
2031

1

Abstract—We present timing-driven partitioning and

simulated annealing based placement algorithms together with a
detailed routing tool for 3D FPGA integration. The circuit is first
divided into layers with limited number of inter-layer vias, and
then placed on individual layers, while minimizing the delay of
critical paths. We use our tool as a platform to explore the
potential benefits in terms of delay and wire-length that 3D
technologies can offer for FPGA fabrics. Experimental results
show on average a total decrease of 25% in wire-length and 35%
in delay, can be achieved over traditional 2D chips, when 10
layers are used in 3D integration.

Index Terms—Field programmable gate arrays, three-
dimensional circuits, routing, timing-driven placement.

I. INTRODUCTION
MALLER feature size and increasing transistor counts allow
the implementation of more complex and larger designs.

However, a number of new design problems emerge and old
problems become more difficult to solve. For example, global
wires dominate the delay and power budgets of circuits, and
signal integrity, IR-drops, process variations, and high
temperature gradients pose new difficult design problems.
Furthermore, shrinking time-to-market windows and ever-
increasing mask costs have reduced profit margins alarmingly.
In response to these mounting problems of integrated circuit
technology, various research groups have shown renewed
interest in 3D IC integration, and a number of successful
projects have shown the viability of the technology [15]-[21].
3D integration can significantly reduce wire-lengths (and
hence circuit delay), and boost yield. Furthermore, there has
been a trend towards employing IP-based design and
structured gate arrays (e.g., FPGA blocks) to partially solve
complex signal integrity and noise issues as well as time to
market constraints. 3D integration can particularly be useful
for FPGA fabrics. It can address problems pertaining to
routing congestion, limited I/O connections, low resource
utilization and long wire delays [1], [3].

For the standard cell technology, [13] recently proposed a
placement and global routing tool as well as a 3D layout
editor. The placement algorithm is based on recursive min-cut

Manuscript received June 12, 2004, revised November 28, 2004. This work

was supported in part by the Office of the Vice President for Research and
Dean of the Graduate School of the University of Minnesota, under grant
number 1546-522-5980.

The authors are with the Electrical and Computer Engineering Department,
University of Minnesota, Minneapolis, MN 55455 USA (e-mail:
{ababei,mhush,kia}@ece.umn.edu).

partitioning of the circuit represented as a hypergraph and
follows the same idea as in the Capo placer [23]. Interlayer via
minimization is sought by using min-cut partitioning for layer
assignment and wire-length (WL) minimization is done by
considering the aspect ratio during partitioning. The user can
select either hMetis [25] or PaToH [26] as the partitioning
algorithm. Their global routing algorithm is a concurrent
approach based on the idea in [24]. It was shown that 28%
(51%) wire-length improvement could be obtained with two
(five) layers, compared to [31] (the improvement is only 7%
(17%) when inter-layer via minimization is the main
objective). Wire-length reduction of up to 74% was reported
in [33]. Deng and Maly showed – using a placement algorithm
based on Capo – that the total wire-length can be reduced by
16% compared to flat placement, when two-layer integration
is used [27]. It is important to note that current technologies
allow for chemical mechanical polishing (CMP) substrate
thinning down to about 5-10µm, hence allowing for multiple
thin active device layers and interconnect levels be stacked on
top of each other, resulting in short inter-layer vias with small
aspect ratios [15].

Even though the idea of 3D integrated circuits is not new,
recent technological advances have made it a viable
alternative. However, there is a lack of efficient 3D CAD tools
that can exploit the potential gains that 3D integration can
offer. Furthermore, a number of important issues – such as
heat dissipation, thermal stress [32], and physical design
considerations – remain to be addressed for some 3D
architectures.

There has been some previous work proposing 3D FPGA
architectures. Borrowing ideas from multi-chip module
(MCM) techniques, Alexander et al. proposed to build a 3D
FPGA by stacking together a number of 2D FPGA bare dies
[1]. Electrical contacts between different dies would be made
using solder bumps or vias passing through the die. The
number of solder bumps that can fit on a die determines the
width and separation of vertical channels between FPGA
layers. Reference [2] proposed using optical interconnects to
construct a multi-layer FPGA. A straightforward extension of
a 2D architecture [6] is found in the Rothko 3D architecture,
which has routing-and-logic blocks (RLBs) placed on multiple
layers [5]. Fine-grained interlayer connections were added
outside each RLB, providing connections between cells above
and below, using a specially designed technique [8], [9]. An
improved version of the Rothko architecture – which
advocates putting the routing in one layer and the logic on
another for more efficient layer utilization – appears in [7]. It
was shown that the percentage of routed connections increases

Three-dimensional Place and Route for FPGAs
Cristinel Ababei, Student Member, Hushrav Mogal, and Kia Bazargan, Member, IEEE

S

2031

2

with an increase in the flexibility of switch boxes. Also,
computational density is higher compared to a 2D
architecture. Universal switch boxes for 3D FPGA design
were analyzed in [34]. It is important to point out that all of
these works assume that the inter-layer connectivity is
provided by vertical wire segments that connect each layer to
its adjacent layers only.

There has also been previous work on CAD tools for 3D
FPGA integration. Alexander et al. proposed 3D placement
and routing algorithms [3] for their architecture in [1]. Their
placement algorithm is partitioning-based followed by a
simulated annealing based refinement for total interconnect
length minimization. They reported savings of up to 23% and
14% in total interconnect length at the placement and routing
level respectively. An improved version of the placement
algorithm appears as Spiffy, which performs placement and
global routing simultaneously [3]. In the experimental
methodology presented in [7], placement was performed with
VPR [10] and routing was performed with a custom routing
tool [12].

Our goal is to present an efficient placement and detailed
routing tool for 3D FPGAs. Unlike previous works on 3D
FPGA architecture and CAD tools, we investigate the effect of
3D integration on delay, in addition to wire-length because
wire-length alone cannot be relied on as a metric for 3D
integration benefits. Apart from the commonly used single-
segment architecture, we also study multi-segment
architectures in the third dimension. Our placement algorithm
is partitioning-based, and hence scalable with the design size.
A circuit is first partitioned for min-cut minimization into a
number of sub-circuits equal to the number of layers for the
3D integration. Then, timing-driven partitioning-based
placement is performed on every layer starting with the top
layer and proceeding towards the bottom layer. The allowable
bounding box for nets on a particular layer is decided by the
layers above it, in order to minimize the 3D bounding-boxes
of the most critical nets. Constraints for any given layer are set
by the placement on layers above. The routing algorithm was
imported and adapted for the 3D architecture from the leading
academic placement and routing tool for 2D architectures,
VPR [10]. The main contribution of our work is as follows.
1) TPR: We developed a partitioning-based placement and

maze routing toolset called TPR (Three-dimensional
Place and Route). Its purpose is to serve the research
community in predicting and exploring potential gains
that the 3D technologies for FPGAs have to offer (similar
to the role VPR played in the development of FPGA
physical design algorithms). It shall be used as a platform,
which can be used for further development and
implementation of new ideas in placement and routing for
3D FPGAs.

2) SA-TPR: In addition to the partitioning-based 3D
placement tool, we have also developed a Simulated
Annealing based version of TPR (called SA-TPR) to
provide speed / quality tradeoffs.

3) Architectural analysis: We analyze potential benefits

that 3D integration can provide for FPGAs. More
specifically, we place and detailed route circuits onto 3D
FPGA architectures and study the variation in circuit
delay and total wire-length compared to their 2D
counterparts, under different 3D architectural
assumptions. The results of this study and similar studies
in future can guide researchers in designing high
performance 3D FPGA fabric architectures.

II. OVERVIEW OF TPR
The philosophy of our tool closely follows that of its 2D

counterpart, VPR [10]. The flow of the TPR placement and
routing CAD tool is shown in Fig. 1. The design flow starts
with a technology-mapped netlist in .blif format, which can be
generated using SIS [28]. The .blif netlist is converted to a
netlist composed of more complex logic blocks with T-VPack
[11]. The .net netlist as well as the architecture description file
are inputs to the placement algorithm. The placement
algorithm first partitions the circuit into a number of balanced
partitions equal to the number of layers for 3D integration.
The goal of this first min-cut partitioning is to minimize the
connections between layers, which translates into minimum
number of vertical (i.e., inter-layer) wires. The reason is that
in 3D technologies, the architecture is not isotropic (i.e., due
to their higher pitch, vertical vias are not as dense as the 2D
channels) and thus the placement and routing tools must
judiciously use scarce vertical routing resources. After
dividing the netlist into layers, TPR continues with the
placement of each layer in a top-down fashion.

The top layer is placed by unconstrained recursive
partitioning. The rest of the layers are then placed in turn by
recursive partitioning, but constrained to reduce the delay on
timing-critical nets: the terminals of the most critical nets,
which span more than one layer, are placed on restricted
placement regions. The restricted placement regions are
defined by the projection of the bounding-boxes defined by

 Circuit (.blif)

Architecture

T-VPack

Tech mapped
netlist (.net)

Partitioning, assignment to layers

Constraint driven placement
top-to-bottom layers

3D detailed routing

TPR

Placement and routing info

Fig. 1. Flow diagram of TPR: 3D placement and routing tool is similar to

VPR’s flow diagram.

2031

3

the terminals already placed in the layers above onto the
current layer. Hence, the 3D bounding-box of the critical nets
is minimized, similar to the 2D terminal alignment proposed
in [29]. Finally, global and detailed routing is performed using
the adapted 3D version of the VPR routing algorithm.

III. PLACEMENT ALGORITHM
The simplified pseudo-code of the partitioning-based

placement algorithm is shown in Fig. 2. In the first stage the
circuit netlist undergoes the initial min-cut partitioning and
assignment to layers. The second main phase is the actual
placement of cells on all layers. In this section we present in
more detail the two main steps of our placement algorithm.

A. Initial Partitioning and Assignment to Layers
The initial partitioning-into-layers step is performed using

the min-cut hMetis partitioning algorithm [25] and is further
illustrated in Fig. 3. This is motivated by the limitations
imposed by current technologies, which require us to
minimize the usage of vertical connections (it was also
observed in [14] that optimizing inter-layer interconnect is of
key importance for 3D integration technologies).

After the initial partitioning into layers we assign blocks
(i.e., partitions) to layers using a linear placement technique.
The goal of this step is to minimize both the total vertical
wire-length and maximum cut between any two adjacent
layers. For example, in Fig. 4, we would like to assign the five
blocks (as a result of the initial 5-way min-cut partitioning) to
layers of the 3D architecture as in the case labeled “Good”
rather than in the case labeled “Bad”. That is because the good
layer assignment minimizes both the total wire-length and
maximum cut between adjacent layers.

The objective of minimizing the total vertical wire-length
and maximum cut between any two adjacent layers is
equivalent to minimizing the bandwidth of the EV-matrix
associated to the layer-blocks graph which resulted from the
above partitioning [38]. Edges of this graph have weights
given by the number of edges of the initial netlist graph,
which span different layer-blocks. The EV-matrix is an m×n
matrix where m – the number of rows – is the number of
edges in the graph and n – the number of columns – is the
number of nodes. An element a(i, j)=1 in the matrix is non-
zero if the j-th node is a terminal of the i-th net. If a node is
not a terminal for a net, the corresponding EV-matrix element
is zero. The bandwidth of a matrix is defined as the maximum
distance between first and last non-zero entries, among all
rows. An example of such a layer-blocks graph and its
associated EV-matrix are presented in Fig. 5. In this example
the bandwidth equals four due to second row, which has its
first non-zero entry in the second column and its last nonzero
entry in the sixth column.

The bandwidth minimization problem is known to be NP-
complete [38] and a solution for the layer assignment problem
may not be optimal in terms of both objectives of wire-length
and maximum cut between adjacent layers. Therefore, for this
step, we use an efficient heuristic [37], which is able to find
solutions with very good trade-off between wire-length and
maximum cut. This technique is briefly described in what
follows using the graph example shown in Fig. 5. We first
build the EV-matrix, and then transform it into an as-close-as-
possible to a band-form matrix. This problem is denoted as
B(EV-matrix)-min problem (i.e., minimization of the
bandwidth of the EV-matrix problem). The procedure to solve
this problem uses row and column flips in order to sort rows

Input:
 Tech mapped netlist .net G(V,E)
 Architecture description file
Algorithm:
1. Initial min-cut partitioning into layers

for via minimization
2. For all layers i = 0 to L-1 from top to bottom
3. Do partitioning based placement of layer i
4. Update timing slacks
5. Re-enumerate critical paths
6. Greedy overlap removal
7. Constraint generation for layers below
8. Write .p placement output file

Fig. 2. Pseudo-code of TPR placement algorithm.

Initial netlist graph Min-cut partitioning and
assignment to layers

Fig. 3. Illustration of initial partitioning and assignment to layers.

Good
Total cut # =14

3
1

2 4

1

3
1

2 4
1

Bad
Total cut # =28

OK

Fig. 4. Illustration of good and bad initial linear placement of partitions into
layers.

2 1

6

34 5

a
b

c d
e

Vertices

Ed
ge

s
 1 2 3 4 5 6
a 1 0 1 0 0 0
b 0 1 0 0 0 1
c 0 0 1 1 0 0
d 0 0 1 0 0 1
e 0 0 0 0 1 1

EV-matrix
Fig. 5. Layer-blocks graph and its associated EV-matrix.

2031

4

and columns such that non-zero elements are moved towards
the main diagonal. For example, for the matrix shown in Fig.
6, in order to “drift” non-zero elements from the upper half
towards the main diagonal (i.e., from right to left) column
flips are performed between columns 2 and 3 and then column
6 is moved between columns 3 and 4. This technique is
performed to move non-zero elements from right to left and
from top to bottom (for the upper right half) and from left to
right and from bottom to top (for the lower left half). When
the above procedure finishes, the example from Fig. 5
becomes as described in Fig. 6. A more detailed description
can be found in [37]. The goal of getting the matrix to a band-
form (which translates into a best linear ordering) serves two
objectives:

--Cutsize minimization – by having all 1’s in the matrix
clustered along the main diagonal, the cutsize (the number of
nets cut by a vertical cut applied between any two consecutive
nodes in the linear arrangement) is minimized everywhere in
the linear arrangement

-- WL minimization – by minimizing the bandwidth
(maximum distance spanned by any of the nets) of the EV-
matrix, the total wire-length of all nets is minimized.

B. Placement Method
After the initial layer assignment, placement is performed

on each layer starting with the top layer (layer 0) and
continuing downwards till the last layer (layer L-1). The
placement of every layer is based on edge-weighted quad-
partitioning using the hMetis partitioning algorithm, and is
similar to the approach in [29], which has the same quality as
VPR but at 3-4 times shorter run times. Edge weights are
usually computed inversely proportional to the timing slack of
the corresponding nets. However, we also selectively bias
weights of the most critical nets. The set of critical nets is
comprised of edges on the current k-most critical paths. The
placement algorithm has an integrated static timing analysis
engine as well as a path enumeration algorithm [30]. The
delay of the circuit (and therefore slacks) and the set of the
most critical paths are periodically updated based on the delay
assigned to all current cut nets by the partitioning engine. This
ensures accurate estimation of the circuit delay as the
placement algorithm progresses. The rate of delay update and

critical paths re-enumeration is dictated by the runtime /
estimation accuracy trade-off.

The recursive partitioning of a given layer stops when each
placement region has less than four blocks. Complete overlap
removal is done using a greedy heuristic which moves non-
critical blocks (i.e., not on any critical paths) to the closest
available empty location. When the placement of a layer is
finished, we propagate placement constraints for the most
critical nets. For example, assuming that layer k0 is the first
layer (from the top) in which some terminals of a critical net
are placed, the bounding box of the net is cumulatively
projected to lower layers k0+1 through L-1 as a placement
constraint for the rest of the terminals of the net in these
layers. In special cases such as when two terminals are placed
very closely on layer k0 and the projected bounding box on
layers below is not large enough to accommodate all the
terminals, there may be more terminals constrained inside a
region which would not have enough CLB’s available to
accommodate all the constrained terminals. If this situation is
relatively relaxed (meaning that there are not too many such
terminals or the constraint area is not too small) then they will
translate in overlaps which will be removed at the end of the
recursion. If the situation is such that more cells cluster
together by being constrained in a relatively small area, then
they will be eventually split during the partitioning process so
that the unbalance factor will be satisfied but they will still be
in proximity of each other. In both the above cases projected
terminals will end up being close to each other.

In layers that have net bounding box constraints, terminals
that have placement restrictions are fixed in appropriate
partitions before a call to the hMetis partitioning engine. This
technique explicitly minimizes the 3D bounding-boxes of
critical nets, which leads to minimization of the total wire-
length and circuit delay. Steps 3 to 8 of the algorithm shown
in Fig. 2 are performed for all layers, and when the last layer
is finished the circuit is completely placed.

IV. SA-TPR: SIMULATED ANNEALING BASED 3D PLACEMENT
In order to analyze the impact of the placement approach

(such as partitioning-driven presented in the previous section)
on the comparison between 2D and 3D cases we also extended

 1 2 3 4 5 6
a 1 0 1 0 0 0
b 0 1 0 0 0 1
c 0 0 1 1 0 0
d 0 0 1 0 0 1
e 0 0 0 0 1 1

Initial: WL=11, Max-cut=3 Final: WL=7, Max-cut=2

 1 3 2 6 4 5
a 1 1 0 0 0 0
b 0 0 1 1 0 0
c 0 1 0 0 1 0
d 0 1 0 1 0 0
e 0 0 0 1 0 1

 1 3 2 6 4 5
a 1 1 0 0 0 0
c 0 1 0 0 1 0
d 0 1 0 1 0 0
b 0 0 1 1 0 0
e 0 0 0 1 0 1

 1 4 3 2 6 5
1 1 0 1 0 0 0
3 0 1 1 0 0 0
4 0 0 1 0 1 0
2 0 0 0 1 1 0
5 0 0 0 0 1 1

2 1 63 4 5
a

b
c

d e 41 53 2 6
a b

c
d e

Vertices

Ed
ge

s

Fig. 6. Illustration of the EV-matrix band-width minimization for both wire-length and maximum cut between adjacent layers.

2031

5

the simulated annealing based placement algorithm of VPR
[10] to 3D. Our simulated annealing engine based placement
algorithm is fully 3D integrated and is based on the model that
VPR uses for its 2D placement. The user specifies the number
of layers as well as the annealing schedule to use. As in VPR,
our SA engine can place circuits with constraints of both wire-
length and timing.

Wire-length of a net is calculated as the weighted sum of its
projected 2D bounding box and its vertical span. The weight
on the vertical span is set to a high value to discourage usage
of scarce vertical vias. The cost of a net e is described by the
equation below.

)(_)(

2
)(

3
elayersNum

z
Spane

D
Costqe

D
Cost ⋅+⋅+⋅= βα (1)

where q is a correction factor to 2D bounding box

computation, which accounts for nets that have more than 3
terminals (the original VPR code uses this factor); Cost2D is
the half-perimeter bounding box of the projection of all the
terminals of the net; Spanz is the vertical span of the net, and
Num_layers is the number of layers on which terminals of net
e are placed. Factors α and β are used to constrain the
maximum length of vertical segments as well as the vertical
channel density. To see the importance of using these factors,
let us consider the two placements in Fig. 7.

The two placement scenarios would be treated identically if
we did not separately consider both the vertical span of a net,
and the number of layers in which its terminals are placed.
Each of these cost components are scaled by appropriate
scaling factors: α, which discourages placing the terminals of
a net far apart in the z dimension (otherwise the routing of the
net would require increased length vertical vias), and β, which
restricts the number of vertical vias (vertical channel density is
lower than the horizontal channel density and β reflects that
ratio). The placement on the left in Fig. 7 is preferred to the
one on the right, as it could potentially use only one vertical
segment of length two to connect the terminals in different
layers. The placement on the right is likely to use more
vertical routing resources.

Computation of the timing cost of a net essentially follows
the approach of VPR (timing criticalities for nets are
computed based on slacks). The modification for the 3D case

is as follows. First, the source-sink connection (whose delay
we compute) is projected onto 2D and its separation ∆x and
∆y in the two dimensions is calculated. Delay lookup tables
similar to VPR are used to calculate these values wherein
unlimited routing resources are assumed. To accommodate a
3D structure, the separation of the connection in the third
dimension is found and its delay is looked up using only one
dimension of the delay tables (i.e., a net that spans a distance
of ∆z in the vertical dimension, has the same delay as a 2D net
with (∆z,0) bounding box). Finally, the annealing engine
constrains movement in x and y directions similar to VPR
(initially movement is allowed across the entire dimension of
the chip and then gradually it is shrunk to neighboring
CLB’s). Movement in the third dimension is unrestricted in
order to fully explore the vertical dimension.

V. ROUTING ALGORITHM

A. Description of the Routing Algorithm
The 3D FPGA architecture – described in the architecture

file – is represented as a routing resource graph. Each node of
the routing resource graph represents a wire (horizontal tracks
in the x and y channels of all layers and vertical vias in the z
channels) or a logic block (i.e., CLB) input or output pin. A
directed edge represents a unidirectional switch (such as a tri-
state buffer). A pair of directed edges represents a bi-
directional switch (such as a pass transistor). An example of a
routing resource graph construction is shown in Fig. 8.

TPR 3D detailed router is based on the Pathfinder
negotiated congestion algorithm [35]. The routing is a rip-up
and re-route iterative process which routes every net by the
shortest path using a breadth-first-search technique. The cost
of overused routing resources is gradually increased so that

Num_layers(e) = 2
Spanz = 2

Num_layers(e) = 3
Spanz = 2

Fig. 7. Two possible placements of the same net, showing different number
of layers occupied.

LUT LUT
B_in1 B_in2 A_out

LUT
C_in1

Wire 2

Wire 1
Wire 4

Wire 3

Wire 6

Wire 5

Switch-box

Source A_out Wire 1 Wire 3 B_in1

B_in2

Sink

Wire 2 Wire 4

Wire 5
Wire 6

Sink C_in1

Fig. 8. Illustration of the routing graph construction.

2031

6

the algorithm forces nets with alternative routes to avoid
overused routing resources, leaving behind only the net,
which most needs a given resource. We add extra penalties to
bends of a route created by a horizontal track and a vertical
via as well as to vias themselves in order to discourage the
routing engine to prefer vias and therefore to avoid a net
placed totally in one layer to be routed using tracks in
different layers. This will make, for example, the routing
engine find the routing to the left shown in Fig. 9 rather than
the routing solution shown to the right.

TPR router can find very small horizontal and vertical
channel widths (CWs) for which the circuit is fully routable.
Vertical channel width starts with a value specified by the
architecture file and is incremented every time when the
routing fails for a pre-determined number of different values
for the horizontal channel width.

B. Computation of Total Foot print Area
In order to be able to compute the foot-print chip area after

detailed routing is completed for 3D architectures (simulations
results reported in Section 6) we use a new formula, which is
the adaptation to 3D of the computations performed in 2D.
Footprint area is calculated as total area divided by number of
layers. Generally, the overall chip area is the summation of the
area taken by logic (CLBs) and routing resources (switch
boxes, connection boxes, track segments).

RoutingLogic AreaAreaArea += (2)

The above formula reduces to the following simplified

equation (we omitted details for brevity), for 2D case (see
[36], pages 207-217):

2

212)]([WHCWAreaCHCWCAreaArea muxLUTD ⋅⋅+⋅+= (3)

where:

  22)(log6)(2 −+⋅= HCWHCWHCWAreamux (4)

represents the area of all minimum-width transistors

required by a multiplexer with HCW inputs [36]. Such
multiplexers are used to connect tracks in the routing channels
to the input pins of CLBs and because of that we need
multiplexers with a number of inputs equal to the horizontal
channel with, HCW. C1, C2 are functions of track-buffer area,
number of input pins within an FPGA tile, number of input

pins within a tile which share a common buffer, output pin
buffer area, number of pass transistors corresponding to an
output pin of a CLB, buffer (inside switch boxes) area, and Fs
(Fs=3 for 2D) [36]. AreaLUT is the total area of a CLB, which
may contain one or more LUTs. W is the width of the FPGA
chip measured as a multiple of inter-CLB distances (assumed
to be equal to the height of the FPGA chip).

The overall chip area computation, extended to the 3D case,
is given by the following expression:

2
43

2
2

'
13

)1(])([
)]([

−⋅⋅⋅+−⋅+
⋅⋅⋅+⋅+=

WLVCWCVCWHCWC
WLHCWAreaCHCWCAreaArea muxLUTD (5)

432
'
1 ,,, CCCC are functions of track-buffer area for input

or output pins of a CLB, number of input pins within an
FPGA tile, number of input pins within a tile which share a
common buffer, area of all pass transistors corresponding to
an output pin of a CLB, buffer (inside switch boxes) area, and
Fs (Fs=3 for 2D and Fs=6 for 3D). HCW, VCW are horizontal
and vertical channel widths. L is number of layers for 3D
architectures.

VI. SIMULATION RESULTS

A. 3D Architectures
Our goal is to study the variation of the circuit delay and the

total wire-length as a function of the number of layers when
the delay of an inter-layer wire (i.e., vertical via) has different
values. We considered two different architectures: Sing-Seg
and Multi-Seg. In both architectures, each horizontal layer has
a routing architecture that resembles a simplified version of
the Xilinx Virtex II architecture (they have wire segments of
lengths 1, 2, and 6, as well as long lines in each layer).
However, Sing-Seg has vertical (inter-layer) vias of length one
only, while Multi-Seg has vertical vias that span 1, 2, and all
planes. Length one vertical segment is assumed to have the
same delay and wire-length as 2D unit-length segments. This
is a reasonable assumption, because 3D fabrication methods
such as [15] can create inter-layer vias that are merely 5-10µm
long. In such vertical segments, the switch delay dominates
the delay of the segment, which is similar to the 2D case. Our
architectures have one 4-input LUT per CLB as this is a
common assumption made in most previous works. We do not
include a description of the LUT because it is essentially the
same as for 2D cases and there are many previous works
describing them such as [36]. Vertically, our architectures are
unique by being vertical in the third dimension, but they are
also along the same lines as traditional FPGAs: either
containing vias of length one or vias spanning more layers.
The switch-box in our architecture is different from the 2D
case by the fact that some tracks are connecting to the vertical
vias. The switch-box will be described in more detail later on
(see Fig. 12). We would like to mention that these
architectures are very complex and our implementation is very
flexible supporting any combination of segment and via

Source Sink

Fig. 9. Illustration of two routings for a two terminal net.

2031

7

lengths as well as any known type of switch-box. We
randomly placed IO terminals on the periphery of every layer
after the partitioning and assignment to layers is performed.
However, the user can provide locations for IO terminals.

B. Delay Results of TPR and SA-TPR Algorithms
We cannot compare our results to any of the previous

works for a couple of reasons. First, our place and route tool is
the first to report comprehensive results on wire-length and
circuit delay as well as on all other metrics such as chip area,
horizontal and vertical channel widths, and run-times on all
twenty circuit benchmarks of the VPR package. We cannot
compare to the only previous existing results reported in [3] or
[4] because the authors of [3] used only six circuit
benchmarks (unavailable to us) different from those we use
(except Apex2). Moreover, the authors of [3] report only wire-
length and minimum channel width results obtained for a very
simple architecture, which only contains horizontal and
vertical routing segments of length one. This is in contrast
with our architectures, which have mixed routing resources
both horizontally and vertically. The authors of [3] use only
four layers whereas we report results for a range between two
and ten layers. The authors of [4] report results for wire-length
only for a number of layers between two and four, using
unknown circuit benchmarks and architecture, most likely
similar to the one used in [3] and different from our more
complex architectures. Since we are providing the source code
and benchmarks that we use in this paper on the World Wide
Web (see the Conclusion Section), other researchers can
easily compare their results to ours.

We placed and detailed routed all circuits (see Table I) on a
number of layers varied between one (the 2D case) and ten.
We recorded the average circuit delay and the average total
wire-length of four different runs for each circuit. The
comparison between the variation of the average delay values
obtained using partitioning-based (TPR) and SA-based (SA-
TPR) placement algorithms is illustrated in Fig. 10. We
observe that delay decreases by about 30% for both

architectures using either placement algorithm compared to
the 2D case, although architecture Multi-Seg shows slightly
better delays, as the number of layers increases beyond six.
However, the difference is not large, mainly because the
routing algorithm considers fully buffered routing resources,
which leads to comparable delay values for both architectures.
Delay achieved using the SA-based placement algorithm is
smaller compared to the delay achieved using the partitioning-
based placement algorithm, which is not surprising, because
annealing takes longer runtimes.

We noticed that the amount of delay decrease compared to
the 2D case for different circuits and same number of layers
can vary. For example, delay decreases by 27% for Pdc
benchmark but only 18% for Spla benchmark when nine
layers are used. We suspect this is due to the internal structure
(such as higher connectivity) of Pdc as opposed to Spla,
which leads to a larger fraction of nets spanning different
number of layers. During our experiments we also noticed that
benchmarks with large number of terminals (relative to the
number of cells), such as Des (see Table I), tend to lead to
more delay decrease compared to 2D case. This can be
explained by the fact that in the 2D case, the chip size
necessary to accommodate all terminals is bigger than if the
circuit had less terminals (i.e., final chip will have more
“white-space”) and therefore delays of nets involving input or
output terminals will have larger routing delays in the 2D
case.

C. Wire-length Results of TPR and SA-TPR Algorithms
Wire-length results of TPR on Multi-Seg architecture are

shown in Fig. 11.
Results for architecture Sing-Seg and using the SA-based

placement algorithm are similar. We observe that wire-length
after detailed routing decreases by 25% on average as the
number of layers increases. If the length of the inter-layer via
increases, then the total wire-length decrease will be less. That
is mainly because the fraction of the vertical wire-length
relative to the total wire-length will become significant and

Fig. 10. Variation of delay as reported after detailed routing.

Fig. 11. Variation of average wire-length after detailed routing as a

function of number of layers, using both TPR and SA-TPR placement
algorithms.

2031

8

also the average net delay will increase due to bending (i.e.,
switches) of nets spanning more layers. Wire-length achieved
using the SA-based placement algorithm is smaller compared
to the wire-length achieved using the partitioning-based
placement algorithm.

We note that the decrease in total wire-length can have
favorable impact on the routing congestion (hence channel
width), as well as power dissipation (especially due to the fact
that most of the power dissipated in FPGAs is due to
interconnects, which account for more than 80% of the total
area) as predicted in [22].

The decrease in total WL is directly related to a decrease of
the average net wire-length, which in turn relates to the
overall usage of routing resources and therefore to the circuit
delay. Variations of the average net wire-length, and other
metrics of interest are shown in Table II and Table III.
Routing area counts the exact number of pass transistor and
SRAM cells that control them, as suggested in [36]. We
observe that overall area (i.e., chip foot-print area multiplied
by the number of layers) slightly increases for a small number
of layers. This increase is due to the higher connectivity inside
of a switch box (i.e., a track entering a 3D switch box will
have to connect to 5 correspondents as opposed to only 3 in
the 2D case; see Fig. 12). However, routing area decreases as
the number of layers increases for Multi-Seg architecture, as a
direct consequence of a decrease of the horizontal channel
width (HCW) required for successful routing. Routing area
increase is overall less than 10% when SA-based placement
algorithm is used. Except for cases where only few layers are
used, CW decreases significantly. The reason is that the
number of vertical connections is minimized. In other words,
the partitioning algorithm is able to find the clustering
structure of the circuit and practically divide the initial netlist
into a number of smaller circuits with similar internal structure
(in terms of connectivity or Rent’s parameter) to the initial
one. As a consequence, the horizontal channel width for each
layer will be in the same range as when the initial netlist is

placed in 2D.
We observe that, overall, run-times of SA-based placement

are about twice the run-times of detailed routing (see Table 1)
and about an order of magnitude longer than run-times of
partitioning-based placement. Therefore, partitioning-based
placement can be used for efficient solution space (especially
for big circuits) and different architectural assumptions

exploration. Also, the vertical channel widths reported in
Table I are 1/5 of the horizontal channel widths, which
demonstrates that our layer partitioning and linear placement
as well as the routing algorithm are very well tuned to
minimize the use of vertical tracks. Another advantage of
using fewer vertical tracks greatly reduces the required area
for switchboxes.1

D. Experiments Using Mixed Partitioning and SA Based
Placement Algorithm
We also implemented a mixed partitioning and simulated-

annealing placement algorithm. The reason for that is that the
initial partitioning and assignment to layers does a very good
job at minimizing the amount of vertical vias. This technique
combined with SA-based placement on each individual layer
(under the restriction of not moving cells between layers)
leads to high quality placements with minimum vertical
connectivity, which is desirable due to the limitations imposed
by current technologies, which require us to minimize the
usage of vertical connections. As we can see in Table II and
Table III, this strategy indeed leads to a decrease in wire-
length whereas delay is virtually the same compared to full
SA placement, which results into slightly smaller horizontal
channel width. These results show that the quality of our layer
partitioning and linear placement is very good. These
experiments also demonstrate that a good initial solution for
the annealing based algorithm can be very important and can
lead to better results as opposed to a randomized initial
placement.

VII. CONCLUSION
Benefits which 3D FPGA integration can offer were

analyzed using a new placement and detailed routing tool.
Placement can be done using either partitioning-based or
simulated annealing based approach. Simulation experiments,
after detailed routing, showed potential total decrease of 25%
for wire-length and 35% for delay using either the
partitioning-based algorithm or the SA-based algorithm. We
observed that the Multi-Seg architecture shows slightly better
delay characteristics compared to the Sing-Seg architecture.

Source code and documentation of the implementation of
the algorithms presented in this paper are available for
download at: http://www.ece.umn.edu/users/kia.

REFERENCES
[1] A. J. Alexander, J. P. Cohoon, Jared L. Colflesh, J. Karro, and G.

Robins, “Three-Dimensional Field-Programmable Gate Arrays,” Proc.
Intl. ASIC Conf., 1995, pp. 253-256.

[2] J. Depreitere, H. Neefs, H. V. Marck, J. V. Campenhout, D. B. R. Baets,
H. Thienpont, and I. Veretennicoff, “An Optoelectronic 3-D Field
Programmable Gate Array,” Proc. Intl. Workshop on Field-
Programmable Logic and Applications, 1994.

[3] A. J. Alexander, J. P. Cohoon, Jared L. Colflesh, J. Karro, E. L. Peters,
and G. Robins, “Placement and Routing for Three-Dimensional

1 A vertical/horizontal intersection with Fs=3 requires 6 (4 choose 2) switches,
while an intersection with Fs=5 requires 15 (6 choose 2) switches. Each switch
has a pass transistor, an SRAM cell, and possibly a buffer.

2D Switch-box 3D Switch-box

Fs=3

Fs=5

Fs=3

Fs=3

Fs=5 Fs=3

Fs=3

Fig. 12. Third dimension adds vertical tracks which require five connections.

2031

9

FPGAs,” Fourth Canadian Workshop on Field-Programmable Devices,
pp. 11-18, 1996.

[4] J. Karro and J. P. Cohoon, “A spiffy tool for the simultaneous placement
and global routing for three-dimensional field-programmable gate
arrays,” Ninth Great Lakes Symposium on VLSI, 1999, pp. 226-227.

[5] M. Leeser, W. Meleis, M. Vai, S. Chiricescu, W. Xu, and P. Zavracky,
“Rothko: A Three-Dimensional FPGA,” IEEE Design Test Computers,
1998, pp. 16-23.

[6] G. Borriello, C. Ebeling, S. Hauck, and S. Burns, “The Triptych FPGA
Architecture,” IEEE Trans. On VLSI Systems, Vol. 3, No. 4, 1995, pp.
491-501.

[7] S. Chiricescu, M. Leeser, and M. M. Vai, “Design and Analysis of a
Dynamically Reconfigurable Three-Dimensional FPGA,” IEEE Trans.
VLSI Systems, Vol. 9, No. 1, Feb. 2001, pp. 186-196.

[8] P. Zavracky, M. Zavracky, D. Vu, and B. Dingle, “Three-Dimensional
Processor Using Transferred Thin Film Circuits,” U.S. Patent
Application, 08-531-177, Jan. 1977.

[9] P. Sailer et al., “Three-Dimensional Circuits Using Transferred Films,”
IEEE Circuits and Devices, Vol. 13, No. 6, Nov. 1997, pp. 27-30.

[10] V. Betz and J. Rose, “VPR: A New Packing Placement and Routing
Tool for FPGA Research,” Field-Programmable Logic App., 1997, pp.
213-222.

[11] A. Marquardt, V. Betz, J. Rose, “Using Cluster-Based Logic Blocks and
Timing-Driven Packing to Improve FPGA Speed and Density,” FPGA,
1999, pp. 37-46.

[12] S. Chiricescu, “Parametric Analysis of a Dynamically Reconfigurable
Three-Dimensional FPGA,” Ph.D. Dissertation, Northeastern Univ.,
Boston, MA, Dec. 1999.

[13] S. Das, A. Chandrakasan, and R. Reif, “Design Tools for 3-D Integrated
Circuits,” Proc. ACM/IEEE ASP-DAC, 2003.

[14] S. Das, A. Chandrakasan, and R. Reif, “Three-Dimensional Integrated
Circuits: Performance Design Methodology and CAD Tools,” Proc.
ACM/IEEE ISVLSI, 2003.

[15] R. Reif, A. Fan, K. - N. Chen, and S. Das, “Fabrication Technologies for
Three-Dimensional Integrated Circuits,” Proc. International Symposium
on Quality Electronic Design (ISQD), 2002.

[16] K. Banerjee, S. J. Souri, P. Kapur, and K. C. Saraswat, “3-D ICs: A
novel chip design for improving deep submicron interconnect
performance and systems-on-chip integration,” Proceedings of the IEEE,
Vol. 89, May 2001, pp. 602-633.

[17] J.A. Davis, R. Venkatesan, A. Kaloyeros, M. Beylansky, S.J. Souri, K.
Banerjee, K.C. Saraswat, A. Rahman, R. Reif and J.D. Meindl,
“Interconnect limits on gigascale integration (GSI) in the 21st century,”
Proc. IEEE, Vol. 89, Mar. 2001, pp. 305-324.

[18] “SoCs are ‘dead’ Intel manager declares,” February 12, 2002. [Online].
Available: http://www.eet.com/semi/news/OEG20030212S0038.

[19] J. Burns, L. McIlrath, J. Hopwood, C. Keast, D. P. Vu, K.Warner, and P.
Wyatt, “An soi-based three dimensional integrated circuit technology,”
IEEE International SOI Conference, 2000, pp. 20-21.

[20] K. W. Lee, T. Nakamura, T. Ono, Y. Yamada, , T. Mizukusa, H.
Hashimoto, K. T. Park, H. Kurino, and M. Koyanagi, “Three-
dimensional shared memory fabricated using wafer stacking
technology,” in Technical Digest of the International Electron Devices
Meeting, 2000, pp. 165-168.

[21] K. W. Guarini, A. W. Topol, M. Leong, R. Yu, L. Shi, M. R. Newport,
D. J. Frank, D. V. Singh, G. M. Cohen, S. V. Nitta, D. C. Boyd, P. A.
O’Neil, S. L. Tempest, H. B. Pogpe, S. Purushotharnan, and W. E.
Haensch, “Electrical integrity of state-of-the-art 0.13u m SOI CMOS
devices and circuits transferred for three-dimensional (3D) integrated
circuit (IC) fabrication,” in Technical Digest of the International
Electron Devices Meeting, 2002, pp. 943-945.

[22] A. Rahman, S. Das, A. Chandrakasan, and R. Reif, “Wiring Requirement
and Three-Dimensional Integration of Field-Programmable Gate
Arrays,” Proc. ACM/IEEE SLIP, 2001.

[23] A. E. Caldwell, A. B. Kahng, and I. L. Markov, “Can Recursive
Bisection Alone Produce Routable Placements?,” Proc. ACM/IEEE
DAC, pp. 477-482, 2000.

[24] M. Burnstein and R. Pelavin, “Hierarchical Wire Routing,” IEEE Trans.
CAD, Vol. 2, No. 4, 1983, pp. 223-234.

[25] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multi-level
Hypergraph Partitioning: Applications in VLSI Design,” Proc.
ACM/IEEE DAC, 1997, pp. 526-529.

[26] U. V. Catalyurek and C. Aykanat, “Hypergraph-partitioning-based
Decomposition for Parallel Sparse-matrix vector Multiplication,” IEEE
Trans. Parallel and Distributed Systems, Vol. 10, No. 7, 1999, pp. 673-
693.

[27] Y. Deng and W. P. Maly, “Interconnect Characteristics of 2.5-D System
Integration Scheme,” Proc. ACM/IEEE ISPD, 2001. , pp. 171-175

[28] E. M. Sentovich et al., “SIS: A System for Sequential Circuit Synthesis,”
Technical Report UCB/ERL M92/41, University of California, Berkeley,
1992.

[29] P. Maidee, C. Ababei and K. Bazargan, “Fast Timing-driven
Partitioning-based Placement for Island Style FPGAs,” Proc. ACM/IEEE
DAC, 2003, pp. 598-603.

[30] Y-C. Ju, R.A. Saleh, “Incremental Techniques for the Identification of
Statically Sensitizable Critical Paths,” Proc. ACM/IEEE DAC, 1991.

[31] P. H. Madden, “Reporting of Standard Cell Placement Results,” Proc.
ACM/IEEE ISPD, 2001, pp. 30-35.

[32] B. Goplen and S. Sapatnekar, “Efficient Thermal Placement of Standard
Cells in 3D ICs using a Force Directed Approach,” Proc. ACM/IEEE
ICCAD, 2003, pp. 86-89.

[33] S. T. Obenaus and T. H. Szymanski, “Gravity: Fast Placement for 3-D
VLSI,” ACM Trans. on Design Automation of Electronic Systems
(TODAES), Vol. 8, No. 3, July 2003, pp. 298-315.

[34] G. – M. Wu, M. Shyu, and Y. – W. Chang, “Universal Switch Blocks for
Three-Dimensional FPGA Design,” Proc. FPGA, 1999, pp. 254-259.

[35] C. Ebeling, L. McMurchie, S. A. Hauck, and S. Burns, “Placement and
Routing Tools for the Trptych FPGA,” IEEE Trans. VLSI Systems, Vol.
3, No. 4, Dec. 1995, pp. 472-483.

[36] V. Betz, J. Rose, and A. Marquardt, “Architecture and CAD for Deep-
Submicron FPGAs,” Kluwer Academic Publishers, 1999.

[37] C. Ababei and K. Bazargan, “Non-contiguous Linear Placement for
Reconfigurable Fabrics,” Proc. Reconfigurable Architectures Workshop
(RAW), 2004.

[38] J. Díaz, J. Petit, M. Serna, “A survey of graph layout problems,” ACM
Computing Surveys Journal, 2002, pp. 313-356.

2031

10

TABLE I
SIMULATED CIRCUITS: STATISTICS, VERTICAL CHANNEL WIDTH (VCW), AND RUN-TIME
 VCW CPU (s)

Circuit No. CLBs No. IOs TPR SA-
TPR

Par-based
placement

SA-based
placement

Detailed
Routing

Ex5p 1064 71 6 5 7 85 77
Apex4 1262 28 6 5 8 105 76
Misex3 1397 28 6 5 9 55 84
Alu4 1522 22 5 5 16 145 61
Des 1591 501 5 5 11 227 69
Seq 1750 76 5 5 12 212 114
Apex2 1878 42 5 5 13 243 148
Spla 3690 62 5 6 37 912 532
Pdc 4575 56 7 7 60 1354 1039
Ex1010 4598 20 4 5 56 1238 273
Dsip 1370 426 5 5 28 154 34
Tseng 1407 174 5 5 8 70 14
Diffeq 1497 103 5 5 14 154 46
Bigkey 1707 426 5 5 22 209 48
S298 1931 10 5 5 23 208 53
Frisc 3556 136 5 5 56 881 227
Elliptic 3604 245 5 5 74 818 142
S38417 6406 135 5 5 133 2000 210
S38584.1 6447 342 5 5 230 2034 268
Clma 8383 144 5 5 199 892 950
 Sum 1016 11996 4465

TABLE II
AVERAGE OF DELAY, WIRE-LENGTH (WL), HORIZONTAL CHANNEL WITH (HCW), AND ROUTING AREA FOR SING-SEG ARCHITECTURE

TPR SA-TPR Combined Partitioning + SA Place Num
layers Delay

(× 10-7) WL Routing
area HCW Delay

(× 10-7) WL Routing
area HCW Delay

(× 10-7) WL Routing
area HCW

1 1.62 107087.6 1 1 1.3 79553.76 1 1 1.27 79626.34 1 1
2 1.52 98808.3 1.088 0.92 1.22 76072.43 1.016 0.95 1.18 73663.53 1.113 0.99
3 1.37 93162.93 1.097 0.89 1.18 74786.49 1.096 0.96 1.13 69913.86 1.114 0.90
4 1.3 87410.88 1.096 0.85 1.12 73277.69 1.091 0.93 1.1 67746.77 1.108 0.85
5 1.28 84741.11 1.041 0.77 1.08 71817.41 1.117 0.93 1.06 68154.17 1.119 0.85
6 1.22 81707.36 1.089 0.74 1.06 70975.92 1.106 0.91 1.05 67045.21 1.121 0.81
7 1.22 80143.2 1.065 0.70 1.05 69902.95 1.116 0.89 1.03 65753.97 1.119 0.78
8 1.2 78589.86 1.005 0.71 1.03 69589.44 1.096 0.87 1.01 67361.31 1.117 0.80
9 1.21 78456.85 1.018 0.67 1.04 68800.65 1.100 0.87 1.04 66559.84 1.117 0.77
10 1.19 78643.86 1.072 0.69 1.01 68411.58 1.084 0.85 1.02 66185.75 1.122 0.77

TABLE III
AVERAGE OF DELAY, WIRE-LENGTH (WL), HORIZONTAL CHANNEL WITH (HCW), AND ROUTING AREA FOR MULTI-SEG ARCHITECTURE

TPR SA-TPR Combined Partitioning + SA Place Num
layers Delay

(× 10-7) WL Routing
area HCW Delay

(× 10-7) WL Routing
area HCW Delay

(× 10-7) WL Routing
area HCW

1 1.62 107087.6 1 1 1.28 79410.53 1 1 1.27 79626.34 1 1
2 1.52 98808.3 1.088 0.92 1.2 76088.11 1.015 0.96 1.18 73663.53 1.113 0.99
3 1.38 93162.93 1.096 0.89 1.19 75304.16 1.068 0.96 1.14 70729.52 1.112 0.91
4 1.35 87410.88 1.053 0.83 1.12 73796.21 1.075 0.95 1.07 67383.43 1.107 0.86
5 1.24 84741.11 1.025 0.78 1.07 72228.37 1.045 0.90 1.06 66798.35 1.113 0.82
6 1.21 81707.36 1.038 0.74 1.03 70888.9 1.064 0.90 1.05 66682.31 1.115 0.80
7 1.2 80143.2 1.003 0.70 1.03 70710.4 1.052 0.88 1.03 65605.21 1.115 0.77
8 1.19 78589.86 0.942 0.70 1.02 69849.53 1.054 0.87 0.989 67049.56 1.113 0.81
9 1.19 78456.85 0.967 0.67 0.9.84 69190.21 1.062 0.87 0.987 65536.51 1.114 0.77
10 1.16 78643.86 0.981 0.68 0.971 68840.17 1.058 0.85 0.987 65439.38 1.115 0.77

