pruning. The incorrect pruning uses condition (3)
to prune solution (2,2) of A. As a result, when solutions of
B are formed, A is always implemented in SW. Hence, the
optimal solution for B, which is (5,4), is never generated.
To avoid such cases, we use an additional condition when
pruning a solution. A solution S1 is said to be inferior to S2
if it satisfies (3) and if both S1 and S2 correspond to node j
being placed in HW (SW).

3.3 RECONVERGENT FANOUT

 The data flow graph (DFG) of a task is represented by a
directed acyclic graph (DAG). The DAG may have nodes
with reconvergent fan-out. The presence of reconvergent
fanout imposes a constraint in addition to (1) and (2)
during the merge operation. Figure 3 shows node A with
reconvergent fanouts.

Figure 3. Reconvergent fanout

 During merge when solutions of parent nodes are
combined it should be made sure that the solutions being
combined are consistent for any common parent nodes. For
example in Figure 3 solutions of nodes D and C are
combined to form the solution set for node B. Let a
solution of D result in node A being placed in a particular
partition, e.g., HW. To ensure consistency then a solution
from C, which will be added to this solution, should also
result in node A being placed in HW. Otherwise for this
particular solution of B, node A will be assigned to
conflicting partitions.

 This problem is taken care of by the use of status vectors
in the data structure for each solution similar to the
solution proposed in [4]. The vector is of size n where n is
the number of nodes. When a node is being processed
during the merge operation, vectors of the solutions being
added are checked for consistency. As already discussed,
each solution for a node j corresponds to a HW/SW
partition solution for the sub graph rooted at j. Each bit in
the vector of a solution for node j corresponds to a node in
the graph. If node k is placed in SW for this solution then
the kth entry is set to 0 and if it is placed in HW for this
solution the entry is set to 1.If the kth node is not present in
the sub-graph rooted at node j then the entry is set to the
default value of –1.
 Consider the example shown in Figure 3. Here a
solution from D and C are combined if and only if all
entries that are not default (-1) in both vectors are the
same. This ensures that a node, which is present in
solutions of both parents, can be combined if and only if it
is in the same partition in both solutions.
 The reconvergent fanout also affects the pruning
algorithm for nodes on converging paths in two ways: it
could lead to pruning an optimal solution, or it could lead
to no feasible solution being found.
 To illustrate the case where no feasible solutions can be
found, consider nodes C and D in Figure 3. If only the
conditions of Section 3.2 are imposed, then it is possible
that all solutions of C correspond to node A being placed
in SW and all solutions of D correspond to node A being
placed in HW. So when the solutions of C and D are
combined to form the solution set for B, there will be no
feasible solution for B. This situation arises because
reconvergent fanout creates dependence between solution
sets of nodes C and D. In the absence of reconvergent
fanout, for a given time step the solution corresponding to
minimum load can be chosen independently from each of
C and D. The same is not true when converging paths exist
in the graph.
 To show how an optimal solution might be lost,
consider two solutions S1 and S2 of node C, both
corresponding to C being implemented in SW, but one
placing A in HW and the other implementing A in SW. If
we prune out one of these solutions (which would have
been legal according to Section 3.2), then we might lose
the optimal solution when we merge solutions of C with
the solution set of D. So, when considering two solutions
of C for pruning, not only C has to be implemented in the
same partition (Section 3.2), but also A has to be in the
same partition in these two solutions (converging paths).
The same is true for all nodes on a path diverging from A.
This has runtime ramifications that will be discussed in
Section 6. If a node is on converging paths of more than
one node, all such parent nodes (with reconvergent
fanouts) put restrictions on pruning of the node. Consider a

node j which is on a converging path of node k. Consider a
solution S2 which is about to be added to the solution set of
j. S2 is inferior to some solution S1 of j if and only if it
meets the additional pruning constraint given below.
Vector1 and Vector2 are the status vectors of S1 and S2
respectively.

 For all i such that i is a reconvergent fanout parent node
 Vector1[i]==Vector2 [i] or Vector1[i]==-1 or Vector2[i]==-1
 (4)

 The constraint is imposed to avoid pruning an optimal
solution and also avoid situations where no feasible
solution can be obtained (e.g., all solutions from C
correspond to A mapped to HW, and all solutions of D
correspond to A placed in SW). Identifying reconvergent
fanout nodes and intermediate and final sink nodes can be
handled during the topological sort process. The vector for
a node is built from the vectors of its parent nodes during
the merge process.

4. THE ALGORITHM

The pseudo code of our algorithm is presented below
dynamic (G){
 if G has multiple PO’s add dummy PO and covert to a
 single PO DAG
 q=reverse topological sort(G)
 while (q not empty) {
 node=pop(q)
 merge(node) //form the load-delay curve }
 node=PO
 Sbest=minimum latency solution for node
 For i in 1 to number of nodes
 if Sbest.vector[i]==0
 Node i is placed in SW
 else
 Node i is placed in HW
 The HW resource used is Lbest and the latency is Tbest
}

Figure 4. Dynamic programming algorithm
 The algorithm implements the dynamic programming
solution discussed in the earlier section. merge is a routine
that implements the basic addition of load-delay curves of
a parent. The pruning algorithm is embedded within the
merge routine and every solution is checked for non-
inferiority through this pruning algorithm before being
added to the node’s solution set. From the solution set of
PO we choose the solution with minimum latency as our
final solution. The HW/SW partitioning solution is

available from the vector corresponding to the best
solution for the PO. If no resource sharing is allowed (e.g.,
in partitioning memory arrays between HW and SW), the
solution obtained is the optimal for resource constrained
HW/SW partitioning problem for minimum latency. When
resource sharing is considered, the problem is NP-hard.

5. HEURISTIC ALGORITHM

 It is also possible to combine the basic dynamic
programming algorithm with greedy heuristics to obtain a
very efficient and very fast HW/SW partitioning heuristic
algorithm. Running time analysis shows that the presence
of reconvergent fan out greatly impacts the running time
complexity. This is because the minimum load from each
parent’s solution for a required time step cannot be found
independently. Hence several possible combinations
among the sub solutions need to be explored to identify the
sub solutions which result in minimum load for a given
time step. However the fanin of most nodes is usually 2~3
and so we need to explore several possible combination for
at most 2 sub solutions and this does not add much in run
time complexity in most cases. However a fast
approximate algorithm, which gives good results, is
helpful to designers to evaluate the effectiveness of a
proposed partitioning solution. Further when the number
of fanin nodes is very large (which is not true for most
practical cases) the heuristic algorithm helps us to find a
good solution in negligible time.
 The heuristic combines dynamic programming approach
to build the solution set bottom up. However when a
reconvergent fan out node is encountered, the sub
solutions are chosen independently without any
consideration of reconvergent fan out. If the chosen sub
solutions result in source of reconvergent fan out being
assigned to conflicting partitions, it is then assigned to the
partition dictated by the sub solution with minimum slack
(difference in ASAP and ALAP start times).
 For example in Figure 3 let a solution S1 of D and a
solution S2 of C be combined to form a solution for the
node B. Let S1 correspond to node A being placed in HW
and S2 correspond to the node A being placed in SW. Then
A is greedily assigned to HW or SW depending on which
of the two sub solutions S1, S2 is most timing critical. The
heuristic guarantees negligible run time by removing the
interdependency between sub solutions, which arises due
to reconvergent fan out. Once the solution set for sink
node is obtained the solution corresponding to minimum
latency is taken and the HW/SW partitioning solution for
the entire graph is obtained. From the HW/SW partitioning
solution the time step at which each node is scheduled is
recalculated and obtained.

6. TIME COMPLEXITY

 The dynamic programming algorithm has polynomial
time complexity for trees and some DAGs even though
theoretical running time is exponential for worst case
inputs (where the number of reconverging paths is
comparable to V, the number of nodes). However we did
not encounter long runtimes for any of the practical cases
of DAGs we tried. The time complexity of the algorithm is
analyzed as follows. For now let us focus on trees only.
Let the number of possible implementations of each type
of operation be K. V is the number of nodes in the tree. Let
the depth of the tree that is the maximum number of nodes
in a path from PI to PO be D. Consider a node A with
parents B and C. Let the size of the solution set of B and C
be p and q respectively. Then for each possible
implementation of A we have at most p+q solutions if we
do pruning using only (1). So the total number of solutions
for A will be K*(p+q), many of which will be pruned out
when we use (3). Since the depth of the tree is D then the
number of solutions at the PO will be O (KD*N) where N is
a polynomial number of solutions in terms of V, number of
nodes in the graph. So the run time complexity in worst
case is O(KD*N). Even though theoretically D can be linear
in terms of V, it is usually in the order of log V for most
practical circuits. Finally when pruning is considered
combining p and q solutions results in far fewer than the
worst-case p+q solutions. Since we considered only
HW/SW for each node, K is 2 and the running time is O(2
log V * N) which is O(V N) where N is polynomial in the
number of nodes. So the run time complexity of the
algorithm is polynomial for trees.
 When considering general DAGs, the dynamic
programming algorithm cannot prune intermediate
solutions as freely, and might have to keep exponential
number of solutions to make sure optimality is not lost. In
the example of Figure 3, node C cannot prune out a
solution implementing A in SW in favor of another
solution implementing A in HW. Hence, it has to keep two
separate lists of intermediate solutions, one for A in HW,
and another for A in SW. If the number of nodes with
reconvergent fanouts is not a constant, then the runtime
becomes exponential. However, this did not happen in any
of the practical cases that we tried. Furthermore, the
heuristic algorithm has polynomial runtime, as it greedily
prunes out solutions, which might lead to inferior
solutions.

7. EXPERIMENTAL RESULTS

 The algorithm proposed in this work was implemented
in C++ and executed on an INTEL PENTIUM 4 machine
running on Windows XP with 1 GB of memory and

processor speed of 2 GHz. We used a set of benchmark
circuits from related publications to test the running time
of the algorithm. The results are presented in Table 4.
Column 1 gives the name of the bench mark circuit,
column 2 gives the number of nodes and edges in the
circuit, column 3 gives the amount of HW resources used
for this schedule column 4 gives the run time and column 5
gives the latency of the schedule. All benchmarks were run
with the following specifications and parameters. Two
types of operations were assumed namely memory access
operations and arithmetic operations. All primary inputs
and primary outputs of a DFG represent memory access
operations while all the other nodes in the DFG were
assumed to be arithmetic operations. No resource sharing
optimization within a partition was done. The edge
communication delay was assumed to be zero if the two
nodes were placed in the same partition and assumed to be
5 when placed in different partitions. For arithmetic
operations the cost of implementation in HW (SW) was 2
(0) while the delay of the operation in HW (SW) was 2 (4).
For memory access operations the corresponding values
were 1(0) and 1(2). The HW resource constraint was
assumed to be 30 units. Diff is taken from [6], bender is
taken from [12], xilinx is a filter benchmark from [7], yen
is taken from [8], pedram is Figure 13.a from [3] and
phoneme is taken from [9].

Table 4. Experimental results for the proposed
algorithm

Name Nodes/Edges HW used
Run time
 (s)

Latency

diff 21/24 22 0.062 25

bender 12/14 19 0.062 18

xilinx 28/38 26 1.218 29

yen 6/5 10 0.015 5

pedram 12/15 21 0.015 14

phoneme 23/22 27 0.046 18

 In Figure 5 the minimum latency of the DFG for various
HW capacity constraint is shown. It can be seen that as
HW capacity constraint is tightened (decreased) the
latency to execute the DFG increases. This is because more
operations (nodes) are assigned to SW resulting in larger
execution delay for those operations. The run time showed
minimal or no change for different HW capacity
constraints.

Figure 5. Latency Vs Hardware Capacity

 In Table 5 we illustrate the importance of considering
edge delays during merge operation (described in Section
3.1) and using modified pruning technique as described in
Section 3.2. The experiment was conducted with the same
parameters as discussed above. The quality of our
proposed algorithm edge_prune is compared with a
traditional design flow called general, which does not
account for edge communication delays during merge
operation and pruning.
 In general design flow the HW/SW partitioning is done
assuming no edge delays (i.e., all communication costs to
be zero). Then a HW/SW partitioning solution is obtained
with minimum latency assuming no edge delays. For this
HW/SW partitioning solution the schedule latency is now
recalculated by assuming edge delays using ASAP
scheduling. This gives the latency reported in Table 5
column 2. The latency of the solutions obtained through
our proposed algorithm is reported in column 3.

Table 5. Comparison of solution Qualities

Name
HW used
(general) Latency

(general)

HW used
(edge_pru

ne)

Latency
(edge_prune)

diff 22 25 22 25
bender 19 18 19 18
xilinx 18 39 26 29
yen 9 9 10 5

pedram 17 24 21 14
phoneme 22 29 27 18

 As seen from Table 5 we can see that our proposed
algorithm provides significantly better solutions for most

benchmarks by considering edge delays during the merge
and pruning operations.
 In Table 6 the results for the heuristic for the various
benchmarks are reported. The experiments were run on the
same machine with the parameters such as HW capacity,
edge delays being the same as for Table 4. It can be seen
that the run time is almost zero for all benchmark circuits
and it gives good results compared to the dynamic
programming method for all benchmarks.

Table 6. Experimental Results for the heuristic

Name Nodes/Edges HW used
Run time
 (s)

Latency

diff 21/24 30 0.0 25

bender 12/14 14 0.0 28

xilinx 28/38 30 0.015 29

yen 6/5 10 0.0 5

pedram 12/15 20 0.0 20

phoneme 23/22 27 0.0 18

8 CONCLUSION

 A dynamic programming solution that solves the
HW/SW partitioning with finite resource constraint is
proposed and implemented. The algorithm has polynomial
running time for most practical circuits and this has been
experimentally verified. The algorithm is capable of
handling edge communication delays effectively by
incorporating them into the dynamic programming
framework. Pruning techniques are developed to account
for edge delays and reconvergent fan out without losing
optimal solutions. A very fast and good quality heuristic
was also proposed to provide good approximate solutions
for negligible run times.

9 REFERENCES

[1] A. Jantsch, P. Ellervee, J. Oberg, A. Hemani, and H.
Tenhunen, “Hardware/Software Partitioning and
Minimizing Memory Interface Traffic” in Proceedings
European Design Automation Conference, 1994

[2] P. Knudsen and J. Madsen, “PACE: A Dynamic
Programming Algorithms for Hardware/Software
Partitioning,” in Proceedings IEEE International
Workshop on Hardware / Software Co design, 1996.

[3] J. M. Chang, M. Pedram “Codex-dp: codesign of
Communicating Systems Using Dynamic
Programming”, IEEE Transactions on Computer

Aided Design of Integrated Circuits and Systems, Vol.
19, July 2000.

[4] A. Balboni , W.Fornaciari, and D.Sciuto, “Partitioning
and exploration strategies in the TOSCA codesign
flow” in Proceedings IEEE International Workshop
Hardware/Software Codesign, 1996.

[5] J. G. D’ Ambrosio and X. Hu “Configuration level
hardware/software partitioning for real time embedded
systems” in Proceedings International Workshop
Hardware/Software Codesign 1994.

[6] N. D. Dutt, “High-Level Synthesis Design
Repositories”, http://www.ics.uci.edu/dutt

[7] http://www.xilinx.com/xcell/xl23/xl23_16.pdf
[8] T.Y. Yen, W. Wolf, “Communication Synthesis for

Distributed Embedded systems,” in Proceedings IEEE

International Conference on Computer – Aided
Design, 1995.

[9] H. Schmit, D.E Thomas, “Synthesis of application-
specific memory design”, IEEE Transactions on VLSI
systems, 1997.

[10] M. F. Parkinson and S. Parameswaran, “Profiling in
the ASP codesign environment”, in Proceedings
IEEE/ACM International Workshop
Hardware/Software Codesign, 1995.

[11] G. D. Micheli,, Synthesis and Optimization of Digital
Circuits, McGraw-Hill, 1994.

[12] A. Bender, “MILP Based Task Mapping for
Heterogeneous Multiprocessor systems,” in
Proceedings European Design Automation
Conference, 1996.

