
Enhancing the Memory Performance of Embedded Systems with the FSRAM - 1 -

∗ Supported in part by the Minnesota Supercomputing Institute.

A Novel Memory Structure for Embedded Systems: Flexible Sequential and
Random Access Memory

Ying Chen1, Karthik Ranganathan2, Vasudev V Pai3, David J. Lilja1, and Kia Bazargan1

1Department of Electrical and Computer Engineering, University of Minnesota
200 Union St. S.E., Minneapolis, MN 55455, USA

2Data Communications Division, Cypress Semiconductor Corp.,
198 Champion Ct., San Jose, CA 95134, USA

3
 Marvell Semiconductor, 5400 Bayfront Plaza, Mailstop E-201,

Santa Clara, CA 95054, USA

{wildfire, lilja, kia}@umn.edu; kr@cypress.com; pvasudevus@yahoo.com

Abstract. The on-chip memory performance of embedded systems directly affects the system designers’ decision

about how to allocate expensive silicon area. We investigated a novel memory architecture, flexible sequential and
random access memory (FSRAM), for embedded systems. To realize sequential accesses, small “links” are added to
each row in the RAM array to point to the next row to be prefetched. The potential cache pollution is ameliorated by a
small sequential access buffer (SAB). To evaluate the architecture-level performance of FSRAM, we ran the
Mediabench benchmark programs [1] on a modified version of the Simplescalar simulator [2]. Our results show that the
FSRAM improves the performance of a baseline processor with a 16KB data cache up to 55%, with an average of 9%;
furthermore, the FSRAM reduces 53.1% of the data cache miss count on average due to its prefetching effect. We also
designed RTL and SPICE models of the FSRAM [3], which show that the FSRAM significantly improves memory
access time, while reducing power consumption, with negligible area overhead.

Keywords: on-chip memory, Sequential Access Buffer (SAB), Media benchmark, Flexible Sequential and Random
Access Memory (FSRAM)

1 Introduction

Rapid advances in high-performance computing
architectures and semiconductor technologies have
drawn considerable interest to high performance
memories. Increases in hardware capabilities have led to
performance bottlenecks due to the time required to
access the memory. Furthermore, the on-chip memory
performance in embedded systems directly affects
designers’ decisions about how to allocate expensive
silicon area. Off-chip memory power consumption has
become the energy consumption bottleneck as embedded
applications become more data-centric.

Most of the recent research has tended to focus on
improving performance and power consumption of on-
chip memory structures [4, 5, 6] rather than off-chip
memory. Moon et al [7] investigated a low-power
sequential access on-chip memory designed to exploit

the numerous sequential access patterns in digital signal
processing (DSP) applications. Prefetching techniques
from traditional computer architecture have also been
used to enhance on-chip memory performance for
embedded systems [8, 9, 10]. Other studies have
investigated energy efficient off-chip memory for
embedded systems, such as automatic data migration for
multi-bank memory systems [11].

None of these previous studies, however, have
investigated using off-chip memory structures to
improve on-chip memory performance. This study
demonstrates the performance potential of a novel, low-
power, off-chip memory structure, which we call the
flexible sequential and random access memory
(FSRAM), to support flexible memory access patterns. In
addition to normal random access, the FSRAM uses an
extra “link” structure, which bypasses the row decoder,
for sequential accesses. The link structure reduces power

 - 2 -

consumption and decreases memory access times;
moreover, it aggressively prefetches data into the on-chip
memory. In order to eliminate the potential data cache
pollution caused by prefetching, a small fully associative
sequential access buffer (SAB) is used in parallel with
the data cache. VHDL and HSPICE models of the
FSRAM have been developed to evaluate its
effectiveness at the circuit level. Embedded multimedia
applications are simulated to demonstrate its
performance potential at the architecture level. Our
results show significant performance improvement with
little extra area used by the link structures.

The remainder of this paper is organized as follows.
Section 2 introduces and explains the FSRAM and the
SAB. In Section 3, the experimental setup is described.
The architecture level performance analysis and area,
timing and power consumption evaluations of the
FSRAM are presented in Section 4. Section 5 discusses
related work. Finally, Section 6 summarizes and
concludes.

2 Flexible Sequential Access Memory

Our flexible sequential and random access memory
(FSRAM) architecture is an extension of the sequential
memory architecture developed by Moon, et al [7]. They
argued that since many DSP applications have static and
highly predictable memory traces, row address decoders
can be eliminated. As a result, memory access would be
sequential with data accesses determined at compile
time. They showed considerable power savings at the
circuit level.

While preserving the power reduction property, our
work extends their work in two ways: (1) in addition to
circuit-level simulations, we perform architectural-level
simulations to assess the performance benefits at the
application level; and (2) we extend the sequential access
mechanism using a novel enhancement that increases
sequential access flexibility.

2.1 Structure of the FSRAM

Fig. 1 shows the basic structure of our proposed
FSRAM. There are two address decoders to allow
simultaneous read and write accesses1. The read address
decoder is shared by both the memory and the “link”
structure. However, the same structure is used as the
write decoder for the link structure, while the read/write

1 Throughout the paper, all experiments are performed assuming dual-

port memories. It is important to note that our FSAM does not
require the memory to have two ports. The reason we chose two
ports is that most modern memory architectures have multiple ports
to improve memory latency.

decoder is required only for the memory. As can be seen,
each memory word is associated with a link structure, an
OR gate, a multiplexer, and a sequencer.

The link structure indicates which successor memory
word to access when the memory is being used in the
sequential access mode. With 2 bits, the link can point to
four unique successor memory word lines (e.g., N+1,
N+2, N+4, and N+8). This link structure is similar to the
"next" pointer in a linked-list data structure. Note that
Moon et al [7] hardwired the sequencer cell of each row
to the row below it. By allowing more flexibility, and the
ability to dynamically modify the link destination, the
row address decoder can be bypassed for many more
memory accesses than previous mechanisms to provide
greater potential speedup.

Fig. 1. The FSRAM adds a link, an OR gate, a multiplexer,
and a sequencer to each memory word.

The OR block shown in Fig. 1 is used to generate the
sequential address. If any of the four inputs to the OR
block is high, the sequential access address (SA_WL)
will be high (Fig. 2.a). Depending on the access mode
signal (SeqAcc), the multiplexers choose between the
row address decoder and the sequential cells. The role of
the sequencer is to determine the next sequential address
according to the value of the link (Fig. 2.b). If WL is
high, then one of the four outputs is high. However if
reset is high, then all four outputs go low irrespective of
WL.

The timing diagram is shown in figure 3. At the start
of a new cycle the OR gate generates the sequential
address while the random address is generated by the
address decoder. The MUX chooses one of the two
addresses. The value of the word line is stored in the
sequencer while write is still high. Once write goes low,
the word line is pulled down. (All word lines are

0

MUX memory word0 link0

sequencer0OR0

WL0

MUX memory word1 link1

sequencer1
OR1

WL1

RA_WL0

RA_WL1

MUX memory wordN linkNRA_WLN

MUX memory word2 link2

sequencer2
OR3

WL2
0

MUX memory word4 link4

sequencer4OR4

WL4
0

RA_WL2

RA_WL4

Addr

SA_WL1

SA_WL2

WLN

SeqAcc

SA_WL5

SA_WL4

W
rite Address D

ecoder

R
ead A

ddress D
ecoder

 - 3 -

automatically pulled low when write bar is asserted by
means of a pull down transistor.) During the period while
write is low, the sequencer uses the stored word line
value and the link value to determine whether any of its
outputs should be asserted. This output is now fed to the
OR gates. At the start of the next cycle, the process is
repeated once again.

 (a)

Output [N-4]
SA_WL

Output [N-1]

Output [N-2]

Output [N-8]

Write = Enable

OR block

 (b)

Reset

Tag[1:0]

Write = Enable

Output 1
Output 2
Output 4
Output 8

Sequencer
WL

Fig. 2. (a) Block diagram of the OR block, (b) block diagram
of the sequencer.

Figure 3 shows an example in which a data value of 0
is stored in row 0, and a value of 1 is stored in row 2.
The steps involved are:

1. First, row 0 is to be addressed, hence RA/SAbar is to
be kept high after address is given to the decoder.

2. This signal selects the output of the MUX and
activates the memory line.

3. The data bit is written and WRITE goes low, hence
WL0 follows.

4. During WRITE low, Pre1Pre0 is made 01 to select
the next alternate location, which is number 2.

5. When WRITE goes high next time, the OR gate
output is enabled and out02 is sent out into input of
MUX at row 2. Since WRITE is kept high, MUX
gives out WL2.

6. This combined with high WRITE writes the bit into
the location.

7. Steps 3 through 7 repeat for continued access.
Read access can be done similarly. To summarize, a

block of data can be read by first accessing the first
element using the row address decoder, and then
following the links in the sequential mode. The next
subsection discusses how and when the link values are
actually written.

The area overhead of the FSRAM consists of four
parts - the link, OR gate, multiplexer, and sequencer. The
overhead is in about the order of 3-7% of the total
memory area for the word line size of 32 bytes and 64
bytes. More detailed area overhead results are shown in
Table 3 in Section 4.2.

Fig 3. Timing diagram of a memory word cell. Delay of the
random write is: A + B + E, Delay of the sequential write is :
C + D + E

2.2 Update of the Link Structure

The link associated with each off-chip memory word
line is dynamically updated using data cache miss trace
information and run-time reconfiguration of the
sequential access target. In this manner, the sequentially
accessed data blocks are linked when compulsory misses
occur. Since the read decoder for the memory is the same
physical structure as the write decoder for the link
structure, the link can be updated in parallel with a
memory access. The default link value of the link is 0,
which actually means the next line (20 =1).

We note that the read and write operations to the
memory data elements and the link RAM cells can be
done independently. The word lines can be used to
activate both the links and the data RAM cells for read or
write (not all of the control signals are shown in Fig. 1).

There are a number of options for writing the link
values:
1. The links can be computed at compile-time and

loaded into the data memory while instructions are
being loaded into the instruction memory.

2. The link of one row could be written while the data
from another row is being read.

3. The link can be updated while the data of the same
row is being read or written.

Option 1 is the least flexible approach since it

exploits only static information. However, it could
eliminate some control circuitry that supports the runtime
updating of the links. Options 2 and 3 update the link
structure at run-time and so that both exploit dynamic
run-time information. Option 2, however, needs more
run-time data access information compared to Option 3

 - 4 -

and thus requires more control logic. We decided to
examine Option 3 in this paper since the dynamic
configuration of the links can help in subsequent
prefetches.

TAGs Data SAB

Off-chip Memory (FSRAM)

Processor

M
U

X

L1 Data Cache

Address from
processor

Data to
processor

TAGs Data SAB

Off-chip Memory (FSRAM)

Processor

M
U

X

L1 Data Cache

Address from
processor

Data to
processor

Fig. 4. The placement of the Sequential Access Buffer

(SAB) in the memory hierarchy.

2.3 Accessing the FSRAM and the SAB

In order to eliminate potential cache pollution caused
by the prefetching effect of the FSRAM, we use a small
fully associative cache structure, which we call the
Sequential Access Buffer (SAB). In our experiments, the
on-chip data cache and the SAB are accessed in parallel,
as shown in Fig.4. The data access operation is
summarized in Fig. 5.

Fig. 5. Flowchart of a data access when using the SAB and the
FSRAM

When a memory reference misses in both the data
cache and the SAB, the required block is fetched into the
data cache from the off-chip memory through random
access mode. Furthermore, a data block pointed to by the
link of the data word being currently read is pushed into
the SAB through sequential access mode if it is not

already in the on-chip memory. That is, the link is
followed and the result is stored in the SAB. When a
memory reference misses in the data cache but hits in the
SAB, the required block and the victim block in the data
cache are swapped. Additionally, the data block linked to
the required data block, but not already in on-chip
memory, is pushed into the SAB. In this data access
scheme whenever a data block is accessed through the
link structure, it is sequential access mode, otherwise,
random access mode.

3 Experimental Methodology

To evaluate the system level performance of the
FSRAM, we used SimpleScalar 3.0 [2] to run the
Mediabench [1] benchmarks using this new memory
structure. The basic processor configurations are based
on Intel Xscale [12], The Intel XScale microarchitecture
is a RISC core that can be combined with peripherals to
provide applications specific standard products (ASSP)
targeted at selected market segments. The basic
processor configurations are as the following: 32 KB
instruction L1 caches with 32-byte data lines, 2-way
associativity and 1 cycle latency, no L2 cache, and 50
cycle main memory access latency. The default SAB size
is 8 entries. The machine can issue two instructions per
cycle. It has a 32-entry load/store queue and one integer
unit, one floating point unit, and one multiplication /
division unit, with 1 cycle, 1 cycle, 2 cycles, and 12
cycles latency respectively. The branch predictor is
bimodal and has 128 entries. The instruction and data
TLBs are fully associative and have 32 entries. The link
structure in the off-chip memory was simulated by using
a large enough table to hold both the miss addresses and
their link values. The link values are updated by
monitoring the L1 data cache miss trace. Whenever the
gap between two continuous misses is 1x, 2x, 3x, 4x
block line size, we update the link value correlated to the
memory line that causes the first miss in the two
continuous misses.

3.1 Benchmark Programs

We used the Mediabench [13] benchmarks ported to
the SimpleScalar simulator for the architecture-level
simulations of the FSRAM. We used four of the
benchmark programs, adpcm, epic, g721 and mesa, in
this study because they were the only ones that worked
with the Simplescalar PISA instruction set architecture.
These four benchmarks represent the applications for
audio coding, image compression, voice compression,
and 3-D graphic library respectively.

Since the FSRAM link structure links successor
memory word lines (Section 3.1), we show the counts of

Data access

Fetch the Data
from Level 1
Data Cache

No Yes

No Yes

Level 1 Data
Cache Miss

Sequential
Access Buffer

(SAB) miss

Swap the required data
block and the victim block

from the level1 data
cache. Push the linked

data block from the main
memory into the SAB if it

is not already in level1
data cache or SAB

Bring the data from the main
memory into level1 data

cache. Push the linked data
block from the main memory

into the SAB if it is not
already in level1 data cache

or SAB

 - 5 -

the address gap distances between two consecutive data
cache misses in Table 1. We see from these results that
the address gap distances of 32, 64, 128, 256 and 512
bytes are the most common, while the other address gap
distances occur more randomly. Therefore, the FSRAM
evaluated in this study supports address gap distances of
32, 64, 128 and 256 bytes for a 32-byte cache line, while
distances of 64, 128, 256 and 512 bytes are supported for
a 64-byte cache line.

For all of the benchmark programs tested, the
dominant gap distances are between 32 and 128 bytes.
Most of the tested benchmarks, except g721, have
various gap distances distributed among 32 to 256 bytes.
When the gap increases to 512 bytes, epic and mesa still
exhibit similar access patterns while adpcm and g721
have no repeating patterns at this gap distance. Another
important issue for the evaluation of benchmark program
performance is the overall memory footprint estimated
from the cache miss rates. Table 2 shows the change in
the L1 data cache miss rates for the baseline architecture
as the size of the data cache is changed. In general, these

benchmarks have small memory footprints, especially
adpcm and g721. Therefore, we chose data cache sizes in
these simulations to approximately match the
performance that would be observed with larger caches
in real systems. The default data cache configuration
throughout this study is 16 KB with a 32-byte line and 2-
way set associativity.

3.2 Processor Configurations

The following processor configurations are simulated to
determine the performance impact of adding an FSRAM
to the processor and the additional performance
enhancement that can be attributed to the SAB.
orig: This is the baseline architecture with no link
structure in the off-chip memory and no prefetching
mechanism.
FSRAM: This configuration is described in detail in
Section 3.1. To summarize, this configuration
incorporates a link structure in the off-chip memory to
exploit sequential data accesses.

Table 1. The frequencies (counts) of the various address distance gaps between two consecutive data cache misses for the tested
benchmark programs

 Adpcm
encode

adpcm
decode

epic
encode

epic
decode

G721
encode

G721
decode

Mesa
mipmap

Mesa
osdemo

Mesa
Texgen

32Bytes 121 121 167 82 609512 590181 78740 2212 229004
 64 Bytes 7157 7157 3552 43 93 94 9 50896 22809

128 Bytes 979 979 1864 80 0 0 5 497 13441
256 Bytes 3237 3237 36 392 0 0 14 9 2
512 Bytes 0 0 5 896 0 0 3 1 16457

Table 2. The L1 data cache miss rates for the baseline architecture with various L1 cache sizes

adpcm
encode

adpam
decode

epic
encode

epic
decode

g721
encode

g721
decode

mesa
mipmap

Mesa
Osdemo

Mesa
Texgen

2KB 0.0214 0.0174 0.1424 0.1248 0.0010 0.0013 0.0894 0.0207 0.0735
4KB 0.001 0.0011 0.0703 0.0612 0.0003 0.0004 0.0444 0.0173 0.0337
8KB 0.0011 0.0011 0.0362 0.0591 0.0001 0.0001 0.0176 0.0142 0.0127
16KB 0.0010 0.0010 0.0162 0.0569 0.0000 0.0000 0.0086 0.0123 0.0068
32KB 0.0010 0.0010 0.0150 0.0535 0.0000 0.0000 0.0059 0.0112 0.0048

FSRAM_SAB: This configuration uses the
FSRAM with an additional small, fully associative SAB
in parallel with the L1 data cache. The details of the SAB
were given in Section 3.3

tnlp: This configuration adds tagged next line
prefetching [14] to the baseline architecture. With tagged
next line prefetching, a prefetch operation is initiated on
a miss and on the first hit to a previously prefetched
block. Tagged next line prefetching has been shown to
be more effective than prefetching only on a miss [15].
We use this configuration to compare against the
prefetching ability of the FSRAM.

tnlp_PB: This configuration enhances the tnlp
configuration with a small, fully associative Prefetch
Buffer (PB) in parallel with the L1 data cache to

eliminate the potential cache pollution caused by next
line prefetching. We use this configuration to compare
against the prefetching ability of the FSRAM_SAB
configuration.

4 Performance Evaluation

In this section we evaluate the performance of an
embedded processor with the FSRAM and the SAB by
analyzing the sensitivity of the processor configuration
FSRAM_SAB as the on-chip data cache parameters are
varied. We also show the timing, area, and power
consumption results based on RTL and SPICE models of
the FSRAM.

 - 6 -

4.1 Architecture-level Performance

We first examine the FSRAM_SAB performance
compared to the other processor configurations to show
the data prefetching effect provided by the FSRAM and
the cache pollution elimination effect provided by the
SAB. Since the FSRAM improves the overall
performance by improving the performance of the on-
chip data cache, we evaluate the FSRAM_SAB
performance while varying the values for different data
cache parameters including the cache size, associativity,
block size, and the SAB size. We also analyze both the
prefetching effect of the FSRAM and its overhead.

Throughout Section 4.1, the average statistics are
calculated using the execution time weighted average of
all of the benchmarks [16].

4.1.1 Performance Improvement due to FSRAM

 To show the performance obtained from the FSRAM
and the SAB, we compare the relative speedup obtained
by all four processor configurations described in Section
3.2 (i.e., tnlp, tnlp_PB, FSRAM, FSRAM_SAB) against
the baseline processor configuration (orig). All of the
processor configurations use a 16 KB L1 data cache with
a 32-byte data block size and 2-way set associativity.

As shown in Fig. 6, the FSRAM configuration
produces an average speedup of slightly more than 4%
over the baseline configuration compared to a speedup of

less than 1% for tnlp. Adding a small prefetch buffer
(PB) to the tnlp configuration (tnlp_PB) improves the
performance by about 1% compared to the tnlp
configuration without the prefetch buffer. Adding the
same size SAB to the FSRAM configuration
(FSRAM_SAB) improves the performance compared to
the FSRAM without the SAB by an additional 8.5%.
These speedups are due to the extra small cache
structures that eliminate the potential cache pollution
caused by prefetching directly into the L1 cache.
Furthermore, we see that the FSRAM without the SAB
outperforms tagged next-line prefetching both with and
without the prefetch buffer. The speedup of the FSRAM
with the SAB compared to the baseline configuration is
8.5% on average and can be as high as 54%
(mesa_mipmap).

Benchmark programs adpcm and g721 have very
small performance improvements, because their memory
footprints are so small that there are very few data cache
misses to eliminate in a 16KB data cache (Table 2)
Nevertheless, from the statistics shown in Fig. 6, we can
still see adpcm and g721 follow the similar performance
trend described above. These small improvements could
be system noises. The reason why we keep the
benchmarks adpcm and g721 is because sometimes they
have performance improvements, which are due to the
fast sequential accesses, as shown in section 4.1.2

0.000

10.000

20.000

30.000

40.000

50.000

Sp
ee

du
p

(%
)

tnlp 0.027 0.011 0.375 5.920 0.000 0.000 0.673 0.971 0.062 0.265
tnlp_PB 0.006 0.005 2.570 6.062 0.000 0.000 2.248 0.814 0.152 0.627
FSRAM 0.038 0.015 4.705 13.658 0.001 0.001 15.678 2.347 15.001 4.424
FSRAM_SAB 0.050 0.155 6.151 17.518 0.001 0.002 54.852 3.051 28.620 8.851

adpcm_e
ncode

adpcm_d
ecode

epic_enc
ode

epic_dec
ode

g721_en
code

g721_de
code

mesa.mi
pmap

mesa.os
demo

mesa.tex
gen average

Fig. 6. Relative speedups obtained by the different processor configurations. The baseline is the original processor configuration.
All of the processor configurations use a 16KB data L1 cache with 32-byte block and 2-way associativity.

 - 7 -

4.1.2 Parameter Sensitivity Analysis

We are interested in the performance of FSRAM with
different on-chip data caches to exam how the off-chip
FSRAM main memory structure improves on-chip
memory performance. So in this section we study the
effects of various data cache sizes (i.e., 2KB, 4KB, 8KB,
16KB, 32KB), data cache associativities (i.e., 1way,
2way, 4way, 8way), cache block sizes (i.e., 32 bytes, 64
bytes) and the SAB sizes (i.e., 4 entries, 8entries,
16entreis) on the performance. The baseline processor
configuration through this section is the original
processor configuration with a 2KB data L1 cache with
32-byte block size and 2-way associativity.

The Effect of Data Cache Size. Fig. 7 shows the relative
speedup distribution among orig, tnlp_PB and
FSRAM_SAB for various L1 data cache sizes (i.e., 2KB,
4KB, 8KB, 16KB, 32KB). The total relative speedup is
FSRAM_SAB with a L1 data cache size over the baseline,
which is orig with a 2KB L1 data. Each bar in Fig. 7 is
divided into three parts because the relative speedup is
the accumulation of three contributions: the relative
speedup attributed to orig with a L1 data cache size
configuration over the baseline; the relative speedup
attributed to tnlp_PB with a L1 data cache size
configuration over the baseline; the relative speedup of
FSRAM_SAB with a L1 data cache size configuration
over the baseline. Therefore the gray part of each bar is
the relative speedup attributed to orig, the dark gray part
of each bar is the relative speedup attributed to tnlp_PB
over that attributed to orig, and the while part of each bar
is the relative speedup attributed to FSRAM_SAB over
that attributed to tnlp_PB.

The Effect of Various Cache Sizes (2KB, 4KB, 8KB, 16KB, 32KB)

0

20

40

60

80

100

120

adpcm_
encode

adpcm_
decode

epic_
encode

epic_
decode

g721_
encode

g721_
decode

mesa_
mipmap

mesa_
osdemo

mesa_
texgen

average

Sp
ee

du
p

(%
)

orig tnlp_PB FSRAM_SAB

Fig. 7. Relative speedups distribution among the different processor
configurations (i.e., orig, tnlp_PB, FSRAM_SAB) with various L1
data cache sizes (i.e., 2KB, 4KB, 8KB, 16KB, 32KB). The baseline is
the original processor configuration with a 2KB data L1 cache with
32-byte block size and 2-way associativity.

As shown, with the increase of L1 data cache size the
relative speedup of tnlp_PB over orig decreases.
FSRAM_SAB, in contrast, constantly keeps speedup on

top of tnlp_PB across the different L1 data cache sizes.
Furthermore, FSRAM_SAB even outperforms tnlp_PB
with a larger size L1 data cache for most of the cases and
on average. For instance, FSRAM with a 8KB L1 data
cache outperforms tnlp_PB with a 32KB L1 data cache.
However, tnlp_PB only outperforms the baseline
processor with a bigger size data cache for epic_decode
and mesa_osdemo.

The improvement in the performance can be
attributed to several factors. While the baseline processor
does not perform any prefetching, the tagged next line
prefetching prefetches only the next word line. The fact
that our method can prefetch with strides is one
contributing factor in the smaller memory access time.
Furthermore, prefetching is realized using sequential
access, which is faster than random access. Another
benefit is that prefetching with different strides does not
require an extra large table to store the next address to be
accessed.

tnlp_PB and FSRAM_SAB improve performance in
the case that the performance of orig increases with the
increase of L1 data cache size. However, they have little
effect in the case that the performance of orig increases
with the increase of L1 data cache size, which means the
benchmark program has a small memory footprint (i.e.,
adpcm, g721). For adpcm, tnlp and FSRAM_SAB still
improve performance when the L1 data cache size is 2K.
For g721, the performance almost keeps the same all the
time due to the small memory footprint.

The Effect of Data Cache Associativity. Fig. 8 shows
the relative speedup distribution among orig, tnlp_PB
and FSRAM_SAB for various L1 data cache associativity
(i.e., 1way, 2way, 4way, 8way).

The Effect of various Cache Associativities (1way, 2way, 4way, 8way)

0

5

10

15

20

25

adpcm_
encode

adpcm_
decode

epic_
encode

epic_
decode

g721_
encode

g721_
decode

mesa.
mipmap

mesa.
osdemo

mesa.
texgen

average

R
el

at
iv

e
Sp

ee
du

p
(%

)

orig tnlp_PB FSRAM_SAB

Fig. 8. Relative speedups distribution among the different
processor configurations (i.e., orig, tnlp_PB, FSRAM_SAB)
with various L1 data cache associativity (i.e., 1way, 2way,
4way, 8way). The baseline is the original processor
configuration with a 16KB data L1 cache with 32-byte block
size and 2-way associativity.

As known, increasing the L1 data cache associativity
typically reduces the number of L1 data cache misses.

 - 8 -

The reduction in misses reduces the effect of prefetching
from tnlp_PB and FSRAM_SAB. As can be seen, the
performance speed up of tnlp_PB on top of orig
decreases as the L1 data cache associativity increases.
The speed up almost disappears when the associativity is
increased to 8way for mesa_mipmap and mesa_texgen.
However, FSRAM_SAB still provides significant
speedups.

tnlp_PB and FSRAM_SAB still have little impact on
the performance of adpcm and g721 because of their
small memory footprints.

The Effect of Data Cache Block Size. Fig. 9 shows the
relative speedup distribution among orig, tnlp_PB and
FSRAM_SAB for various L1 data cache block sizes (i.e.,
32B, 64B).

The Effect of Various Cache Block Sizes

-2

0

2

4

6

8

10

12

14

16

adpcm_
encode

adpcm_
decode

epic_
encode

epic_
decode

g721_
encode

g721_
decode

mesa.
mipmap

mesa.
osdemo

mesa.
texgen

average

R
el

at
iv

e
Sp

ee
du

p
(%

)

orig tnlp_PB FSRAM_SAB

Fig. 9. Relative speedups distribution among the different processor
configurations (i.e., orig, tnlp_PB, FSRAM_SAB) with various L1
data cache block sizes (i.e., 32B, 64B). The baseline is the original
processor configuration with a 16KB data L1 cache with 32-byte
block size and 2-way associativity.

As known increasing the L1 data cache block size
typically reduces the number of L1 data cache misses.
For all of the benchmarks the reduction in misses reduces
the effect of prefetching from tnlp_PB and FSRAM_SAB.
As can be seen, the performance speed up of tnlp_PB on
top of orig decreases as the L1 data cache block size
increases from 32-bytes to 64 bytes. However, the
increasing of the L1 data cache block size can also cause
potential pollutions as for epic_encode and
mesa_mipmap. Tnlp with a small prefetching buffer
reduces the pollution, and FSRAM_SAB further speeds
up the performance.

The Effect of SAB Size. Fig. 10 shows the relative
speedup distribution among orig, tnlp_PB and
FSRAM_SAB for various SAB sizes (i.e., 4 entries, 8
entries, 16 entries).

The Effect of Various SAB Sizes (4 entries, 8 entries, 16 entreis)

0

2

4

6

8

10

12

14

16

18

adpcm_
encode

adpcm_
decode

epic_
encode

epic_
decode

g721_
encode

g721_
decode

mesa.
mipmap

mesa.
osdemo

mesa.
texgen

average

R
el

at
iv

e
Sp

ee
du

p
(%

)

tnlp_PB FSRAM_SAB

Fig. 10. Relative speedup distribution among the different processor
configurations (i.e., tnlp_PB, FSRAM_SAB) with various SAB sizes
(i.e., 4 entries, 8 entries, 16 entries). The baseline is the original
processor configuration with a 16KB data L1 cache with 32-byte
block size and 2-way associativity.

Fig. 10 compares the FSRAM_SAB approach to a
tagged next-line prefetching that uses the prefetch buffer
that is the same size as SAB. As shown, FSRAM_SAB
always add speedup on top of tnlp_PB. Further,
FSRAM_SAB outperforms tnlp with a bigger size
prefetch buffer. This result indicates that FSRAM_SAB
is actually a more efficient prefetching mechanism than a
traditional tagged next-line prefetching mechanism.

tnlp_PB and FSRAM_SAB still have little impact on
the performance of adpcm and g721 because their small
memory footprints.

4.1.3 The Prefetching Effect of the FSRAM

To evaluate the data prefetching mechanism of
FSRAM, in Fig 11, we show the percentage of the data
blocks fetched from the off-chip memory FSRAM to the
on-chip data cache that turn out to be useful. As we can
see for most benchmark programs useful data blocks are
prefetched from the gaps of 32 bytes, 64 bytes, and 128
bytes. On average 34%, 31% and 33.5% prefetched data
blocks are useful from the three gaps respectively. Useful
data blocks fetched from the gap of 256 bytes only exists
for epic_decode. g721_encode, g721_decode, and
mesa.mipmap do not have useful data blocks fetched
from the gaps of 128 bytes or 256 bytes because very
small amount of counts of these two address gaps exist
for the three benchmark programs (Table 1).

 - 9 -

Useful Prefetched Data

0

10

20

30

40

50

60

70

ad
pc

m
_

en
co

de

ad
pc

m
_

de
co

de

ep
ic

_
en

co
de

ep
ic

_
de

co
de

g7
21

_
en

co
de

g7
21

_
de

co
de

m
es

a.
m

ip
m

ap

m
es

a.
os

de
m

o

m
es

a.
te

xg
en

av
er

ag
ePe

rc
en

ta
ge

 o
f U

se
fu

l P
re

fe
tc

he
d

D
at

a

32 bytes 64 bytes 128 bytres 256 bytes

Fig. 11. The percentage of the prefetched data blocks (with the
gap of 32 bytes, 64 bytes, 128 bytes, 256 bytes) that turned out
to be useful. The baseline is the original processor
configuration with a 16KB data L1 cache with 32-byte block
size and 2-way associativity, and an 8-entry SAB.

Data Cache Miss Count Reduction

0

10

20

30

40

50

60

70

80

ad
pc

m
_

en
co

de

ad
pc

m
_

de
co

de

ep
ic

_
en

co
de

ep
ic

_
de

co
de

g7
21

_
en

co
de

g7
21

_
de

co
de

m
es

a.
m

ip
m

ap

m
es

a.
os

de
m

o

m
es

a.
te

xg
en

av
er

ag
epe

rc
en

ta
ge

 o
f t

he
 D

L1
 m

is
s

co
un

t r
ed

uc
tio

n

Fig. 12. The percentage of the data cache miss count reduction
due to the prefetching effect of FSRAM. The baseline is the
original processor configuration with a 16KB data L1 cache
with 32-byte block size and 2-way associativity, and an 8-entry
SAB.

The prefetching mechanism of FSRAM brings useful
data blocks and thus reduces the data cache miss count as
shown in Fig. 12. Most of the benchmark programs have
a significant amount data cache miss count reduced. The
reduction is up to 75% (i.e., epic_encode), and on
average is 53.1%. The miss count reductions for
g721_encode and g721_decode are zero because the
memory footprint of these two programs are so small that
the miss count is zero with the 16 KB data cache (Table
2). As a result, the FSRAM has efficient prefetching
effect.

4.1.4 The Overhead Due to the FSRAM_SAB

The overhead of the FSRAM is shown in Fig. 13 in
the term of increases in memory traffic between the off-

chip memory FSRAM and the on-chip data cache. The
memory traffic contains both instruction and data cache
misses, and the prefetched data traffic, which are the
memory access counts.

Memory Traffic Increase due to the FSRAM

-8

-6

-4

-2

0

2

4

ad
pc

m
_e

nc
od

e

ad
pc

m
_d

ec
od

e

ep
ic

_e
nc

od
e

ep
ic

_d
ec

od
e

g7
21

_e
nc

od
e

g7
21

_d
ec

od
e

m
es

a.
m

ip
m

ap

m
es

a.
os

de
m

o

m
es

a.
te

xg
en

av
er

ag
e

pe
rc

en
ta

ge
 o

f t
ra

ffi
ce

 in
cr

ea
se

Fig. 13. Increases in memory traffic. The baseline is the
original processor configuration with a 16KB data L1 cache
with 32-byte block size and 2-way associativity, and an 8-entry
SAB.

As shown most benchmark programs have a small
amount of memory traffic increase that is less than 3%.
mesa.mipmap, epic_encode, and mesa.osdemo actually
have decreased memory traffic because the amount of
data cache miss counts is larger than the extra traffic
caused by the prefetching mechanism. For mesa.mipmap
the memory traffic is even reduced by 7%, which is the
reason for the large performance speedup of 54% for
mesa.mipmap in Fig 6. On average 0.1% more memory
traffic is caused by the prefetching effect of the FSRAM,
which is negligible.

The overall speedup of the benchmark program, which
is discussed in section 4.1.1., is the comprehensive result
from both the prefetching effect (Fig. 11. and Fig. 12.) of
the FSRAM and it’s overhead (Fig. 13.)

4.2 Timing, area and Power Consumption

We implemented the FSRAM architecture in VHDL
to verify its functional correctness at the RTL level. We
successfully tested various read/write combinations of
row data vs. links. Depending on application
requirements, one or two decoders can be provided so
that the FSAM structure can be used as a dual-port or
single-port memory structure. In all our experiments, we
assumed dual-port memories since modern memory
structures have multiple ports to decrease memory
latency.

In addition to the RTL level design, we implemented
a small 8x8 (8 rows, 8 bits per row) FSRAM in HSPICE
using 0.18μm technology to test timing correctness and
evaluate the delay of sequencer blocks. Note that unlike
the decoder, the sequencer block’s delay is independent

 - 10 -

of the size of the memory structure: it only depends on
how many rows it links to (in our case: 4).

By adding sequencer cells, we will be adding to the
area of the memory structure. However, in this section
we show that the area overhead is not large, especially
considering the fact that in today’s RAMs, a large
number of memory bits are arranged in a row. An
estimate of the percentage increase in area was

calculated using the formula %100)1
21

1(x
AA

A
−

−

where A1 = Total Area and A2 = area occupied by the
link, OR gate, MUX and the sequencer. Table 3 shows
the results of the increases in area for different memory
row sizes. The sequencer has two SRAM bits, which is
not many compared to the number of bits packed in a
row of the memory. We can see that the sequencer cell
logic does not occupy a significant area either.

Table 3. Area overhead of FSRAM with various memory
word line sizes

No. of bits per row of
memory

Increase in area due to the
MUX and the sequencer

8 (1 byte) 216%
16 (2 bytes) 119%
64 (8 bytes) 23.0%

256 (32 bytes) 7.12%
512 (64 bytes) 3.10%

As can be seen, the percentage increase in area drops
substantially as the number of bits in each word line
increases. Hence the area overhead is almost negligible
for large memory blocks.

Using the HSPICE model, we compared the delay of
the sequencer cell to the delay of a decoder. Furthermore,
by scaling the capacity of the bit lines, we estimated the
read/write delay and hence, calculated an overall
speedup of 15% of sequential access compared to
random access.

Furthermore, the power saving is 16% in sequential
access at VDD = 3.3v in the 0.18 micron CMOS
HSPICE model.

5 Related Work

The research related to this work can be classified
into three categories: on-chip memory optimizations, off-
chip memory optimizations, and hardware-supported
prefetching techniques.

In their papers, Panda et. al. [4, 5] address data cache
size and number of processor cycles as performance
metrics for on-chip memory optimization. Shiue et al.
[6] extend this work to include energy consumption and
show that it is not enough to consider only memory size
increase and miss rate reduction for performance
optimization of on-chip memory because the power
consumption actually increases. In order to reduce power
consumption, Moon et al. [7] designed an on-chip

sequential access only memory specifically for DSP
applications that demonstrates the low-power potential of
sequential access.

A few papers have addressed the issue of off-chip
memory optimization, especially power optimization, in
embedded systems. In a multi-bank memory system Dela
Luz et al. [11] show promising power consumption
reduction by using an automatic data migration strategy
to co-locate the arrays with temporal affinity in a small
set of memory banks. But their approach has major
overhead due to extra time spent in data migration and
extra power spent to copy data from bank to bank.

Zucker et al. [10] compared hardware prefeching
techniques adopted from general-purpose applications to
multimedia applications. They studied a stride prediction
table associated with PC (program counter). A data-
cache miss-address-based stride prefetching mechanism
for multimedia applications is proposed by Dela
Luz et al. [11]. D. Joseph and D. Grunwald described a
prefetching mechanism to identify previously resident
lines to a level-one cache, called the Markov predictor
[17]. A table was used to store the probability in a
Markov chain. D. M. Koppelman [18] proposed a
prefetching scheme for multiprocessors using instruction
history, called neighborhood prefetching. All these
studies show promising results at the cost of extra on-
chip memory devoted to a table structure of non-
negligible size. Although low-cost hybrid data
prefetching slightly outperforms hardware prefetching, it
limits the code that could benefit from prefetching [9].
Sbeyti et. al. [8] propose an adaptive prefetching
mechanism which exploits both the miss stride and miss
interval information of the memory access behavior of
only MPEG4 in embedded systems.

Unlike previous approaches, we propose a novel off-
chip memory with little area overhead (3-7% for 32 bytes
and 64 bytes data block line) and significant performance
improvements, compared to previous works that propose
expensive on-chip memory structures. Our study
investigated off-chip memory structure to improve on-
chip memory performance, thus leaves flexibility for
designer’s to allocate expensive on-chip silicon area.
Furthermore, we improved power consumption of off-
chip memory.

6 Conclusions

In this study, we proposed the FSRAM mechanism
that makes it possible to eliminate the use of address
decoders during sequential accesses and also random
accesses to a certain extent.

We find that FSRAM can efficiently prefetch the
linked data block into on-chip data cache and improve
performance by 4.42% on average for an embedded

 - 11 -

system using 16KB data cache. In order to eliminate the
potential cache pollution caused by the prefetching, we
used a small fully associative cache called SAB. The
experiments show FSRAM can further improve the
tested benchmark programs performances to 8.85% on
average using the SAB. Compared to the tagged next-
line prefetching, FSRAM_SAB constantly performs
better and can still speedup performance when tnlp_PB
cannot. This indicates that FSRAM_SAB is a more
efficient prefetching mechanism. Furthermore,
FSRAM_SAB reduces 53.1% of the data cache miss
count on average with a negligible amount of extra
memory traffic introduced by its prefetching mechanism.
Although the data cache miss counts for most
benchmarks are small, FSRAM_SAB is still able to
improve performance because the sequential access itself
is faster than random access, which proves the efficiency
of the sequential access.

FSRAM has both sequential accesses and random
accesses. With the expense of negligible area overhead
(3-7% for 32 bytes and 64 bytes data block line) from the
link structure, we obtained a speedup of 15% of
sequential access over random access from our designed
RTL and SPICE models of FSRAM. Our design also
shows that sequential access save 16% power
consumption.

The link structure/configuration explored in this paper
is not the only way; a multitude of other configurations
can be used. Depending upon the requirement of an
embedded application, a customized scheme can be
adopted whose level of flexibility during accesses best
suits the application. For this, prior knowledge of access
patterns within the application is needed. In the future, it
would be useful to explore power-speed trade-offs that
may bring about a net optimization in the architecture.

References

[1] C.Lee, M. Potkonjak, and W. H. Mangione-Smith. "Mediabench:
A tool for evaluating and synthesizing multimedia and
communications systems", In Proc. of the 30th Annual
International Symposium on Microarchitecture (Micro 30),
December 1997

[2] Doug Burger and Todd M. Austin. "The simplescalar tool set
version 2.0", Technical Report 1342, Computer Sciences
Department, University of Wisconsin, June 1997.

[3] Ying Chen, Karthik Ranganathan, Amit Puthenveetil, Kia
Bazargan, and David J. Lilja, “FSRAM: Flexible Sequential and
Random Access Memory for Embedded Systems”, Laboratory for
Advanced Research in Computing Technology and Compilers
Technical Report No. ARCTiC 04-01, February, 2004.

[4] P. R. Panda, N. D. Dutt, and A. Nicolau. “Data cache sizing for
embedded processor applications”, Technical Report TCS-TR-97-
31, University of California, Irvine, June 1997.

[5] P. R. Panda, N. D. Dutt, and A. Nicolau. “Architectural
exploration and optimization of local memory in embedded
systems”, International Symposium on System Synthesis (ISSS
97), Antwerp, Sept. 1997.

[6] W. Shiue, C. Chakrabati, “Memory Exploration for Low Power
Embedded Systems”, IEEE/ACM Proc.of 36th. Design
Automation Conference (DAC'99), June 1999.

[7] J. Moon, W. C. Athas, P. A. Beerel, J. T. Draper, “Low-Power
Sequential Access Memory Design”, IEEE 2002 Custom
Integrated Circuits Conference, pp.741-744, Jun 2002.

[8] H. Sbeyti, S. Niar, L. Eeckhout, "Adaptive Prefetching for
Multimedia Applications in Embedded Systems", DATE'04, EDA
IEEE, 16-18 february 2004,Paris, France

[9] A. D. Pimentel, L. O. Hertzberger, P. Struik, P. Wolf, "Hardware
versus Hybrid Data Prefetching in Multimedia Processors: A Case
Study", in the Proc. of the IEEE Int. Performance, Computing and
Communications Conference (IPCCC 2000), pp. 525-531,
Phoenix, USA, Feb. 2000

[10] D. F. Zucker, M. J. Flynn, R. B. Lee, "A Comparison of
Hardware Prefetching Techniques For Multimedia Benchmarks",
In Proceedings of the International Conferences on Multimedia
Computing and Systems, Himshima, Japan, June 1996

[11] V. De La Luz, M. Kandemir, I. Kolcu, "Automatic Data
Migration for Reducing Energy Consumption in Multi-Bank
Memory Systems", DAC, pp 213-218, 2002

[12] Intel corporation, "The intel XScale Microarchitecture technical
summary",
http://www.intel.com/design/intelxscale/xscaledatasheet4.htm,
Technical report, 2001

[13] http://www.cse.psu.edu/~mdl/mediabench.tar.gz
[14] J. E. Smith, W. C. Hsu, “Prefetching in Supercomputer

Instruction Caches”, In proceedings of Supercomputing92, pp.
588-597, 1992

[15] S. P. VanderWiel and D. J. Lilja, “Data Prefetch Mechanisms”,
ACM Computing Surveys, Vol. 32, Issue 2, June 2000, pp. 174-
199

[16] D. J. Lilja, “Measuring Computer Performance”, Cambridge
University Press, 2000

 [17] D. Joseph and D. Grunwald, “Prefetching using Markov
Predictors”, in Proceedings of the International Symposium on
Computer Architecture, June 1997, pp. 252-263.

[18] D. M. Koppelman, “Neighborhood Prefetching On
Multiprocessors Using Instruction History”, International
Conference on Parallel Architectures and Compilation Techniques,
October 2000, pp. 123-132

Ying Chen received her
PhD and MS degree in
Electrical Engineering from
the University of Minnesota
and the BS degree in
Electrical Engineering from
Tsinghua University.
Starting fall of 2005, she
will work as an Assistant
Professor at San Francisco

State University. Her main research interests include
hardware verification methodology,
multiprocessors, multithreaded architectures,
memory systems, and reconfigurable computing.
She is a student member of the IEEE.

 - 12 -

Karthik Ranganathan
received his Bachelors
degree in Electronics
Engineering from the
University of Mumbai,
India. He was an ECE
Department Fellow as
well as a Graduate

Teaching Assistant at the University of Minnesota.
He has interned with the VLSI division at Seagate
Technologies and with the Applications Engineering
group at Cypress Semiconductor. Subsequently, he
graduated with a Master's Degree in Electrical
Engineering from the University of Minnesota. He
has been a Product/Test Engineer with the Data
Communications division at Cypress Semiconductor
for about 2 years. He is currently a Sr. Product
Engineer working with the 'CCD' division of
Cypress Semiconductor Corp.

Vasudev Pai received the
B.E. (Hons.) degree in
electrical and electronics
engineering from Birla
Institute of Technology and
Science, Pilani, India and the
M.S. degree in electrical
engineering from the
University of Minnesota,
Twin Cities in 2000 and

2005, respectively. He was with IBM Corporation
from 2000 to 2002 where he worked on the
hardware verification of the Power4 processor at
Austin, TX. He has also held internships at Texas
Instruments and Cypress Semiconductor. Currently,
he is working as a digital design engineer at Marvell
Semiconductor, Santa Clara, CA.

David J. Lilja received the
Ph.D. and M.S. degrees, both
in Electrical Engineering,
from the University of
Illinois at Urbana-
Champaign, and a B.S. in
Computer Engineering from
Iowa State University in
Ames. He currently is a

Professor and Head of Electrical and Computer
Engineering, and a Fellow of the Minnesota

Supercomputing Institute, at the University of
Minnesota in Minneapolis. He also serves as a
member of the graduate faculties in Computer
Science and Scientific Computation. He has been a
visiting senior engineer in the Hardware
Performance Analysis group at IBM in Rochester,
Minnesota, and a visiting professor at the University
of Western Australia in Perth. Previously, he
worked as a research assistant at the Center for
Supercomputing Research and Development at the
University of Illinois, and as a development
engineer at Tandem Computers Incorporated (now a
division of Hewlett-Packard) in Cupertino,
California. He has chaired and served on the
program committees of numerous conferences; was
a distinguished visitor of the IEEE Computer
Society; is a member of the IEEE and the ACM; and
is a registered Professional Engineer in Electrical
Engineering in Minnesota and California. His
primary research interests are in high-performance
computer architecture, parallel computing,
hardware-software interactions, nano-computing,
and performance analysis.

Kia Bazargan received his
Bachelors degree in
Computer Science from
Sharif University in
Tehran, Iran, and his M.S.
and PhD in Electrical and
Computer Engineering
from Northwestern
University in Evanston, IL
in 1998 and 2000

respectively. He is currently an Assistant Professor
in the Electrical and Computer Engineering at the
University of Minnesota. He has served on the
technical program committee of a number of IEEE
sponsored conferences (e.g., ISPD, ICCAD, ASP-
DAC, GLSVLSI). He was a guest co-editor of ACM
Transactions on Embedded Computing Systems
(ACM TECS), Special Issue on Dynamically
Adaptable Embedded Systems in 2003. He is an
Associate Editor of IEEE Transaction on Computer-
Aided Design of Integrated Circuits and Systems.
He was a recipient of NSF CAREER award in 2004.
His research interests are computer-aided design,
FPGAs and reconfigurable computing.

