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Exploring Potential Benefits of 3D FPGA Integration  
  

 
 

ABSTRACT  
A new timing-driven partitioning-based placement tool for 3D 

FPGA integration is presented. The circuit is first divided into 
layers with limited number of inter-layer vias, and then placement is 
performed on individual layers, while minimizing the delay of 
critical paths. We use our tool, which will be available on the web 
for the research community, as a platform for exploring potential 
benefits in terms of delay and wire-length that 3D technologies have 
to offer for FPGA fabrics. We show that 3D integration results in 
wire-length reduction for FPGA designs. However, unlike the ASIC 
case, wire-length reduction does not automatically translate to much 
smaller circuit delays, unless multi-segment lengths are employed 
between layers. Our empirical analysis shows that wire-length can 
be reduced by up to 50% (20% on average) using 5 layers. Delay 
reductions are estimated to be up to 30% (15% on average) using 
the same number of layers. 

1. INTRODUCTION  
Smaller feature size and increasing transistor counts allow 

implementation of more complex and larger designs. However, a 
number of new design problems emerge and old problems become 
more difficult to solve. For example, global wires dominate the 
delay and power budgets of circuits, and signal integrity, IR-drops, 
process variations, and high temperature gradients pose new 
difficult design problems. Furthermore, shrinking time-to-market 
windows and ever-increasing mask costs have reduced profit 
margins alarmingly. 

In response to mounting problems of the integrated circuit 
technology, various research groups have shown renewed interest in 
3D IC integration, and a number of successful projects have shown 
the viability of the technology [15]-[21]. 3D integration can 
significantly reduce wire-lengths (and hence circuit delay), and 
boost yield1. Furthermore, there has been an inclination towards 
employing IP-based design and structured gate arrays (e.g., FPGA 
blocks) to partially solve complex signal integrity and noise issues. 
3D integration can particularly be useful for FPGA fabrics. It can 
address problems pertaining to routing congestion, limited I/O 
connections, low resource utilization and long wire delays. 

On the standard cell arena, Das et al. recently proposed a 
placement and global routing tool as well as a 3D layout editor [13]. 
The placement algorithm is based on recursive min-cut partitioning 
of the circuit represented as a hypergraph and follows the same idea 
as in the Capo placer [23]. Interlayer via minimization is sought by 
min-cut partitioning for layer assignment. Wire-length minimization 
is done by considering aspect ratio during the partitioning. The user 
can select either hMetis [25] or PaToH [26] as the partitioning 
algorithm. Their global routing algorithm is a concurrent approach 
based on the idea in [24]. It was shown that 28% (51%) wire-length 

                                                                 
1 True only in technologies that fabricate different layers separately, weed 

out the faulty layers from the layer wafers, and only integrate the working 
ones. However, wafer stacking technologies have been shown to be more 
practical and successful compared to techniques that “grow” different 
layers on top of each other in a single process. 

improvement could be obtained with two (five) layers, compared 
to [31] (the improvement is only 7% (17%) when inter-layer via 
minimization is the main objective). Wire-length reduction of up 
to 74% was reported in [33]. Deng and Maly showed – using a 
placement algorithm based on Capo – that the total wire-length can 
be reduced by 16% compared to flat placement, when two-layer 
integration is used [27].  It is important to note that current 
technologies allow for CMP substrate thinning down to about 5-
10µm, hence allowing for multiple thin active device layers and 
interconnect  levels be stacked on top of each other, resulting in 
short inter-layer vias with small aspect ratios [15]. 

Even though the idea of 3D integrated circuits is not new, recent 
technological advances have made it a viable alternative. 
However, there is a lack of efficient 3D CAD tools that can exploit 
the potential gains that 3D integration has to offer. Furthermore, a 
number of important issues – such as heat dissipation, thermal 
stress2, and physical design considerations – remain to be 
addressed for some 3D architectures. 

There has been some previous work proposing 3D FPGA 
architectures. Borrowing ideas from multi-chip module (MCM) 
techniques, Alexander et al. proposed to build a 3D FPGA by 
stacking together a number of 2D FPGA bare dies [1]. Electrical 
contacts between different dies would be made using solder bumps 
or vias passing through the die. The number of solder bumps that 
can fit on a die determines the width and separation of vertical 
channels between FPGA layers. Depreitere et al. proposed using 
optical interconnects to construct a multi-layer FPGA [2]. An 
straightforward extension of a 2D architecture [6] is found in the 
Rothko 3D architecture, which has routing-and-logic blocks 
(RLBs) placed in more than one layer [5]. Fine-grained interlayer 
connections were added outside each RLB, providing connections 
between cells above and below, using a specially designed 
technique [8], [9]. An improved version of Rothko architecture – 
which advocates placing the routing in one layer and logic on 
another for more efficient layer utilization – appears in [7]. It was 
shown that the percentage of routed connections increases with an 
increase in the flexibility of switch boxes. Also, computational 
density is higher compared to a 2D architecture. Universal switch 
blocks for 3D FPGA design were analyzed in [34]. It is important 
to point out that all of these works assume that the inter-layer 
connectivity is provided by vertical wire segments that connect 
each layer to its adjacent layers only. 

There has also been previous work on CAD tools for 3D FPGA 
integration. Alexander et al. proposed 3D placement and routing 
algorithms [3] for their architecture in [1]. Their placement 
algorithm is partitioning-based followed by a simulated annealing 
based refinement for total interconnect length minimization. 
Savings of up to 23% and 14% in total interconnect length at the 
placement level and routing level respectively were reported. An 
improved version of the placement algorithm appears as Spiffy, 
which performs placement and global routing simultaneously [3]. 
                                                                 
2 There is already previous work addressing thermal issues in physical 

design for 3D integration [32].  
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In the experimental methodology presented in [7], placement was 
performed with VPR [10] and routing was performed with a custom 
routing tool [12]. 

In this paper we present a fast placement tool for 3D FPGAs 
called TPR (Three dimensional Place and Route). Unlike previous 
works on 3D FPGA architecture and CAD tools, we investigate the 
effect of 3D integration on delay, in addition to wire-length. We 
show that wire-length alone cannot be relied on as a metric for 3D 
integration benefits. 

Our placement algorithm is partitioning-based, and hence 
scalable in the face of explosive growth of design sizes. A circuit is 
first partitioned for min-cut minimization into a number of 
partitions equal to the number of layers for the 3D integration. 
Then, timing-driven partitioning-based placement is performed on 
every layer starting with the top layer and continuing downwards. 
Allowable bounding box for nets on a particular layer is decided by 
the layers above it, to minimize the 3D bounding-boxes of the most 
critical nets. Constraints for any given layer are set by the 
placement on layers above. The routing algorithm is currently being 
imported and adapted for the 3D architecture from the leading 
academic placement and routing tool for 2D architectures, VPR 
[10]. The main contribution of our work is as follows. 

• We analyze the potential benefits, which can be obtained by 3D 
integration for FPGAs. More specifically, we place circuits onto 
3D FPGA architectures and study the variation in circuit delay 
and total wire-length compared to their 2D counterparts, under 
different 3D architectural assumptions. The results of this study 
and similar studies in future could guide researchers in 
designing high performance 3D FPGA fabric architectures.  

• We developed a tool, which will be available as source and 
executable on the web. Its purpose is to serve the research 
community in predicting and exploring potential gains that the 
3D technologies for FPGAs have to offer (similar to the role 
VPR played in the development of FPGA physical design 
algorithms). It shall be used as a platform, which can be used for 
further development and implementation of new ideas in 
placement and routing for 3D FPGAs. 

2. OVERVIEW OF TPR  
The philosophy of our tool closely follows that of its 2D 

counterpart, VPR [10]. In fact, much of the code related the parsing 
input files as well as the 2D FPGA architecture and routing 
definitions is imported and adapted from VPR. The flow of the TPR 
placement and routing CAD tool is shown in Fig. 1.  

The design flow starts with a technology-mapped netlist in .blif 
format, which can be generated using SIS [28]. Then, the .blif 
netlist is converted into a netlist composed of more complex logic 
blocks with T-VPack [11]. The .net netlist as well as the 
architecture description file are the inputs to the placement 
algorithm. The placement algorithm first partitions the circuit into a 
number of balanced partitions equal to the number of layers for the 
3D integration. The goal of this first min-cut partitioning is to 
minimize the connections between layers, which translates into 
minimum number of vertical (i.e., inter-layer) wires. The reason is 
that in 3D technologies, the architecture is not isotropic (i.e., 
vertical vias are not as dense – because of their higher pitch) and 
thus the placement and routing tools must judiciously use vertical 

routing resources. After dividing the netlist into layers, TPR 
continues with the placement of each layer in a top-down fashion. 
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Fig. 1 Flow diagram of the 3D placement and routing tool 
 

The top layer is placed by unconstrained recursive partitioning. 
Then, the rest of the layers are placed in turn by recursive 
partitioning but constrained to reduce the delay on timing-critical 
nets: the terminals of the most critical nets, which span more 
layers, are placed on restricted placement-regions. The restricted 
placement-regions are defined by the projection onto the current 
layer of the bounding-boxes defined by the terminals placed 
already in the layers above. Hence, the 3D bounding-box of the 
critical nets is minimized3. Finally, global and detailed routing is 
to be performed using the adapted 3D version of the VPR routing 
algorithm. 

3. PLACEMENT ALGORITHM  
The placement algorithm is primarily partitioning based. 

However, it also has integrated a simulated annealing engine (SA), 
which can be used for further refinement and improvement of the 
solution quality similarly to VPR, but at the expense of run-time 
increase. The simplified pseudo-code of the placement algorithm is 
shown in Fig. 2. 

The initial “partitioning into layers” step is performed using the 
min-cut hMetis partitioning algorithm [25] and is further 
illustrated in Fig. 3. This is motivated by the limitations imposed 
by current technologies, which require us to minimize the usage of 
vertical connections (it was also observed in [14] that optimizing 
inter-layer interconnect is of key importance for 3D integration 
technologies). 

 

                                                                 
3 This is similar to the 2D terminal alignment proposed by Maidee et al. in 

[29].  



3 

Input:
Tech mapped netlist .net G(V,E)
Architecture description file

Algorithm:
1. Initial min-cut partitioning into layers for via minimization
2. For all layers i = 0 to L-1 from top to bottom
3. Do partitioning based placement of layer i
4. Update timing slacks
5. Re-enumerate critical paths
6. Low temperature SA based refinement
7. Greedy overlap removal
8. Constraint generation for layers below (only for

critical nets)
9. Write .p placement output file

Input:
Tech mapped netlist .net G(V,E)
Architecture description file

Algorithm:
1. Initial min-cut partitioning into layers for via minimization1. Initial min-cut partitioning into layers for via minimization
2. For all layers i = 0 to L-1 from top to bottom2. For all layers i = 0 to L-1 from top to bottom
3. Do partitioning based placement of layer i3. Do partitioning based placement of layer i
4. Update timing slacks4. Update timing slacks
5. Re-enumerate critical paths5. Re-enumerate critical paths
6. Low temperature SA based refinement
7. Greedy overlap removal
8. Constraint generation for layers below (only for

critical nets)
9. Write .p placement output file9. Write .p placement output file

 
Fig. 2 Pseudo-code of the TPR placement algorithm  

 

Initial netlist graph 
Min-cut partitioning and 
assignment to lay ers  

Fig. 3 Initial min-cut partitioning for minimization of the 
number of vertical wires  

 

After the initial partitioning into layers we assign partitions to 
layers using a linear placement approach. The goal of this step is 
not only to minimize the total vertical wire-length but also the 
maximum cut between any two consecutive layers. Further 
illustration of this step is shown in Fig. 4. 
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Fig. 4 Illustration of good and bad initial linear placement of 
partitions into layers  

 

The actual placement is performed on each layer individually 
starting with the top layer (layer 0) and continuing downwards till 
the last layer (layer L-1). The placement of every layer is based on 
edge-weighting quad-partitioning using hMetis partitioning 
algorithm. Edge weights are commonly computed inversely 
proportional to the slack of nets. However, we also selectively bias 
weights of the most critical nets. The set of critical nets contains 
edges on the current k-most critical paths. The placement algorithm 
has an integrated static timing analysis engine as well as a path 
enumeration algorithm [30]. The delay of the circuit (therefore 
slacks) and the set of the most critical paths are periodically updated 

based on the delay assigned to all current cut nets by the 
partitioning engine. This ensures accurate estimation of the circuit 
delay as the placement algorithm progresses. The rate of delay 
update and critical paths re-enumeration is dictated by runtime / 
estimation accuracy trade-off.  

The recursive partitioning of a given layer stops when each 
placement region has less than four blocks. A low-temperature SA 
can then be applied for further solution improvement as well as for 
partial overlap removal. Complete overlap removal is done using a 
greedy heuristic which moves non-critical blocks (i.e., not on any 
critical paths) to the closest available empty location.  

When the placement of a given layer is finished, we forward 
propagate placement constraints for the most critical nets. For 
example, assuming that layer k1 is the first layer (from the top, as 
shown in Fig. 5) in which some terminals of a critical net are 
placed, the net bounding box of the net is projected to lower layers 
k1+1 through L as a placement constraint for the rest of the 
terminals of the net in these layers. 
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Fig. 5 Illustration of the restricted placement-region (i.e., 
projection of the bounding box of terminals 0, 1, and 2 placed 
on layer k1) acting as a region constraint for sinks 3, 4 of a 
critical net, which has the source and sinks 1, 2 placed on a 
layer above  
 

In layers that have net bounding box constraints, terminals that 
have placement restrictions are fixed in appropriate partitions 
before the call to the hMetis partitioning engine is made. Steps 3 to 
8 of the algorithm shown in Fig. 2 are performed for all layers and 
when the last layer is finished the circuit is completely placed. 

4. ANALYSIS OF PLACEMENT DELAY 
ESTIMATION  

We analyze the relation between the circuit delay, which we 
estimate after placement and the circuit delay computed after 
detailed routing in the 2D case. In next section, we perform 
experiments on 3D placements. The goal of this 2D analysis is to 
study the reliability of the delay estimation during placement 
(which in turn affects slack calculations and the decision on which 
nets to tag as critical). To this end, we placed a set of ten 
combinational circuits – shown in Table 1, which come with the 
VPR package – using our TPR placement algorithm on a single 
layer  and recorded the total wire-length and the circuit delay using 
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our estimation4. Then, all placements are routed using the timing-
driven VPR routing algorithm [11], after which again circuit delay 
and total wire-lengths are recorded.  

 

Table 1 Statistics of simulated circuits  
Circuit No. CLBs No. IOs 
Ex5p 1064 71 
Apex4 1262 28 
Misex3 1397 28 
Alu4 1522 22 
Des 1591 501 
Seq 1750 76 
Apex2 1878 42 
Spla 3690 62 
Pdc 4575 56 
Ex1010 4598 20 

 

The correlations between the delay and the wire-length 
estimation after placement and the delay and the wire-length after 
detailed routing are shown in Fig. 6 . 

 

b) a)  
Fig. 6 Correlation between normalized delay (a) and normalized 
wire-length (b) after placement and after routing 

 

Plot (a) in Fig 6 corresponds to delay, and plot (b) shows wire 
length correlations. Each point in the plots of Fig. 6 corresponds to 
one circuit from Table 1. A point with (x,y) coordinates indicates 
that for that circuit, delay (wire-length) estimation at placement was 
x, while the delay (wire-length) after detailed routing turned out to 
be y. The closer x and y, the more reliable the delay (wire-length) 
estimation is at the placement level. The plot in Fig. 6.a describes 
the relation between the normalized delay estimated after placement 
and the normalized delay computed after detailed routing. The 
routing architecture has wire segments of length one, two and six as 
well as long wires. The plot in Fig. 6.b shows the correlation 
between the normalized total wire-length after placement (computed 
based on half-perimeter of bounding-boxes) and the normalized 
total wire-length after detailed routing. We note that there is a good 
correlation in all cases, which tells us that comparing placed circuits 
                                                                 
4 Our rather optimistic delay estimation during and after placement is based 

on a matrix lookup table of best delays – as reported by VPR routing 
algorithm – which can be achieved for a route between two generic points 
say (x1,y1) and (x2,y2).  Then, the entry in the matrix for the route delay is 
(i,j) = (|x1-x2|,|y1-y2|).  

based on our estimations should be representative of the results 
after routing. Our 3D routing tool is yet under development. 
Preliminary simulations with a first version of it demonstrate plots 
similar to those in Fig. 6, for a number of layers greater than two. 

5. SIMULATION RESULTS  
The goal of our simulations in this Section is to study the 

variation of the circuit delay and the total wire-length with the 
number of layers when the delay of an inter-layer wire (i.e., 
vertical via) has different values. The TPR implementation 
contains most of the VPR code (except the graphics), which was 
mostly ported to C++, as well as additional routines for the new 
partitioning-based placement algorithm, path enumeration engine, 
terminal propagation techniques, etc. The code was compiled with 
g++ on a Linux box running on a P4 – 2.54GHz - with 1G of 
memory. 

In the first set of simulations we assume that inter-layer vias are 
as long as single-length wire segments (i.e., the distance between 
two CLBs). This is a reasonable assumption, because 3D 
fabrication methods such as [15] can create inter-layer vias that are 
a mere 5-10µm long. The delay of the inter-layer via is assumed to 
be equal to the delay of a segment of length one as well. We 
placed  all ten circuits of Table 1 on different number of layers and 
recorded the average circuit delay and the average total wire-
length of three placement runs. The simulation results are shown in 
Fig. 7 and Fig. 8, where circle points represent the average of the 
ten circuits and square points represent the minimum and the 
maximum among the ten circuits of the delay and wire-length, 
respectively. It can be seen that wire-length decreases are 
significant (and are similar to the ASIC results from other 
researchers). However, delay does not decrease as much and it 
actually increases with increasing number of layers greater than 
three. This shows that a simplistic vertical routing architecture is 
not going to benefit 3D FPGA architectures. 

 

 
Fig. 7 Circuit delay as a function of the number of layers. The 
delay of an inter-layer connection that connects terminals that 
are k layers apart is k times the delay of a segment of length 
one  
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Fig. 8 Total wire-length as a function of the number of layers 
when the length of an inter-layer via is one  

 

To better understand the results of Fig. 7, we studied the 
relationship between delay improvement and the internal structure 
of the circuits; we can see that for some circuits the delay decrease 
can be up to 23% for 3D integration into two and three layers, while 
it could be as bad as 20% when five layers are used. The main 
reason for the lesser decrease in circuit delay (compared to the 
potential significant decreases one can achieve with 3D integration 
of standard cell integrated circuits) is that in FPGAs the net delay is 
proportional to the number of switches on the net, rather than the 
Manhattan distance. Therefore, the “segmentation” due to switches 
necessary for connecting terminals of nets spanning more layers 
will impair the benefits of 3D integration for FPGAs with a 
simplistic vertical routing architecture. We also note that the 
increase in the delay of some circuits is due to their high internal 
connectivity, which in turn requires a significant fraction of nets to 
span at least two layers (see Fig. 4). To further probe this fact, Table 
2 shows some statistics for the two circuits (Pdc and Alu4) 
corresponding to the minimum (delay is better with 3D) and to the 
maximum (delay is worse with 3D) square-points for a number of 
layers equal to three in Fig. 7. 

 

Table 2 Placement statistics for Pdc and Alu4 

Circuit Obs. 
% nets 
spanning 
more layers

Avg. 
net WL 

Avg. no 
pins / net 

Avg. no 
nets / 
block 

Pdc Min for x=3 in 
Fig. 7 8.79% 11.73 4.74 4.7 

Alu4 Max for x=3 
in Fig. 7 11.73% 7.58 4.52 4.49 

 

Indeed, we can see that a larger fraction of nets of Alu4 span two 
or more layers (as a consequence of higher internal connectivity) 
and therefore the delay cannot be improved by 3D integration when 
a simple vertical routing architecture is used. 

In the second set of simulations we placed all circuits and 
recorded the average circuit delay for the ideal situation where the 
delay of an inter-layer wire is assumed to be equal to the delay of a 
segment of length one, regardless of how many layers separate the 
net terminals. This setup serves the purpose of analyzing the upper 
bound of maximum potential delay improvements using our 

method, which can be achieved by the 3D integration5. The 
simulation results are shown in Fig. 9. It can be seen that delay 
improvements of up to 30% (average of 15%) can be achieved 
using 5 layers. 

We note that the total wire-length decreases as more layers are 
used (see Fig. 8). This decrease can be up to 50% for some 
circuits, mainly depending on the internal connectivity of the 
circuits. If the length of the inter-layer via increases, then the total 
wire-length decrease will be less. That is mainly because the 
fraction of the vertical wire-length relative to the total wire-length 
will become significant and also the average net delay will 
increase due to bending (i.e., switches) of nets spanning more 
layers. It has to be noted that the decrease in total wire-length can 
have favorable impact on the routing congestion (hence channel 
width), as well as power dissipation (especially due to the fact that 
most of the power dissipated in FPGAs is due to interconnects, 
which account for more than 80% of the total area) as predicted by 
Rahman et al. in [22]. 

 

 
Fig. 9 Circuit delay as a function of the number of layers when 
the inter-layer delay is independent of distance between layers 
(equal to the delay of a unit segment)  
 

On the other hand, the potential gain in terms of circuit delay is 
smaller (see Fig. 7) unless the 3D technology offers a rich vertical 
routing architecture that has vias that span multiple layers without 
using a switch (similar to segments of length, e.g., two, six, and 
long in the 2D architectures). Technologically, this is doable. 
However, further research needs to be done to find the exact 
patterns and lengths of such vertical routing segments. The 2D 
routing architecture cannot be simply extended to the 3D due to 
the more restrictive limitations on the number of vertical segments. 

6. CONCLUSION  
Benefits which 3D FPGA integration can offer were analyzed 

using a new placement algorithm. The placement algorithm is 
partitioning-based and has integrated techniques for minimization 
                                                                 
5 We should emphasize, however, that this bound is not going to be far off 

from a post-routing analysis. In the 2D FPGA architectures of today, the 
delay of longer segments is comparable to the delay of unit segments. For 
example, in the Xilinx Virtex architecture, a hex segment of length six 
has a delay of 1.1 times the delay of the unit segment. 
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of the 3D bounding-boxes of nets and of the delays of the critical 
paths. Simulation experiments showed potential total wire-length 
decrease up to 50% for some circuits and up to 30% decrease in 
delay. 

Our TPR placement and routing tool is meant to be the 3D 
counterpart of VPR and will be available online for the research 
community. 
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