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Abstract. The on-chip memory performance of embedded systems directly affects the system designers’ decision 

about how to allocate expensive silicon area. We investigated a novel memory architecture, flexible sequential and 
random access memory (FSRAM), for embedded systems. To realize sequential accesses, small “links” are added to 
each row in the RAM array to point to the next row to be prefetched. The potential cache pollution is ameliorated by a 
small sequential access buffer (SAB). To evaluate the architecture-level performance of FSRAM, we ran the 
Mediabench benchmark programs [1] on a modified version of the Simplescalar simulator [2]. Our results show that the 
FSRAM improves the performance of a baseline processor with a 16KB data cache up to 55%, with an average of 9%; 
furthermore, the FSRAM reduces 53.1% of the data cache miss count on average due to its prefetching effect. We also 
designed RTL and SPICE models of the FSRAM [3], which show that the FSRAM significantly improves memory 
access time, while reducing power consumption, with negligible area overhead. 
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1 Introduction 

Rapid advances in high-performance computing 
architectures and semiconductor technologies have 
drawn considerable interest to high performance 
memories. Increases in hardware capabilities have led to 
performance bottlenecks due to the time required to 
access the memory. Furthermore, the on-chip memory 
performance in embedded systems directly affects 
designers’ decisions about how to allocate expensive 
silicon area. Off-chip memory power consumption has 
become the energy consumption bottleneck as embedded 
applications become more data-centric. 

Most of the recent research has tended to focus on 
improving performance and power consumption of on-
chip memory structures [4, 5, 6] rather than off-chip 
memory. Moon et al [7] investigated a low-power 
sequential access on-chip memory designed to exploit 

the numerous sequential access patterns in digital signal 
processing (DSP) applications. Prefetching techniques 
from traditional computer architecture have also been 
used to enhance on-chip memory performance for 
embedded systems [8, 9, 10]. Other studies have 
investigated energy efficient off-chip memory for 
embedded systems, such as automatic data migration for 
multi-bank memory systems [11].  

None of these previous studies, however, have 
investigated using off-chip memory structures to 
improve on-chip memory performance. This study 
demonstrates the performance potential of a novel, low-
power, off-chip memory structure, which we call the 
flexible sequential and random access memory 
(FSRAM), to support flexible memory access patterns. In 
addition to normal random access, the FSRAM uses an 
extra “link” structure, which bypasses the row decoder, 
for sequential accesses. The link structure reduces power 
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consumption and decreases memory access times; 
moreover, it aggressively prefetches data into the on-chip 
memory. In order to eliminate the potential data cache 
pollution caused by prefetching, a small fully associative 
sequential access buffer (SAB) is used in parallel with 
the data cache. VHDL and HSPICE models of the 
FSRAM have been developed to evaluate its 
effectiveness at the circuit level. Embedded multimedia 
applications are simulated to demonstrate its 
performance potential at the architecture level. Our 
results show significant performance improvement with 
little extra area used by the link structures. 

The remainder of this paper is organized as follows. 
Section 2 introduces and explains the FSRAM and the 
SAB. In Section 3, the experimental setup is described. 
The architecture level performance analysis and area, 
timing and power consumption evaluations of the 
FSRAM are presented in Section 4. Section 5 discusses 
related work. Finally, Section 6 summarizes and 
concludes. 

2 Flexible Sequential Access Memory  

Our flexible sequential and random access memory 
(FSRAM) architecture is an extension of the sequential 
memory architecture developed by Moon, et al [7]. They 
argued that since many DSP applications have static and 
highly predictable memory traces, row address decoders 
can be eliminated. As a result, memory access would be 
sequential with data accesses determined at compile 
time. They showed considerable power savings at the 
circuit level. 

While preserving the power reduction property, our 
work extends their work in two ways: (1) in addition to 
circuit-level simulations, we perform architectural-level 
simulations to assess the performance benefits at the 
application level; and (2) we extend the sequential access 
mechanism using a novel enhancement that increases 
sequential access flexibility. 

2.1 Structure of the FSRAM 

Fig. 1 shows the basic structure of our proposed 
FSRAM. There are two address decoders to allow 
simultaneous read and write accesses1. The read address 
decoder is shared by both the memory and the “link” 
structure.  However, the same structure is used as the 
write decoder for the link structure, while the read/write 

                                                           
1 Throughout the paper, all experiments are performed assuming dual-

port memories. It is important to note that our FSAM does not 
require the memory to have two ports. The reason we chose two 
ports is that most modern memory architectures have multiple ports 
to improve memory latency. 

decoder is required only for the memory. As can be seen, 
each memory word is associated with a link structure, an 
OR gate, a multiplexer, and a sequencer. 

The link structure indicates which successor memory 
word to access when the memory is being used in the 
sequential access mode. With 2 bits, the link can point to 
four unique successor memory word lines (e.g., N+1, 
N+2, N+4, and N+8). This link structure is similar to the 
"next" pointer in a linked-list data structure. Note that 
Moon et al [7] hardwired the sequencer cell of each row 
to the row below it. By allowing more flexibility, and the 
ability to dynamically modify the link destination, the 
row address decoder can be bypassed for many more 
memory accesses than previous mechanisms to provide 
greater potential speedup. 

 

Fig. 1. The FSRAM adds a link, an OR gate, a multiplexer, 
and a sequencer to each memory word. 
 

The OR block shown in Fig. 1 is used to generate the 
sequential address. If any of the four inputs to the OR 
block is high, the sequential access address (SA_WL) 
will be high (Fig. 2.a). Depending on the access mode 
signal (SeqAcc), the multiplexers choose between the 
row address decoder and the sequential cells. The role of 
the sequencer is to determine the next sequential address 
according to the value of the link (Fig. 2.b). If WL is 
high, then one of the four outputs is high. However if 
reset is high, then all four outputs go low irrespective of 
WL. 

The timing diagram is shown in figure 3. At the start 
of a new cycle the OR gate generates the sequential 
address while the random address is generated by the 
address decoder. The MUX chooses one of the two 
addresses. The value of the word line is stored in the 
sequencer while write is still high. Once write goes low, 
the word line is pulled down. (All word lines are 
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automatically pulled low when write bar is asserted by 
means of a pull down transistor.) During the period while 
write is low, the sequencer uses the stored word line 
value and the link value to determine whether any of its 
outputs should be asserted. This output is now fed to the 
OR gates. At the start of the next cycle, the process is 
repeated once again.  

            (a)

Output [N-4]
SA_WL

Output [N-1]

Output [N-2]

Output [N-8]

Write = Enable

OR block

 

            (b) 

Reset

Tag[1:0]

Write = Enable

Output 1
Output 2
Output 4
Output 8

Sequencer
WL

 

Fig. 2. (a) Block diagram of the OR block, (b) block diagram 
of the sequencer. 

Figure 3 shows an example in which a data value of 0 
is stored in row 0, and a value of 1 is stored in row 2. 
The steps involved are: 

 

1. First, row 0 is to be addressed, hence RA/SAbar is to 
be kept high after address is given to the decoder. 

2. This signal selects the output of the MUX and 
activates the memory line. 

3. The data bit is written and WRITE goes low, hence 
WL0 follows. 

4. During WRITE low, Pre1Pre0 is made 01 to select 
the next alternate location, which is number 2. 

5. When WRITE goes high next time, the OR gate 
output is enabled and out02 is sent out into input of 
MUX at row 2. Since WRITE is kept high, MUX 
gives out WL2. 

6. This combined with high WRITE writes the bit into 
the location. 

7. Steps 3 through 7 repeat for continued access. 
Read access can be done similarly. To summarize, a 

block of data can be read by first accessing the first 
element using the row address decoder, and then 
following the links in the sequential mode. The next 
subsection discusses how and when the link values are 
actually written. 

The area overhead of the FSRAM consists of four 
parts - the link, OR gate, multiplexer, and sequencer. The 
overhead is in about the order of 3-7% of the total 
memory area for the word line size of 32 bytes and 64 
bytes. More detailed area overhead results are shown in 
Table 3 in Section 4.2. 

 

Fig 3. Timing diagram of a memory word cell. Delay of the 
random write is: A + B + E, Delay of the sequential write is :  
C + D + E 

2.2 Update of the Link Structure 

The link associated with each off-chip memory word 
line is dynamically updated using data cache miss trace 
information and run-time reconfiguration of the 
sequential access target.  In this manner, the sequentially 
accessed data blocks are linked when compulsory misses 
occur. Since the read decoder for the memory is the same 
physical structure as the write decoder for the link 
structure, the link can be updated in parallel with a 
memory access. The default link value of the link is 0, 
which actually means the next line (20 =1).  

We note that the read and write operations to the 
memory data elements and the link RAM cells can be 
done independently. The word lines can be used to 
activate both the links and the data RAM cells for read or 
write (not all of the control signals are shown in Fig. 1). 

There are a number of options for writing the link 
values: 
1. The links can be computed at compile-time and 

loaded into the data memory while instructions are 
being loaded into the instruction memory.  

2. The link of one row could be written while the data 
from another row is being read. 

3. The link can be updated while the data of the same 
row is being read or written.  

 
Option 1 is the least flexible approach since it 

exploits only static information.  However, it could 
eliminate some control circuitry that supports the runtime 
updating of the links. Options 2 and 3 update the link 
structure at run-time and so that both exploit dynamic 
run-time information. Option 2, however, needs more 
run-time data access information compared to Option 3 
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and thus requires more control logic. We decided to 
examine Option 3 in this paper since the dynamic 
configuration of the links can help in subsequent 
prefetches. 
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Fig. 4. The placement of the Sequential Access Buffer 

(SAB) in the memory hierarchy. 

2.3 Accessing the FSRAM and the SAB 

In order to eliminate potential cache pollution caused 
by the prefetching effect of the FSRAM, we use a small 
fully associative cache structure, which we call the 
Sequential Access Buffer (SAB). In our experiments, the 
on-chip data cache and the SAB are accessed in parallel, 
as shown in Fig.4. The data access operation is 
summarized in Fig. 5.  

 
Fig. 5. Flowchart of a data access when using the SAB and the 
FSRAM 

When a memory reference misses in both the data 
cache and the SAB, the required block is fetched into the 
data cache from the off-chip memory through random 
access mode. Furthermore, a data block pointed to by the 
link of the data word being currently read is pushed into 
the SAB through sequential access mode if it is not 

already in the on-chip memory.  That is, the link is 
followed and the result is stored in the SAB. When a 
memory reference misses in the data cache but hits in the 
SAB, the required block and the victim block in the data 
cache are swapped. Additionally, the data block linked to 
the required data block, but not already in on-chip 
memory, is pushed into the SAB. In this data access 
scheme whenever a data block is accessed through the 
link structure, it is sequential access mode, otherwise, 
random access mode.  

3 Experimental Methodology  

To evaluate the system level performance of the 
FSRAM, we used SimpleScalar 3.0 [2] to run the 
Mediabench [1] benchmarks using this new memory 
structure. The basic processor configurations are based 
on Intel Xscale [12], The Intel XScale microarchitecture 
is a RISC core that can be combined with peripherals to 
provide applications specific standard products (ASSP) 
targeted at selected market segments. The basic 
processor configurations are as the following: 32 KB 
instruction L1 caches with 32-byte data lines, 2-way 
associativity and 1 cycle latency, no L2 cache, and 50 
cycle main memory access latency. The default SAB size 
is 8 entries. The machine can issue two instructions per 
cycle. It has a 32-entry load/store queue and one integer 
unit, one floating point unit, and one multiplication / 
division unit, with 1 cycle, 1 cycle, 2 cycles, and 12 
cycles latency respectively. The branch predictor is 
bimodal and has 128 entries. The instruction and data 
TLBs are fully associative and have 32 entries. The link 
structure in the off-chip memory was simulated by using 
a large enough table to hold both the miss addresses and 
their link values. The link values are updated by 
monitoring the L1 data cache miss trace. Whenever the 
gap between two continuous misses is 1x, 2x, 3x, 4x 
block line size, we update the link value correlated to the 
memory line that causes the first miss in the two 
continuous misses. 

3.1 Benchmark Programs 

We used the Mediabench [13] benchmarks ported to 
the SimpleScalar simulator for the architecture-level 
simulations of the FSRAM. We used four of the 
benchmark programs, adpcm, epic, g721 and mesa, in 
this study because they were the only ones that worked 
with the Simplescalar PISA instruction set architecture. 
These four benchmarks represent the applications for 
audio coding, image compression, voice compression, 
and 3-D graphic library respectively. 

Since the FSRAM link structure links successor 
memory word lines (Section 3.1), we show the counts of 

Data access

Fetch the Data
from Level 1
Data Cache

No Yes

No Yes

Level 1 Data
Cache Miss

Sequential
Access Buffer

(SAB) miss

Swap the required data 
block and the victim block 

from the level1 data 
cache. Push the linked 

data block from the main 
memory into the SAB if it  

is not already in level1 
data cache or SAB

Bring the data from the main 
memory into level1 data 

cache. Push the linked data 
block from the main memory 

into the SAB if it is not 
already in level1 data cache 

or SAB



        - 5 - 

 

the address gap distances between two consecutive data 
cache misses in Table 1. We see from these results that 
the address gap distances of 32, 64, 128, 256 and 512 
bytes are the most common, while the other address gap 
distances occur more randomly. Therefore, the FSRAM 
evaluated in this study supports address gap distances of 
32, 64, 128 and 256 bytes for a 32-byte cache line, while 
distances of 64, 128, 256 and 512 bytes are supported for 
a 64-byte cache line.  

For all of the benchmark programs tested, the 
dominant gap distances are between 32 and 128 bytes. 
Most of the tested benchmarks, except g721, have 
various gap distances distributed among 32 to 256 bytes. 
When the gap increases to 512 bytes, epic and mesa still 
exhibit similar access patterns while adpcm and g721 
have no repeating patterns at this gap distance. Another 
important issue for the evaluation of benchmark program 
performance is the overall memory footprint estimated 
from the cache miss rates. Table 2 shows the change in 
the L1 data cache miss rates for the baseline architecture 
as the size of the data cache is changed. In general, these 

benchmarks have small memory footprints, especially 
adpcm and g721. Therefore, we chose data cache sizes in 
these simulations to approximately match the 
performance that would be observed with larger caches 
in real systems. The default data cache configuration 
throughout this study is 16 KB with a 32-byte line and 2- 
way set associativity. 

3.2 Processor Configurations 

The following processor configurations are simulated to 
determine the performance impact of adding an FSRAM 
to the processor and the additional performance 
enhancement that can be attributed to the SAB. 
orig: This is the baseline architecture with no link 
structure in the off-chip memory and no prefetching 
mechanism. 
FSRAM: This configuration is described in detail in 
Section 3.1. To summarize, this configuration 
incorporates a link structure in the off-chip memory to 
exploit sequential data accesses. 

Table 1. The frequencies (counts) of the various address distance gaps between two consecutive data cache misses for the tested 
benchmark programs 

 Adpcm 
encode 

adpcm 
decode 

epic 
encode 

epic 
decode 

G721 
encode 

G721 
decode 

Mesa 
mipmap 

Mesa 
osdemo 

Mesa 
Texgen 

32Bytes 121 121 167 82 609512 590181 78740 2212 229004 
        64 Bytes 7157 7157 3552 43 93 94 9 50896 22809 

128 Bytes 979 979 1864 80 0 0 5 497 13441 
256 Bytes 3237 3237 36 392 0 0 14 9 2 
512 Bytes 0 0 5 896 0 0 3 1 16457 

Table 2. The L1 data cache miss rates for the baseline architecture with various L1 cache sizes 

 
adpcm 
encode 

adpam 
decode 

epic 
encode 

epic 
decode 

g721 
encode 

g721 
decode 

mesa 
mipmap 

Mesa 
Osdemo 

Mesa 
Texgen 

2KB 0.0214 0.0174 0.1424 0.1248 0.0010 0.0013 0.0894 0.0207 0.0735 
4KB 0.001 0.0011 0.0703 0.0612 0.0003 0.0004 0.0444 0.0173 0.0337 
8KB 0.0011 0.0011 0.0362 0.0591 0.0001 0.0001 0.0176 0.0142 0.0127 
16KB 0.0010 0.0010 0.0162 0.0569 0.0000 0.0000 0.0086 0.0123 0.0068 
32KB 0.0010 0.0010 0.0150 0.0535 0.0000 0.0000 0.0059 0.0112 0.0048 
          

FSRAM_SAB: This configuration uses the 
FSRAM with an additional small, fully associative SAB 
in parallel with the L1 data cache. The details of the SAB 
were given in Section 3.3 

tnlp: This configuration adds tagged next line 
prefetching [14] to the baseline architecture. With tagged 
next line prefetching, a prefetch operation is initiated on 
a miss and on the first hit to a previously prefetched 
block. Tagged next line prefetching has been shown to 
be more effective than prefetching only on a miss [15]. 
We use this configuration to compare against the 
prefetching ability of the FSRAM.  

tnlp_PB:  This configuration enhances the tnlp 
configuration with a small, fully associative Prefetch 
Buffer (PB) in parallel with the L1 data cache to 

eliminate the potential cache pollution caused by next 
line prefetching. We use this configuration to compare 
against the prefetching ability of the FSRAM_SAB 
configuration.  

4    Performance Evaluation 

In this section we evaluate the performance of an 
embedded processor with the FSRAM and the SAB by 
analyzing the sensitivity of the processor configuration 
FSRAM_SAB as the on-chip data cache parameters are 
varied. We also show the timing, area, and power 
consumption results based on RTL and SPICE models of 
the FSRAM. 



        - 6 - 

 

4.1 Architecture-level Performance 

We first examine the FSRAM_SAB performance 
compared to the other processor configurations to show 
the data prefetching effect provided by the FSRAM and 
the cache pollution elimination effect provided by the 
SAB. Since the FSRAM improves the overall 
performance by improving the performance of the on-
chip data cache, we evaluate the FSRAM_SAB 
performance while varying the values for different data 
cache parameters including the cache size, associativity, 
block size, and the SAB size. We also analyze both the 
prefetching effect of the FSRAM and its overhead. 

Throughout Section 4.1, the average statistics are 
calculated using the execution time weighted average of 
all of the benchmarks [16]. 

4.1.1 Performance Improvement due to FSRAM 

 To show the performance obtained from the FSRAM 
and the SAB, we compare the relative speedup obtained 
by all four processor configurations described in Section 
3.2 (i.e., tnlp, tnlp_PB, FSRAM, FSRAM_SAB) against 
the baseline processor configuration (orig). All of the 
processor configurations use a 16 KB L1 data cache with 
a 32-byte data block size and 2-way set associativity.  

As shown in Fig. 6, the FSRAM configuration 
produces an average speedup of slightly more than 4% 
over the baseline configuration compared to a speedup of 

less than 1% for tnlp. Adding a small prefetch buffer 
(PB) to the tnlp configuration (tnlp_PB) improves the 
performance by about 1% compared to the tnlp 
configuration without the prefetch buffer. Adding the 
same size SAB to the FSRAM configuration 
(FSRAM_SAB) improves the performance compared to 
the FSRAM without the SAB by an additional 8.5%. 
These speedups are due to the extra small cache 
structures that eliminate the potential cache pollution 
caused by prefetching directly into the L1 cache. 
Furthermore, we see that the FSRAM without the SAB 
outperforms tagged next-line prefetching both with and 
without the prefetch buffer. The speedup of the FSRAM 
with the SAB compared to the baseline configuration is 
8.5% on average and can be as high as 54% 
(mesa_mipmap).   

Benchmark programs adpcm and g721 have very 
small performance improvements, because their memory 
footprints are so small that there are very few data cache 
misses to eliminate in a 16KB data cache (Table 2) 
Nevertheless, from the statistics shown in Fig. 6, we can 
still see adpcm and g721 follow the similar performance 
trend described above. These small improvements could 
be system noises. The reason why we keep the 
benchmarks adpcm and g721 is because sometimes they 
have performance improvements, which are due to the 
fast sequential accesses, as shown in section 4.1.2 
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Fig. 6. Relative speedups obtained by the different processor configurations. The baseline is the original processor configuration. 
All of the processor configurations use a 16KB data L1 cache with 32-byte block and 2-way associativity. 
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4.1.2 Parameter Sensitivity Analysis 

We are interested in the performance of FSRAM with 
different on-chip data caches to exam how the off-chip 
FSRAM main memory structure improves on-chip 
memory performance. So in this section we study the 
effects of various data cache sizes (i.e., 2KB, 4KB, 8KB, 
16KB, 32KB), data cache associativities (i.e., 1way, 
2way, 4way, 8way), cache block sizes (i.e., 32 bytes, 64 
bytes) and the SAB sizes (i.e., 4 entries, 8entries,  
16entreis) on the performance. The baseline processor 
configuration through this section is the original 
processor configuration with a 2KB data L1 cache with 
32-byte block size and 2-way associativity. 

The Effect of Data Cache Size. Fig. 7 shows the relative 
speedup distribution among orig, tnlp_PB and 
FSRAM_SAB for various L1 data cache sizes (i.e., 2KB, 
4KB, 8KB, 16KB, 32KB). The total relative speedup is 
FSRAM_SAB with a L1 data cache size over the baseline, 
which is orig with a 2KB L1 data. Each bar in Fig. 7 is 
divided into three parts because the relative speedup is 
the accumulation of three contributions: the relative 
speedup attributed to orig with a L1 data cache size 
configuration over the baseline; the relative speedup 
attributed to tnlp_PB with a L1 data cache size 
configuration over the baseline; the relative speedup of 
FSRAM_SAB with a L1 data cache size configuration 
over the baseline. Therefore the gray part of each bar is 
the relative speedup attributed to orig, the dark gray part 
of each bar is the relative speedup attributed to tnlp_PB 
over that attributed to orig, and the while part of each bar 
is the relative speedup attributed  to FSRAM_SAB over 
that attributed to tnlp_PB. 

The Effect of Various Cache Sizes (2KB, 4KB, 8KB, 16KB, 32KB)
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Fig. 7. Relative speedups distribution among the different processor 
configurations (i.e., orig, tnlp_PB, FSRAM_SAB) with various L1 
data cache sizes (i.e., 2KB, 4KB, 8KB, 16KB, 32KB). The baseline is 
the original processor configuration with a 2KB data L1 cache with 
32-byte block size and 2-way associativity.  

As shown, with the increase of L1 data cache size the 
relative speedup of tnlp_PB over orig decreases. 
FSRAM_SAB, in contrast, constantly keeps speedup on 

top of tnlp_PB across the different L1 data cache sizes. 
Furthermore, FSRAM_SAB even outperforms tnlp_PB 
with a larger size L1 data cache for most of the cases and 
on average. For instance, FSRAM with a 8KB L1 data 
cache outperforms tnlp_PB with a 32KB L1 data cache. 
However, tnlp_PB only outperforms the baseline 
processor with a bigger size data cache for epic_decode 
and mesa_osdemo. 

The improvement in the performance can be 
attributed to several factors. While the baseline processor 
does not perform any prefetching, the tagged next line 
prefetching prefetches only the next word line. The fact 
that our method can prefetch with strides is one 
contributing factor in the smaller memory access time. 
Furthermore, prefetching is realized using sequential 
access, which is faster than random access. Another 
benefit is that prefetching with different strides does not 
require an extra large table to store the next address to be 
accessed.  

tnlp_PB and FSRAM_SAB improve performance in 
the case that the performance of orig increases with the 
increase of L1 data cache size. However, they have little 
effect in the case that the performance of orig increases 
with the increase of L1 data cache size, which means the 
benchmark program has a small memory footprint (i.e., 
adpcm, g721). For adpcm, tnlp and FSRAM_SAB still 
improve performance when the L1 data cache size is 2K. 
For g721, the performance almost keeps the same all the 
time due to the small memory footprint.  

The Effect of Data Cache Associativity. Fig. 8 shows 
the relative speedup distribution among orig, tnlp_PB 
and FSRAM_SAB for various L1 data cache associativity 
(i.e., 1way, 2way, 4way, 8way). 
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Fig. 8. Relative speedups distribution among the different 
processor configurations (i.e., orig, tnlp_PB, FSRAM_SAB) 
with various L1 data cache associativity (i.e., 1way, 2way, 
4way, 8way). The baseline is the original processor 
configuration with a 16KB data L1 cache with 32-byte block 
size and 2-way associativity. 

As known, increasing the L1 data cache associativity 
typically reduces the number of L1 data cache misses. 
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The reduction in misses reduces the effect of prefetching 
from tnlp_PB and FSRAM_SAB. As can be seen, the 
performance speed up of tnlp_PB on top of orig 
decreases as the L1 data cache associativity increases. 
The speed up almost disappears when the associativity is 
increased to 8way for mesa_mipmap and mesa_texgen. 
However, FSRAM_SAB still provides significant 
speedups.  

tnlp_PB and FSRAM_SAB still have little impact on 
the performance of adpcm and g721 because of their 
small memory footprints. 

The Effect of Data Cache Block Size. Fig. 9 shows the 
relative speedup distribution among orig, tnlp_PB and 
FSRAM_SAB for various L1 data cache block sizes (i.e., 
32B, 64B).  
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Fig. 9. Relative speedups distribution among the different processor 
configurations (i.e., orig, tnlp_PB, FSRAM_SAB) with various L1 
data cache block sizes (i.e., 32B, 64B). The baseline is the original 
processor configuration with a 16KB data L1 cache with 32-byte 
block size and 2-way associativity. 

As known increasing the L1 data cache block size 
typically reduces the number of L1 data cache misses. 
For all of the benchmarks the reduction in misses reduces 
the effect of prefetching from tnlp_PB and FSRAM_SAB. 
As can be seen, the performance speed up of tnlp_PB on 
top of orig decreases as the L1 data cache block size 
increases from 32-bytes to 64 bytes. However, the 
increasing of the L1 data cache block size can also cause 
potential pollutions as for epic_encode and 
mesa_mipmap. Tnlp with a small prefetching buffer 
reduces the pollution, and FSRAM_SAB further speeds 
up the performance.  

The Effect of SAB Size. Fig. 10 shows the relative 
speedup distribution among orig, tnlp_PB and 
FSRAM_SAB for various SAB sizes (i.e., 4 entries, 8 
entries, 16 entries).  
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Fig. 10. Relative speedup distribution among the different processor 
configurations (i.e., tnlp_PB, FSRAM_SAB) with various SAB sizes 
(i.e., 4 entries, 8 entries, 16 entries). The baseline is the original 
processor configuration with a 16KB data L1 cache with 32-byte 
block size and 2-way associativity. 

Fig. 10 compares the FSRAM_SAB approach to a 
tagged next-line prefetching that uses the prefetch buffer  
that is the same size as SAB. As shown, FSRAM_SAB 
always add speedup on top of tnlp_PB. Further, 
FSRAM_SAB outperforms tnlp with a bigger size 
prefetch buffer. This result indicates that FSRAM_SAB 
is actually a more efficient prefetching mechanism than a 
traditional tagged next-line prefetching mechanism.  

tnlp_PB and FSRAM_SAB still have little impact on 
the performance of adpcm and g721 because their small 
memory footprints. 

4.1.3 The Prefetching Effect of the FSRAM 

To evaluate the data prefetching mechanism of 
FSRAM, in Fig 11, we show the percentage of the data 
blocks fetched from the off-chip memory FSRAM to the 
on-chip data cache that turn out to be useful. As we can 
see for most benchmark programs useful data blocks are 
prefetched from the gaps of 32 bytes, 64 bytes, and 128 
bytes. On average 34%, 31% and 33.5% prefetched data 
blocks are useful from the three gaps respectively. Useful 
data blocks fetched from the gap of 256 bytes only exists 
for epic_decode. g721_encode, g721_decode, and 
mesa.mipmap do not have useful data blocks fetched 
from the gaps of 128 bytes or 256 bytes because very 
small amount of counts of these two address gaps exist 
for the three benchmark programs (Table 1). 
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Fig. 11. The percentage of the prefetched data blocks (with the 
gap of 32 bytes, 64 bytes, 128 bytes, 256 bytes) that turned out 
to be useful. The baseline is the original processor 
configuration with a 16KB data L1 cache with 32-byte block 
size and 2-way associativity, and an 8-entry SAB. 
 

 
 

Data Cache Miss Count Reduction
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Fig. 12. The percentage of the data cache miss count reduction 
due to the prefetching effect of FSRAM. The baseline is the 
original processor configuration with a 16KB data L1 cache 
with 32-byte block size and 2-way associativity, and an 8-entry 
SAB. 
 

The prefetching mechanism of FSRAM brings useful 
data blocks and thus reduces the data cache miss count as 
shown in Fig. 12. Most of the benchmark programs have 
a significant amount data cache miss count reduced. The 
reduction is up to 75% (i.e., epic_encode), and on 
average is 53.1%. The miss count reductions for 
g721_encode and g721_decode are zero because the 
memory footprint of these two programs are so small that 
the miss count is zero with the 16 KB data cache (Table 
2). As a result, the FSRAM has efficient prefetching 
effect. 

4.1.4 The Overhead Due to the FSRAM_SAB 

The overhead of the FSRAM is shown in Fig. 13 in 
the term of increases in memory traffic between the off-

chip memory FSRAM and the on-chip data cache. The 
memory traffic contains both instruction and data cache 
misses, and the prefetched data traffic, which are the 
memory access counts.  

Memory Traffic Increase due to the FSRAM 
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Fig. 13. Increases in memory traffic. The baseline is the 
original processor configuration with a 16KB data L1 cache 
with 32-byte block size and 2-way associativity, and an 8-entry 
SAB. 
 

As shown most benchmark programs have a small 
amount of memory traffic increase that is less than 3%. 
mesa.mipmap, epic_encode, and mesa.osdemo actually 
have decreased memory traffic because the amount of 
data cache miss counts is larger than the extra traffic 
caused by the prefetching mechanism. For mesa.mipmap 
the memory traffic is even reduced by 7%, which is the 
reason for the large performance speedup of 54% for 
mesa.mipmap in Fig 6. On average 0.1% more memory 
traffic is caused by the prefetching effect of the FSRAM, 
which is negligible.  

The overall speedup of the benchmark program, which 
is discussed in section 4.1.1., is the comprehensive result 
from both the prefetching effect (Fig. 11. and Fig. 12.) of 
the FSRAM and it’s overhead (Fig. 13.) 

4.2 Timing, area and Power Consumption 

We implemented the FSRAM architecture in VHDL 
to verify its functional correctness at the RTL level. We 
successfully tested various read/write combinations of 
row data vs. links. Depending on application 
requirements, one or two decoders can be provided so 
that the FSAM structure can be used as a dual-port or 
single-port memory structure. In all our experiments, we 
assumed dual-port memories since modern memory 
structures have multiple ports to decrease memory 
latency. 

In addition to the RTL level design, we implemented 
a small 8x8 (8 rows, 8 bits per row) FSRAM in HSPICE 
using 0.18μm technology to test timing correctness and 
evaluate the delay of sequencer blocks. Note that unlike 
the decoder, the sequencer block’s delay is independent 
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of the size of the memory structure: it only depends on 
how many rows it links to (in our case: 4).  

By adding sequencer cells, we will be adding to the 
area of the memory structure. However, in this section 
we show that the area overhead is not large, especially 
considering the fact that in today’s RAMs, a large 
number of memory bits are arranged in a row. An 
estimate of the percentage increase in area was 

calculated using the formula %100)1
21

1( x
AA

A
−

−
 

where A1 = Total Area and A2 = area occupied by the 
link, OR gate, MUX and the sequencer. Table 3 shows 
the results of the increases in area for different memory 
row sizes. The sequencer has two SRAM bits, which is 
not many compared to the number of bits packed in a 
row of the memory. We can see that the sequencer cell 
logic does not occupy a significant area either. 

Table 3. Area overhead of FSRAM with various memory 
word line sizes 

 

No. of bits per row of 
memory 

Increase in area due to the  
MUX and the sequencer 

8 (1 byte) 216% 
16 (2 bytes) 119% 
64 (8 bytes) 23.0% 

256 (32 bytes) 7.12% 
512 (64 bytes) 3.10% 

 

As can be seen, the percentage increase in area drops 
substantially as the number of bits in each word line 
increases. Hence the area overhead is almost negligible 
for large memory blocks. 

Using the HSPICE model, we compared the delay of 
the sequencer cell to the delay of a decoder. Furthermore, 
by scaling the capacity of the bit lines, we estimated the 
read/write delay and hence, calculated an overall 
speedup of 15% of sequential access compared to 
random access.  

Furthermore, the power saving is 16% in sequential 
access at VDD = 3.3v in the 0.18 micron CMOS 
HSPICE model.  

5 Related Work 

The research related to this work can be classified 
into three categories: on-chip memory optimizations, off-
chip memory optimizations, and hardware-supported 
prefetching techniques.  

In their papers, Panda et. al. [4, 5] address data cache 
size and number of processor cycles as performance 
metrics for on-chip memory optimization. Shiue et  al. 
[6] extend this work to include energy consumption and 
show that it is not enough to consider only memory size 
increase and miss rate reduction for performance 
optimization of on-chip memory because the power 
consumption actually increases. In order to reduce power 
consumption, Moon et al. [7] designed an on-chip 

sequential access only memory specifically for DSP 
applications that demonstrates the low-power potential of 
sequential access. 

A few papers have addressed the issue of off-chip 
memory optimization, especially power optimization, in 
embedded systems. In a multi-bank memory system Dela 
Luz et al. [11] show promising power consumption 
reduction by using an automatic data migration strategy 
to co-locate the arrays with temporal affinity in a small 
set of memory banks. But their approach has major 
overhead due to extra time spent in data migration and 
extra power spent to copy data from bank to bank. 

Zucker et al. [10] compared hardware prefeching 
techniques adopted from general-purpose applications to 
multimedia applications. They studied a stride prediction 
table associated with PC (program counter). A data-
cache miss-address-based stride prefetching mechanism 
for multimedia applications    is   proposed    by Dela 
Luz et al. [11]. D. Joseph and D. Grunwald described a 
prefetching mechanism to identify previously resident 
lines to a level-one cache, called the Markov predictor 
[17]. A table was used to store the probability in a 
Markov chain. D. M. Koppelman [18] proposed a 
prefetching scheme for multiprocessors using instruction 
history, called neighborhood prefetching.  All these 
studies show promising results at the cost of extra on-
chip memory devoted to a table structure of non-
negligible size. Although low-cost hybrid data 
prefetching slightly outperforms hardware prefetching, it 
limits the code that could benefit from prefetching [9]. 
Sbeyti et. al. [8] propose an adaptive prefetching 
mechanism which exploits both the miss stride and miss 
interval information of the memory access behavior of 
only MPEG4 in embedded systems.  

Unlike previous approaches, we propose a novel off-
chip memory with little area overhead (3-7% for 32 bytes 
and 64 bytes data block line) and significant performance 
improvements, compared to previous works that propose 
expensive on-chip memory structures. Our study 
investigated off-chip memory structure to improve on-
chip memory performance, thus leaves flexibility for 
designer’s to allocate expensive on-chip silicon area. 
Furthermore, we improved power consumption of off-
chip memory. 

6 Conclusions 

In this study, we proposed the FSRAM mechanism 
that makes it possible to eliminate the use of address 
decoders during sequential accesses and also random 
accesses to a certain extent.  

We find that FSRAM can efficiently prefetch the 
linked data block into on-chip data cache and improve 
performance by 4.42% on average for an embedded 



        - 11 - 

 

system using 16KB data cache. In order to eliminate the 
potential cache pollution caused by the prefetching, we 
used a small fully associative cache called SAB. The 
experiments show FSRAM can further improve the 
tested benchmark programs performances to 8.85% on 
average using the SAB. Compared to the tagged next-
line prefetching, FSRAM_SAB constantly performs 
better and can still speedup performance when tnlp_PB 
cannot. This indicates that FSRAM_SAB is a more 
efficient prefetching mechanism. Furthermore, 
FSRAM_SAB reduces 53.1% of the data cache miss 
count on average with a negligible amount of extra 
memory traffic introduced by its prefetching mechanism. 
Although the data cache miss counts for most 
benchmarks are small, FSRAM_SAB is still able to 
improve performance because the sequential access itself 
is faster than random access, which proves the efficiency 
of the sequential access.  

FSRAM has both sequential accesses and random 
accesses. With the expense of negligible area overhead 
(3-7% for 32 bytes and 64 bytes data block line) from the 
link structure, we obtained a speedup of 15% of 
sequential access over random access from our designed 
RTL and SPICE models of FSRAM. Our design also 
shows that sequential access save 16% power 
consumption. 

The link structure/configuration explored in this paper 
is not the only way; a multitude of other configurations 
can be used. Depending upon the requirement of an 
embedded application, a customized scheme can be 
adopted whose level of flexibility during accesses best 
suits the application. For this, prior knowledge of access 
patterns within the application is needed. In the future, it 
would be useful to explore power-speed trade-offs that 
may bring about a net optimization in the architecture. 
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