
1

Exploring Potential Benefits of 3D FPGA Integration

ABSTRACT
A new timing-driven partitioning-based placement tool for 3D

FPGA integration is presented. The circuit is first divided into
layers with limited number of inter-layer vias, and then placement is
performed on individual layers, while minimizing the delay of
critical paths. We use our tool, which will be available on the web
for the research community, as a platform for exploring potential
benefits in terms of delay and wire-length that 3D technologies have
to offer for FPGA fabrics. We show that 3D integration results in
wire-length reduction for FPGA designs. However, unlike the ASIC
case, wire-length reduction does not automatically translate to much
smaller circuit delays, unless multi-segment lengths are employed
between layers. Our empirical analysis shows that wire-length can
be reduced by up to 50% (20% on average) using 5 layers. Delay
reductions are estimated to be up to 30% (15% on average) using
the same number of layers.

1. INTRODUCTION
Smaller feature size and increasing transistor counts allow

implementation of more complex and larger designs. However, a
number of new design problems emerge and old problems become
more difficult to solve. For example, global wires dominate the
delay and power budgets of circuits, and signal integrity, IR-drops,
process variations, and high temperature gradients pose new
difficult design problems. Furthermore, shrinking time-to-market
windows and ever-increasing mask costs have reduced profit
margins alarmingly.

In response to mounting problems of the integrated circuit
technology, various research groups have shown renewed interest in
3D IC integration, and a number of successful projects have shown
the viability of the technology [15]-[21]. 3D integration can
significantly reduce wire-lengths (and hence circuit delay), and
boost yield1. Furthermore, there has been an inclination towards
employing IP-based design and structured gate arrays (e.g., FPGA
blocks) to partially solve complex signal integrity and noise issues.
3D integration can particularly be useful for FPGA fabrics. It can
address problems pertaining to routing congestion, limited I/O
connections, low resource utilization and long wire delays.

On the standard cell arena, Das et al. recently proposed a
placement and global routing tool as well as a 3D layout editor [13].
The placement algorithm is based on recursive min-cut partitioning
of the circuit represented as a hypergraph and follows the same idea
as in the Capo placer [23]. Interlayer via minimization is sought by
min-cut partitioning for layer assignment. Wire-length minimization
is done by considering aspect ratio during the partitioning. The user
can select either hMetis [25] or PaToH [26] as the partitioning
algorithm. Their global routing algorithm is a concurrent approach
based on the idea in [24]. It was shown that 28% (51%) wire-length

1 True only in technologies that fabricate different layers separately, weed

out the faulty layers from the layer wafers, and only integrate the working
ones. However, wafer stacking technologies have been shown to be more
practical and successful compared to techniques that “grow” different
layers on top of each other in a single process.

improvement could be obtained with two (five) layers, compared
to [31] (the improvement is only 7% (17%) when inter-layer via
minimization is the main objective). Wire-length reduction of up
to 74% was reported in [33]. Deng and Maly showed – using a
placement algorithm based on Capo – that the total wire-length can
be reduced by 16% compared to flat placement, when two-layer
integration is used [27]. It is important to note that current
technologies allow for CMP substrate thinning down to about 5-
10µm, hence allowing for multiple thin active device layers and
interconnect levels be stacked on top of each other, resulting in
short inter-layer vias with small aspect ratios [15].

Even though the idea of 3D integrated circuits is not new, recent
technological advances have made it a viable alternative.
However, there is a lack of efficient 3D CAD tools that can exploit
the potential gains that 3D integration has to offer. Furthermore, a
number of important issues – such as heat dissipation, thermal
stress2, and physical design considerations – remain to be
addressed for some 3D architectures.

There has been some previous work proposing 3D FPGA
architectures. Borrowing ideas from multi-chip module (MCM)
techniques, Alexander et al. proposed to build a 3D FPGA by
stacking together a number of 2D FPGA bare dies [1]. Electrical
contacts between different dies would be made using solder bumps
or vias passing through the die. The number of solder bumps that
can fit on a die determines the width and separation of vertical
channels between FPGA layers. Depreitere et al. proposed using
optical interconnects to construct a multi-layer FPGA [2]. An
straightforward extension of a 2D architecture [6] is found in the
Rothko 3D architecture, which has routing-and-logic blocks
(RLBs) placed in more than one layer [5]. Fine-grained interlayer
connections were added outside each RLB, providing connections
between cells above and below, using a specially designed
technique [8], [9]. An improved version of Rothko architecture –
which advocates placing the routing in one layer and logic on
another for more efficient layer utilization – appears in [7]. It was
shown that the percentage of routed connections increases with an
increase in the flexibility of switch boxes. Also, computational
density is higher compared to a 2D architecture. Universal switch
blocks for 3D FPGA design were analyzed in [34]. It is important
to point out that all of these works assume that the inter-layer
connectivity is provided by vertical wire segments that connect
each layer to its adjacent layers only.

There has also been previous work on CAD tools for 3D FPGA
integration. Alexander et al. proposed 3D placement and routing
algorithms [3] for their architecture in [1]. Their placement
algorithm is partitioning-based followed by a simulated annealing
based refinement for total interconnect length minimization.
Savings of up to 23% and 14% in total interconnect length at the
placement level and routing level respectively were reported. An
improved version of the placement algorithm appears as Spiffy,
which performs placement and global routing simultaneously [3].

2 There is already previous work addressing thermal issues in physical

design for 3D integration [32].

2

In the experimental methodology presented in [7], placement was
performed with VPR [10] and routing was performed with a custom
routing tool [12].

In this paper we present a fast placement tool for 3D FPGAs
called TPR (Three dimensional Place and Route). Unlike previous
works on 3D FPGA architecture and CAD tools, we investigate the
effect of 3D integration on delay, in addition to wire-length. We
show that wire-length alone cannot be relied on as a metric for 3D
integration benefits.

Our placement algorithm is partitioning-based, and hence
scalable in the face of explosive growth of design sizes. A circuit is
first partitioned for min-cut minimization into a number of
partitions equal to the number of layers for the 3D integration.
Then, timing-driven partitioning-based placement is performed on
every layer starting with the top layer and continuing downwards.
Allowable bounding box for nets on a particular layer is decided by
the layers above it, to minimize the 3D bounding-boxes of the most
critical nets. Constraints for any given layer are set by the
placement on layers above. The routing algorithm is currently being
imported and adapted for the 3D architecture from the leading
academic placement and routing tool for 2D architectures, VPR
[10]. The main contribution of our work is as follows.

• We analyze the potential benefits, which can be obtained by 3D
integration for FPGAs. More specifically, we place circuits onto
3D FPGA architectures and study the variation in circuit delay
and total wire-length compared to their 2D counterparts, under
different 3D architectural assumptions. The results of this study
and similar studies in future could guide researchers in
designing high performance 3D FPGA fabric architectures.

• We developed a tool, which will be available as source and
executable on the web. Its purpose is to serve the research
community in predicting and exploring potential gains that the
3D technologies for FPGAs have to offer (similar to the role
VPR played in the development of FPGA physical design
algorithms). It shall be used as a platform, which can be used for
further development and implementation of new ideas in
placement and routing for 3D FPGAs.

2. OVERVIEW OF TPR
The philosophy of our tool closely follows that of its 2D

counterpart, VPR [10]. In fact, much of the code related the parsing
input files as well as the 2D FPGA architecture and routing
definitions is imported and adapted from VPR. The flow of the TPR
placement and routing CAD tool is shown in Fig. 1.

The design flow starts with a technology-mapped netlist in .blif
format, which can be generated using SIS [28]. Then, the .blif
netlist is converted into a netlist composed of more complex logic
blocks with T-VPack [11]. The .net netlist as well as the
architecture description file are the inputs to the placement
algorithm. The placement algorithm first partitions the circuit into a
number of balanced partitions equal to the number of layers for the
3D integration. The goal of this first min-cut partitioning is to
minimize the connections between layers, which translates into
minimum number of vertical (i.e., inter-layer) wires. The reason is
that in 3D technologies, the architecture is not isotropic (i.e.,
vertical vias are not as dense – because of their higher pitch) and
thus the placement and routing tools must judiciously use vertical

routing resources. After dividing the netlist into layers, TPR
continues with the placement of each layer in a top-down fashion.

Partitioning into layers

Architecture

Constraint driven placement
top-to-bottom layers

Tech mapped
netlist (.net)

T-VPack Circuit (.blif)

3D Routing

TPR toolTPR tool

Placement and routing info

Partitioning into layers

Architecture

Constraint driven placement
top-to-bottom layers

Tech mapped
netlist (.net)

T-VPack Circuit (.blif)

3D Routing

TPR toolTPR tool

Placement and routing info

Fig. 1 Flow diagram of the 3D placement and routing tool

The top layer is placed by unconstrained recursive partitioning.
Then, the rest of the layers are placed in turn by recursive
partitioning but constrained to reduce the delay on timing-critical
nets: the terminals of the most critical nets, which span more
layers, are placed on restricted placement-regions. The restricted
placement-regions are defined by the projection onto the current
layer of the bounding-boxes defined by the terminals placed
already in the layers above. Hence, the 3D bounding-box of the
critical nets is minimized3. Finally, global and detailed routing is
to be performed using the adapted 3D version of the VPR routing
algorithm.

3. PLACEMENT ALGORITHM
The placement algorithm is primarily partitioning based.

However, it also has integrated a simulated annealing engine (SA),
which can be used for further refinement and improvement of the
solution quality similarly to VPR, but at the expense of run-time
increase. The simplified pseudo-code of the placement algorithm is
shown in Fig. 2.

The initial “partitioning into layers” step is performed using the
min-cut hMetis partitioning algorithm [25] and is further
illustrated in Fig. 3. This is motivated by the limitations imposed
by current technologies, which require us to minimize the usage of
vertical connections (it was also observed in [14] that optimizing
inter-layer interconnect is of key importance for 3D integration
technologies).

3 This is similar to the 2D terminal alignment proposed by Maidee et al. in

[29].

3

Input:
Tech mapped netlist .net G(V,E)
Architecture description file

Algorithm:
1. Initial min-cut partitioning into layers for via minimization
2. For all layers i = 0 to L-1 from top to bottom
3. Do partitioning based placement of layer i
4. Update timing slacks
5. Re-enumerate critical paths
6. Low temperature SA based refinement
7. Greedy overlap removal
8. Constraint generation for layers below (only for

critical nets)
9. Write .p placement output file

Input:
Tech mapped netlist .net G(V,E)
Architecture description file

Algorithm:
1. Initial min-cut partitioning into layers for via minimization1. Initial min-cut partitioning into layers for via minimization
2. For all layers i = 0 to L-1 from top to bottom2. For all layers i = 0 to L-1 from top to bottom
3. Do partitioning based placement of layer i3. Do partitioning based placement of layer i
4. Update timing slacks4. Update timing slacks
5. Re-enumerate critical paths5. Re-enumerate critical paths
6. Low temperature SA based refinement
7. Greedy overlap removal
8. Constraint generation for layers below (only for

critical nets)
9. Write .p placement output file9. Write .p placement output file

Fig. 2 Pseudo-code of the TPR placement algorithm

Initial netlist graph
Min-cut partitioning and
assignment to lay ers

Fig. 3 Initial min-cut partitioning for minimization of the
number of vertical wires

After the initial partitioning into layers we assign partitions to
layers using a linear placement approach. The goal of this step is
not only to minimize the total vertical wire-length but also the
maximum cut between any two consecutive layers. Further
illustration of this step is shown in Fig. 4.

5-way initial
partitioning

3 1

2 4

1

Good
Cut # = 14

3
1

2 4

1

3
1

2 4
1

Bad
Cut # = 28

OK

Fig. 4 Illustration of good and bad initial linear placement of
partitions into layers

The actual placement is performed on each layer individually
starting with the top layer (layer 0) and continuing downwards till
the last layer (layer L-1). The placement of every layer is based on
edge-weighting quad-partitioning using hMetis partitioning
algorithm. Edge weights are commonly computed inversely
proportional to the slack of nets. However, we also selectively bias
weights of the most critical nets. The set of critical nets contains
edges on the current k-most critical paths. The placement algorithm
has an integrated static timing analysis engine as well as a path
enumeration algorithm [30]. The delay of the circuit (therefore
slacks) and the set of the most critical paths are periodically updated

based on the delay assigned to all current cut nets by the
partitioning engine. This ensures accurate estimation of the circuit
delay as the placement algorithm progresses. The rate of delay
update and critical paths re-enumeration is dictated by runtime /
estimation accuracy trade-off.

The recursive partitioning of a given layer stops when each
placement region has less than four blocks. A low-temperature SA
can then be applied for further solution improvement as well as for
partial overlap removal. Complete overlap removal is done using a
greedy heuristic which moves non-critical blocks (i.e., not on any
critical paths) to the closest available empty location.

When the placement of a given layer is finished, we forward
propagate placement constraints for the most critical nets. For
example, assuming that layer k1 is the first layer (from the top, as
shown in Fig. 5) in which some terminals of a critical net are
placed, the net bounding box of the net is projected to lower layers
k1+1 through L as a placement constraint for the rest of the
terminals of the net in these layers.

Bounding box on already
placed layer k1

Region constraint for
placement on layer k2 of
sinks 3,4

Source 0
1

2

3

4

Layer k1

Layer k2>k1

Fig. 5 Illustration of the restricted placement-region (i.e.,
projection of the bounding box of terminals 0, 1, and 2 placed
on layer k1) acting as a region constraint for sinks 3, 4 of a
critical net, which has the source and sinks 1, 2 placed on a
layer above

In layers that have net bounding box constraints, terminals that
have placement restrictions are fixed in appropriate partitions
before the call to the hMetis partitioning engine is made. Steps 3 to
8 of the algorithm shown in Fig. 2 are performed for all layers and
when the last layer is finished the circuit is completely placed.

4. ANALYSIS OF PLACEMENT DELAY
ESTIMATION

We analyze the relation between the circuit delay, which we
estimate after placement and the circuit delay computed after
detailed routing in the 2D case. In next section, we perform
experiments on 3D placements. The goal of this 2D analysis is to
study the reliability of the delay estimation during placement
(which in turn affects slack calculations and the decision on which
nets to tag as critical). To this end, we placed a set of ten
combinational circuits – shown in Table 1, which come with the
VPR package – using our TPR placement algorithm on a single
layer and recorded the total wire-length and the circuit delay using

4

our estimation4. Then, all placements are routed using the timing-
driven VPR routing algorithm [11], after which again circuit delay
and total wire-lengths are recorded.

Table 1 Statistics of simulated circuits
Circuit No. CLBs No. IOs
Ex5p 1064 71
Apex4 1262 28
Misex3 1397 28
Alu4 1522 22
Des 1591 501
Seq 1750 76
Apex2 1878 42
Spla 3690 62
Pdc 4575 56
Ex1010 4598 20

The correlations between the delay and the wire-length
estimation after placement and the delay and the wire-length after
detailed routing are shown in Fig. 6 .

b) a)
Fig. 6 Correlation between normalized delay (a) and normalized
wire-length (b) after placement and after routing

Plot (a) in Fig 6 corresponds to delay, and plot (b) shows wire
length correlations. Each point in the plots of Fig. 6 corresponds to
one circuit from Table 1. A point with (x,y) coordinates indicates
that for that circuit, delay (wire-length) estimation at placement was
x, while the delay (wire-length) after detailed routing turned out to
be y. The closer x and y, the more reliable the delay (wire-length)
estimation is at the placement level. The plot in Fig. 6.a describes
the relation between the normalized delay estimated after placement
and the normalized delay computed after detailed routing. The
routing architecture has wire segments of length one, two and six as
well as long wires. The plot in Fig. 6.b shows the correlation
between the normalized total wire-length after placement (computed
based on half-perimeter of bounding-boxes) and the normalized
total wire-length after detailed routing. We note that there is a good
correlation in all cases, which tells us that comparing placed circuits

4 Our rather optimistic delay estimation during and after placement is based

on a matrix lookup table of best delays – as reported by VPR routing
algorithm – which can be achieved for a route between two generic points
say (x1,y1) and (x2,y2). Then, the entry in the matrix for the route delay is
(i,j) = (|x1-x2|,|y1-y2|).

based on our estimations should be representative of the results
after routing. Our 3D routing tool is yet under development.
Preliminary simulations with a first version of it demonstrate plots
similar to those in Fig. 6, for a number of layers greater than two.

5. SIMULATION RESULTS
The goal of our simulations in this Section is to study the

variation of the circuit delay and the total wire-length with the
number of layers when the delay of an inter-layer wire (i.e.,
vertical via) has different values. The TPR implementation
contains most of the VPR code (except the graphics), which was
mostly ported to C++, as well as additional routines for the new
partitioning-based placement algorithm, path enumeration engine,
terminal propagation techniques, etc. The code was compiled with
g++ on a Linux box running on a P4 – 2.54GHz - with 1G of
memory.

In the first set of simulations we assume that inter-layer vias are
as long as single-length wire segments (i.e., the distance between
two CLBs). This is a reasonable assumption, because 3D
fabrication methods such as [15] can create inter-layer vias that are
a mere 5-10µm long. The delay of the inter-layer via is assumed to
be equal to the delay of a segment of length one as well. We
placed all ten circuits of Table 1 on different number of layers and
recorded the average circuit delay and the average total wire-
length of three placement runs. The simulation results are shown in
Fig. 7 and Fig. 8, where circle points represent the average of the
ten circuits and square points represent the minimum and the
maximum among the ten circuits of the delay and wire-length,
respectively. It can be seen that wire-length decreases are
significant (and are similar to the ASIC results from other
researchers). However, delay does not decrease as much and it
actually increases with increasing number of layers greater than
three. This shows that a simplistic vertical routing architecture is
not going to benefit 3D FPGA architectures.

Fig. 7 Circuit delay as a function of the number of layers. The
delay of an inter-layer connection that connects terminals that
are k layers apart is k times the delay of a segment of length
one

5

Fig. 8 Total wire-length as a function of the number of layers
when the length of an inter-layer via is one

To better understand the results of Fig. 7, we studied the
relationship between delay improvement and the internal structure
of the circuits; we can see that for some circuits the delay decrease
can be up to 23% for 3D integration into two and three layers, while
it could be as bad as 20% when five layers are used. The main
reason for the lesser decrease in circuit delay (compared to the
potential significant decreases one can achieve with 3D integration
of standard cell integrated circuits) is that in FPGAs the net delay is
proportional to the number of switches on the net, rather than the
Manhattan distance. Therefore, the “segmentation” due to switches
necessary for connecting terminals of nets spanning more layers
will impair the benefits of 3D integration for FPGAs with a
simplistic vertical routing architecture. We also note that the
increase in the delay of some circuits is due to their high internal
connectivity, which in turn requires a significant fraction of nets to
span at least two layers (see Fig. 4). To further probe this fact, Table
2 shows some statistics for the two circuits (Pdc and Alu4)
corresponding to the minimum (delay is better with 3D) and to the
maximum (delay is worse with 3D) square-points for a number of
layers equal to three in Fig. 7.

Table 2 Placement statistics for Pdc and Alu4

Circuit Obs.
% nets
spanning
more layers

Avg.
net WL

Avg. no
pins / net

Avg. no
nets /
block

Pdc Min for x=3 in
Fig. 7 8.79% 11.73 4.74 4.7

Alu4 Max for x=3
in Fig. 7 11.73% 7.58 4.52 4.49

Indeed, we can see that a larger fraction of nets of Alu4 span two
or more layers (as a consequence of higher internal connectivity)
and therefore the delay cannot be improved by 3D integration when
a simple vertical routing architecture is used.

In the second set of simulations we placed all circuits and
recorded the average circuit delay for the ideal situation where the
delay of an inter-layer wire is assumed to be equal to the delay of a
segment of length one, regardless of how many layers separate the
net terminals. This setup serves the purpose of analyzing the upper
bound of maximum potential delay improvements using our

method, which can be achieved by the 3D integration5. The
simulation results are shown in Fig. 9. It can be seen that delay
improvements of up to 30% (average of 15%) can be achieved
using 5 layers.

We note that the total wire-length decreases as more layers are
used (see Fig. 8). This decrease can be up to 50% for some
circuits, mainly depending on the internal connectivity of the
circuits. If the length of the inter-layer via increases, then the total
wire-length decrease will be less. That is mainly because the
fraction of the vertical wire-length relative to the total wire-length
will become significant and also the average net delay will
increase due to bending (i.e., switches) of nets spanning more
layers. It has to be noted that the decrease in total wire-length can
have favorable impact on the routing congestion (hence channel
width), as well as power dissipation (especially due to the fact that
most of the power dissipated in FPGAs is due to interconnects,
which account for more than 80% of the total area) as predicted by
Rahman et al. in [22].

Fig. 9 Circuit delay as a function of the number of layers when
the inter-layer delay is independent of distance between layers
(equal to the delay of a unit segment)

On the other hand, the potential gain in terms of circuit delay is
smaller (see Fig. 7) unless the 3D technology offers a rich vertical
routing architecture that has vias that span multiple layers without
using a switch (similar to segments of length, e.g., two, six, and
long in the 2D architectures). Technologically, this is doable.
However, further research needs to be done to find the exact
patterns and lengths of such vertical routing segments. The 2D
routing architecture cannot be simply extended to the 3D due to
the more restrictive limitations on the number of vertical segments.

6. CONCLUSION
Benefits which 3D FPGA integration can offer were analyzed

using a new placement algorithm. The placement algorithm is
partitioning-based and has integrated techniques for minimization

5 We should emphasize, however, that this bound is not going to be far off

from a post-routing analysis. In the 2D FPGA architectures of today, the
delay of longer segments is comparable to the delay of unit segments. For
example, in the Xilinx Virtex architecture, a hex segment of length six
has a delay of 1.1 times the delay of the unit segment.

6

of the 3D bounding-boxes of nets and of the delays of the critical
paths. Simulation experiments showed potential total wire-length
decrease up to 50% for some circuits and up to 30% decrease in
delay.

Our TPR placement and routing tool is meant to be the 3D
counterpart of VPR and will be available online for the research
community.

REFERENCES
[1] A. J. Alexander, J. P. Cohoon, Jared L. Colflesh, J. Karro, and G.
Robins, “Three-Dimensional Field-Programmable Gate Arrays”, Proc. Intl.
ASIC Conf., pp. 253-256, 1995.
[2] J. Dpreitere, H. Neefs, H. V. Marck, J. V. Campenhout, D. B. R. Baets,
H. Thienpont, and I. Veretennicoff, “An Optoelectronic 3-D Field
Programmable Gate Array”, Proc. Intl. Workshop on Field-Programmable
Logic and Applications, 1994.
[3] A. J. Alexander, J. P. Cohoon, Jared L. Colflesh, J. Karro, E. L. Peters,
and G. Robins, “Placement and Routing for Three-Dimensional FPGAs”,
Fourth Canadian Workshop on Field-Programmable Devices, pp. 11-18,
Toronto, Canada, May 1996.
[4] J. Karro and J. P. Cohoon, “A spiffy tool for the simultaneous
placement and global routing for three-dimensional field-programmable gate
arrays”, Ninth Great Lakes Symposium on VLSI, pp. 226-227, March 1999.
[5] M. Leeser, W. Meleis, M. Vai, S. Chiricescu, W. Xu, and P. Zavracky,
“Rothko: A Three-Dimensional FPGA”, IEEE Design Test Computers, pp.
16-23, 1998.
[6] G. Borriello, C. Ebeling, S. Hauck, and S. Burns, “The Triptych FPGA
Architecture”, IEEE Trans. On VLSI Systems, Vol. 3, No. 4, pp. 491-501,
1995.
[7] S. Chiricescu, M. Leeser, and M. M. Vai, “Design and Analysis of a
Dynamically Reconfigurable Three-Dimensional FPGA”, IEEE Trans. VLSI
Systems, Vol. 9, No. 1, pp. 186-196, Feb. 2001.
[8] P. Zavracky, M. Zavracky, D. Vu, and B. Dingle, “Three-Dimensional
Processor Using Transferred Thin Film Circuits”, U.S. Patent Application,
08-531-177, Jan. 1977.
[9] P. Sailer et al., “Three-Dimensional Circuits Using Transferred Films”,
IEEE Circuits and Devices, Vol. 13, No. 6, Nov. 1997, pp. 27-30.
[10] V. Betz and J. Rose, “VPR: A New Packing Placement and Routing
Tool for FPGA Research”, Field-Programmable Logic App. , pp. 213-222,
1997.
[11] A. Marquardt, V. Betz, J. Rose, “Using Cluster-Based Logic Blocks
and Timing-Driven Packing to Improve FPGA Speed and Density”, FPGA,
pp. 37-46, 1999.
[12] S. Chiricescu, “Parametric Analysis of a Dynamically Reconfigurable
Three-Dimensional FPGA”, Ph.D. Dissertation, Northeastern Univ., Boston,
MA, Dec. 1999.
[13] S. Das, A. Chandrakasan, and R. Reif, “Design Tools for 3-D
Integrated Circuits”, Proc. ACM/IEEE ASP-DAC, 2003.
[14] S. Das, A. Chandrakasan, and R. Reif, “Three-Dimensional Integrated
Circuits: Performance Design Methodology and CAD Tools”, Proc. ISVLSI,
2003.
[15] R. Reif, A. Fan, K. - N. Chen, and S. Das, “Fabrication Technologies
for Three-Dimensional Integrated Circuits”, Proc. International Symposium
on Quality Electronic Design (ISQD), 2002.
[16] K. Banerjee, S. J. Souri, P. Kapur, and K. C. Saraswat, "3-D ICs: A
novel chip design for improving deep submicron interconnect performance

and systems-on-chip integration", Proceedings of the IEEE, vol. 89, pp.
602 - 633, May 2001.
[17] J.A. Davis, R. Venkatesan, A. Kaloyeros, M. Beylansky, S.J. Souri,
K. Banerjee, K.C. Saraswat, A. Rahman, R. Reif and J.D. Meindl,
"Interconnect limits on gigascale integration (GSI) in the 21st century",
Proc. IEEE, vol. 89, pp. 305 - 324, Mar. 2001.
[18] "SoCs are `dead,' Intel manager declares", February 12, 2002.
(available at http://www.eet.com/semi/news/OEG20030212S0038).
[19] J. Burns, L. McIlrath, J. Hopwood, C. Keast, D. P. Vu, K.Warner, and
P. Wyatt, "An soi-based three dimensional integrated circuit technology",
in IEEE International SOI Conference, pp. 20 - 21, Oct. 2000.
[20] K. W. Lee, T. Nakamura, T. Ono, Y. Yamada, , T. Mizukusa, H.
Hashimoto, K. T. Park, H. Kurino, and M. Koyanagi, "Three-dimensional
shared memory fabricated using wafer stacking technology", in Technical
Digest of the International Electron Devices Meeting, pp. 165 - 168, 2000.
[21] K. W. Guarini, A. W. Topol, M. Leong, R. Yu, L. Shi, M. R.
Newport, D. J. Frank, D. V. Singh, G. M. Cohen, S. V. Nitta, D. C. Boyd,
P. A. O'Neil, S. L. Tempest, H. B. Pogpe, S. Purushotharnan, and W. E.
Haensch, "Electrical integrity of state-of-the-art 0.13u m SOI CMOS
devices and circuits transferred for three-dimensional (3D) integrated
circuit (IC) fabrication", in Technical Digest of the International Electron
Devices Meeting, pp. 943 - 945, 2002.
[22] A. Rahman, S. Das, A. Chandrakasan, and R. Reif, “Wiring
Requirement and Three-Dimensional Integration of Field-Programmable
Gate Arrays”, Proc. ACM/IEEE SLIP, 2001.
[23] A. E. Caldwell, A. B. Kahng, and I. L. Markov, “Can Recursive
Bisection Alone Produce Routable Placements?”, Proc. ACM/IEEE DAC,
pp. 477-482, 2000.
[24] M. Burnstein and R. Pelavin, “Hierarchical Wire Routing”, IEEE
Trans. CAD, Vol. 2, No. 4, pp. 223-234, 1983.
[25] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multi-level
Hypergraph Partitioning: Applications in VLSI Design”, Proc. ACM/IEEE
DAC, pp. 526-529, 1997.
[26] U. V. Catalyurek and C. Aykanat, “Hypergraph-partitioning-based
Decomposition for Parallel Sparse-matrix vector Multiplication”, IEEE
Trans. Parallel and Distributed Systems, Vol. 10, no. 7, pp. 673-693, 1999.
[27] Y. Deng and W. P. Maly, “Interconnect Characteristics of 2.5-D
System Integration Scheme”, Proc. ACM/IEEE ISPD, pp. 171-175, 2001.
[28] E. M. Sentovich et al., “SIS: A System for Sequential Circuit
Synthesis”, Technical Report UCB/ERL M92/41, University of California,
Berkeley, May 1992.
[29] P. Maidee, C. Ababei and K. Bazargan, “Fast Timing-driven
Partitioning-based Placement for Island Style FPGAs”, Proc. ACM/IEEE
DAC, pp. 598-603, 2003.
[30] Y-C. Ju, R.A. Saleh, “Incremental Techniques for the Identification of
Statically Sensitizable Critical Paths”, Proc. ACM/IEEE DAC, 1991.
[31] P. H. Madden, “Reporting of Standard Cell Placement Results”,
Proc. ACM/IEEE ISPD, pp. 30-35, 2001.
[32] B. Goplen and S. Sapatnekar, “Efficient Thermal Placement of
Standard Cells in 3D ICs using a Force Directed Approach”, Proc.
ACM/IEEE ICCAD, pp. 86-89, 2003.
[33] S. T. Obenaus and T. H. Szymanski, “Gravity: Fast Placement for 3-D
VLSI”, ACM Trans. on Design Automation of Electronic Systems
(TODAES), Vol. 8, No. 3, pp. 298-315, July 2003.
[34] G. – M. Wu, M. Shyu, and Y. – W. Chang, “Universal Switch Blocks
for Three-Dimensional FPGA Design”, FPGA, pp. 254-259, 1999.

