
Variation-Aware Routing for FPGAs

Satish Sivaswamy
Dept. of Electrical Engineering

University of Minnesota, MN 55455

satish@umn.edu

Kia Bazargan
Dept. of Electrical Engineering

University of Minnesota, MN 55455

kia@umn.edu

ABSTRACT
Chip design in the nanometer regime is becoming increas-
ingly difficult due to process variations. ASIC designers
have adopted statistical optimization techniques to miti-
gate the effects of variations. The FPGA community on the
other hand, has only recently started focussing on the effects
of variations. This paper presents a comparative study of
the impact of variations on designs mapped to FPGAs and
ASICs to get a measure of the severity of the problem in
both the FPGA and ASIC domains. We also propose a vari-
ation aware router that reduces the yield loss by 7.61X, or
the circuit delay by 3.95% for the same yield for the MCNC
benchmarks.

1. INTRODUCTION
As feature sizes scale down to the sub 90 nanometer regime,

the impact of process variations on the performance of digi-
tal circuits is fast becoming critical to account for in the de-
sign process. Failure to do so often results in large numbers
of chips failing the timing/power requirements. In ASICs,
this impact has been researched extensively and several tech-
niques have been proposed to optimize the performance and
power in the presence of process variations [15],[16],[17]. Un-
til recently, the impact of process variations on FPGAs were
largely ignored since designs mapped on FPGAs were typi-
cally much slower than their ASIC counterparts and at low
clock frequencies, process variations do not have a signifi-
cant impact. However, as we continue scaling down feature
sizes, FPGAs are becoming faster and the impact of process
variations can no longer be ignored. Recently there have
been a few studies that consider the impact of process vari-
ations on FPGAs. In [1], the authors performed an in-depth
architecture evaluation and studied the impact of parameter
variations on the timing and leakage yield. [2] proposes a
variation aware placement algorithm to improve the timing
yield of FPGAs. The authors also study the impact of speed
binning and guard-banding the circuit elements on the tim-
ing yield and the margin added to the critical path delay.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

In the first part of the paper, we make a comparative
study of designs mapped tpically on FPGAs and ASICs to
gauge the difference between the impact of process varia-
tions on these two implementation platforms. Our motiva-
tion in doing this study is to stimulate extensive discussion
about whether statistical optimization techniques are indeed
as critical to FPGAs as they are for ASICs. If they have a
lesser impact on FPGAs, the FPGA community would have
some more time to study different statistical analysis and
optimization techniques before fully adopting them in the
design flow. It is our belief that statistical optimization
techniques are more useful in the later stages of the design
flow since we would have more complete and accurate in-
formation later in the design flow. As a result, the routing
stage will have a significant impact on the performance of
the final design since interconnect delays dominate the delay
of logic blocks. In the second part of the paper, we propose
a variation aware router to improve the timing yield in the
presence of process variations. Experimental results show
that our variation aware router improves the timing yield
by 7.61X and, if we keep the yield loss constant, our router
improves the circuit delay by 3.95%. The rest of the paper
is organized as follows. Section 2 presents some background
knowledge and gives the modeling details. Section 3 com-
pares the impact of process variations on ASICs and FPGAs.
Section 4 proposes a variation aware router and Section 4.2
presents some results and discussion. Section 5 concludes
the paper.

2. MODELING VARIATIONS
In this section, we outline the model used for representing

parameter variations. In this work, we modeled all varia-
tions as spatially correlated gaussian distributions. We con-
sidered variations in the transistor length (Leff), transis-
tor width (Weff), metal thickness (Tint) and metal width
(Wint). We used a single layer predictive technology model[7]
for the interconnects. The framework that we present here
can be used for an arbitrary number of metal layers and can
handle more device parameters with only minor modifica-
tions. Due to lack of access to actual foundry data, we use
the process parameters from [3]. They are shown in Table1.

In the table, µ refers to the mean and σ refers to the stan-
dard deviation of the process parameters. The inter and
intra subscripts refer to the inter- and intra-die component
of the variations. As in [3], we model the process variation
as

Xtotal = Xinter + Xintra (1)

Table 1: Process Parameters
Parameters Leff Weff Wint Tint

(nm) (nm) (nm) (nm)
µ 60.0 150.0 150.0 500.0

3σinter 9.0 11.25 15.0 25.0
3σintra 4.5 5.625 7.5 12.5

where Xinter is the inter-die variation and Xintra is the
intra-die variation. Xinter and Xintra are modeled as gaus-
sian distributions. In our work, Xtotal refers to the total
variation in any of the process parameters, Leff , Weff , Tint

or Wint. The inter-die component of the variation affects all
the components of a chip identically. The intra-die compo-
nent however, depends on the location of the device(wire)
on the chip and is subject to spatial correlation within the
chip. Devices that are close to each other tend to have sim-
ilar characteristics and to capture this effect, we adopt the
approach used in [4].

2.1 Spatial Correlation
In [2], the authors do not consider the effect of spatial

correlation among different circuit components and this may
result in inaccuracies in delay estimation. This is illustrated
in Figure 1. In the figure, the chip is divided into 25 grids.

Figure 1: Spatial Correlation

When the effect of spatial correlation is ignored, the charac-
teristics of the devices in each grid are assumed to be inde-
pendent of the devices in other grids. Due to the nature of
the fabrication processes involved, this is not the case. De-
vices that are located close to each other typically exhibit
similar characteristics1. The two look-up tables (LUTs) in
the grid 1 will exhibit almost identical characteristics and
the LUTs in the grids 2 and 6 will have a strong correlation
with those in grid 1. This correlation will decrease as we
increase the distance of separation and the LUT in grid 25
will exhibit very little correlation with grid 1. This is true
for routing resources as well. Hence, we cannot consider
all devices to be independent of each other when perform-
ing timing analysis. The authors in [4] performed extensive

1tox and Dopant concentration however, are truly random
and exhibit no spatial correlations

critical dimension measurements on fabricated dies and pro-
posed a simple piecewise linear model to capture the effect
of spatial correlation. The model is illustrated in Figure 2.
The X-axis shows the distance between two devices(wires),
d, and the Y-axis shows the spatial correlation coefficient, ρ,
between intra-die variation parameters at different locations
on the chip. In the model, ρB denotes the baseline correla-

Figure 2: Spatial Correlation Model

tion coefficient and DL denotes the characteristic correlation
length. From Figure 2, we see that the spatial correlation
between process parameters at different locations on the chip
decreases linearly with the distance of separation and then
remains constant (ρB) beyond a critical separation distance,
which is typically half the size of the chip[4]. Formally, the
model is expressed as

ρ =

{
1− d

DL
(1− ρB) d ≤ DL

ρB , d ≥ DL.
(2)

We divide the chip into several grids and assume that within
a grid, all devices have identical process parameters, Leff ,
Weff , Lint and Wint. Further, as in [3], we make another
assumption that the different types of parameters (Leff ,
Weff , Lint and Wint) are independent of each other. The
inter-die component of variation is added to the entries of
the covariance matrix of the spatially correlated variables
corresponding to the intra-die component of variation. We
then use the principal component analysis technique(PCA)
[6] to convert these correlated random variables into a set
of mutually independent variables such that each new ran-
dom variable produced using PCA has a standard normal
distribution,(N(0,1)).

2.2 Delay Modeling
As in [3], we express the delay of a circuit element using

a linear model expressed as:

d = d0 +
∑

∀pi

Si0∆pi (3)

where d0 is the nominal delay of the circuit element and
Si’s are the sensitivities of the delay to the various process
parameters, pi’s. These sensitivities are computed around
the nominal process condition from Hspice simulations. In
Equation 3, the pi’s are correlated and they are in-turn ex-
pressed as a weighted linear sum of the corresponding prin-

cipal components. The expression for delay becomes:

d = d0 +
∑

∀pi

Si0

m∑
j=1

aijp
′
j (4)

where m is the number of grids into which the chip is divided
and p′j ’s are mutually independent N(0,1) variables and aij ’s
are their coefficients from PCA. It is to be noted here that
the delay variable, d, is a sum of weighted gaussians and is
hence itself a gaussian. We adopt the same method as in [3]
to compute the variances and covariances of the delay vari-
ables. In statistical static timing analysis (SSTA), finding
the greatest of two delay variables is accomplished by doing
a statistical max operation which approximates the maxi-
mum of two gaussian distributions as another gaussian [5].
The addition operation in static timing analysis (STA) is
replaced in SSTA by a statistical sum operation which adds
up the corresponding coefficients of two delay variables to
produce a third delay variable in the canonical form(shown
in Equation 4). With these two statistical operators (max
and sum) at hand, the delay distribution at the output can
be computed by traversing the timing graph as we would do
in STA.

3. IMPACT OF PROCESS VARIATIONS:
FPGAS VS ASICS

Designers in the ASIC community have been worrying
about the effects of process variations for a long time and are
making a transition from a corner-based design approach2 to
using statistical optimization techniques. Nevertheless, re-
searchers in the FPGA community have only recently started
considering the impact of variations. In this section, we com-
pare the impact of process variation on FPGAs and ASICs to
understand whether we have reached the stage, where, sta-
tistical analysis is as critical for FPGAs as it is for ASICs.
The objective of this study is to find out if FPGAs and
ASICs behave differently when subjected to variations. We
do not perform any statistical optimization for FPGAs or
ASICs in this section since we are interested in observing
the impact of ignoring the effect of variations on the accu-
racy of delay prediction and hence its impact on the design
flow.

In this study, we use a 65nm standard cell library from
the Open Access tool kit [9] and a 65nm CMOS SRAM
based FPGA. We had to rely on tools that were available to
the academia since we did not have access to industry-grade
CAD tools. We have tried our best to optimize both the
FPGA and the ASIC flows and will present both flows used
in this study. Another important aspect of our study is the
selection of benchmarks. We chose to use the MCNC cir-
cuits for our FPGA flow and ISCAS89 circuits for our ASIC
flow. One might argue that the benchmarks we use must
be identical for both the FPGA and the ASIC flows. That
would be true if we wanted to compare FPGAs and ASICs
as implementation platforms to find out which platform is
more suitable for a particular application. That however, is
not of interest to us. We want to find out the impact of pro-
cess variations on FPGAs and ASICs and we believe that in
order to accomplish that, we need to look at the impact on
typical designs implemented with FPGAs and ASICs. The

2The design is optimized with multiple process-corners and
is generally pessimistic and time consuming.

MCNC benchmarks are widely used in academia for FPGAs
but may not be representative of the issues that ASIC de-
signers face. The same is true with the ISCAS benchmarks
and FPGA designs.

3.1 FPGA Design Flow
In this work we use an island style FPGA architecture

with a cluster size of 1 and LUTs having 4 inputs. The rout-
ing architecture consists of 10% length-1, 25% length-2 and
65% length-6 wires with buffered switches. We used a sub-
set switch-box topology. MCNC benchmarks are mapped to
the architecture using T-Vpack[13] and are then placed and
routed using VPR operated in the timing-driven mode[8].
Once we are done with the placement and routing of the de-
sign, we use our statistical static timing analyzer to analyze
the delay distributions at various nodes in the circuit. The
flow we use is shown in Figure 3(a).

3.2 ASIC Design Flow
A standard-cell based design flow is more complex than

the FPGA flow presented in section 3.1. This is primarily
because of the need to use a large number of CAD tools to
complete the physical design, which leads to a huge design
space to explore for optimization. As we pointed out ear-
lier, both the library and the CAD tools we used for our
work are available freely to researchers. We have made our
best effort to optimize the designs and we believe that the
results that we obtained give us an insight into how a typ-
ical standard-cell based design behaves when subjected to
process variations.

The ISCAS89 benchmarks are first synthesized and mapped
to the standard-cell library using SIS[11]. We use the script
script.rugged to perform technology independent optimiza-
tion. After we have the mapped netlist, we use Capo[10] in
the timing-driven mode to place the design. We then use
the router in [12] to perform the routing. We use a 2 metal-
layer interconnect model similar to [3]. We then use the
statistical static timing analyzer in [3] to analyze the delay
distributions. The ASIC flow is shown in Figure 3(b).

3.3 Comparative Studies
One of the main reasons statistical optimization tech-

niques are being used is the inability to accurately predict
paths in the circuit may lead to timing violations in the
presence of variations. At the granularity of logic blocks,
this translates to the inability to predict the latest arriving
input that determines the arrival time at the output. Since
the arrival times are random variables with a certain mean
(µ) and standard deviation(σ), estimating the output ar-
rival time in a purely deterministic manner (by just looking
at the means) would lead to erroneous results if the means
of the arrival times at the inputs are sufficiently close. On
the other hand, if the µ+3σ point of the delay of one input
is lower than the µ− 3σ point of the delay of another input,
there is no need to use the statistical max operation. We
can estimate the maximum delay simply as the delay of the
second input. We call this the pruning of the max operation.
This is illustrated in Figure 4. The figure shows the arrival-
time distributions at two inputs of a logic block. Input B
completely dominates input A. The arrival-time distribution
at the output is thus determined only by B and there is no
contribution from A. We can determine the arrival time dis-
tribution at the output by performing a sum operation of

(a) FPGA Design Flow (b) ASIC Design Flow

Figure 3: Design Flows

the arrival time at input B and the delay of the logic block
itself.

In the first part of this section we want to observe the
number of times this happens on typical FPGA designs and
compare it with standard-cell based designs. The motivation
behind this study is to see whether the situation illustrated
in Figure 4 happens more often in FPGAs than in ASICs.
If this was the case, then, even with variations, we would
be able to predict what input determines the signal arrival
time at the output of logic blocks better than in ASICs.
Extending this to paths, we can predict critical path(s) of
FPGA circuits even in the presence of variations and can
do a better job at optimizing the circuits. It would further
mean that at the technology node considered in the study
(65nm), process variations would be more detrimental to
ASICs than FPGAs due to the uncertainty involved with
different paths being critical for different chips. To answer
these questions, we pass the benchmarks through the flows
shown in Figures 3.1 and 3.2 and gather statistics on the
number of statistical max operations that were performed
(ignoring the pruned out cases) and the total number of max
operations attempted. The results are shown in Table 23.
In Table 2, columns 2 and 6 give the number of statistial

max operations performed in the FPGA and ASIC circuits
listed. Columns 3 and 7 give the total number of max op-
erations including the cases that were pruned out. We can
see that on an average, the statistical max operation is per-
formed only about 40% of the time for FPGA designs. This
number is however, about 57% for the ASIC circuits and
it is about 60% for the larger circuits. This indicates that
in FPGA circuits, for the most part (60% of the time), we
can deterministically predict inputs that are responsible for
setting the arrival times at outputs of logic blocks.

It is to be noted that a closed-form solution exists only

3We did the same studies with the wilton and Imran switch-
boxes and the results were similar

Figure 4: Finding Max delay of 2 Paths

for the maximum of two random variables and as a result,
we would have to make pair-wise comparisons if the num-
ber of inputs to a logic block is greater than 2. As a re-
sult, the order in which inputs are considered is important
as it determines the number of maxes performed as well as
the accuracy of the estimation of the output distribution.
For instance, consider the situation illustrated in Figure 5.
The LUT that we are interested in has 4 inputs (A,B,C,D),

Figure 5: Finding Max delay of 2 Paths

and the order in which they are considered are indicated in

FPGA ASIC

Circuit # Maxes Perf. Tot. # Maxes % Maxes Circuit #Maxes Perf. Tot. # Maxes % Maxes
ex5p 1646 4073 40.41 s5378 969 1651 58.70
alu4 2176 5430 40.07 s9234 826 1569 52.65
ex1010 6545 16098 40.65 s13207 3100 5153 60.16
seq 2361 6269 37.66 s15850 3376 6693 50.44
des 2355 6611 35.62 s38417 8693 15007 57.93
spla 6696 13870 48.27 s38584 13902 22659 61.35
pdc 6418 17249 37.20 s1196 465 909 51.11
apex2 2525 6733 37.50 s35932 9036 14251 63.40
misex3 1943 4996 38.89
apex4 2066 4508 45.82

Average 40.21 56.97

Table 2: Comparison of Maxes performed

parentheses. They are all normal distributions with their
means and standard-deviations marked on the inputs to the
LUT. With this particular order in which inputs are con-
sidered, we would perform 2 max operations {max(D,C),
max(B,max(D,C))}. We would not perform a max oper-
ation with A since it would dominate the other variable
as shown in Figure 4. If on the other hand, we consid-
ered input A first, then we would not have performed any
max operations at all for this logic block since µA − 3σA

is greater than the µ + 3σ values of the other inputs. As
a direct consequence of this limitation, the average number
of maxes performed as reported in Table 2 is a pessimistic
estimate. This problem is more pronounced for the FPGA
architecture than the standard-cell designs we considered,
since the standard-cell based designs had a large number of
two-input gates and the order in which the max operation
was performed did not matter for those gates. We were more
interested in knowing how FPGAs are affected by process
variations, so we performed more studies to gather infor-
mation about the tightness probabilities of the inputs of
logic blocks in FPGAs. Tightness probability was defined
in [14]. If we have two random variables A (N(µA,σA)) and
B(N(µB ,σB)), the tigtness probablity of A (TA) is the prob-
ability that A>B. TA can be computed from the following
analytic expressions[14]:

φ(x) ≡ 1√
2π

exp(−x2

2
) (5)

Φ(y) ≡
∫ y

−∞
φ(x)dx (6)

θ ≡ (σA
2 + σB

2 − 2ρσAσB)1/2 (7)

TA =

∫ ∞

−∞

1

σA
φ
(x− µA

σA

)
Φ

((
x−µB

σB

)− ρ
(

x−µB
σB

)
√

1− ρ2

)
dx

= Φ
(µA − µB

θ

)
(8)

Given a large number of random variables, each has a tight-
ness probability corresponding to the probability that it is
larger than the rest of the variables. We can get a better
insight at the contribution of different LUT inputs to the
output arrival times when we look at the tightness prob-
abilities of the inputs. The statistics we gathered on the
tightness probabilities are presented in Table 3.

We computed tightness probabilities (TPs) of all inputs
to a LUT and defined the dominant input to be the one

with the maximum TP. Table 3 shows the histogram of the
dominant input TPs. For example, in ex5p, 79.2% of all the
LUTs have an input with a TP of 1,i.e., no statistical max
is needed to find its output delay distribution. For the same
circuit, in 9.2% of the LUTs, the dominant inputs has a TP
between 0.95 and 1. As we expected, the results in Table 3
indicate that some of the max operations performed in the
circuits were redundant and were done simply because of
the sub-optimal order in which the maxes were performed.
We observe that on an average, about 76% of all LUTs had
a single input which determined the output arrival time and
about 90% of the LUTs had a single input determining the
output arrival time 90% of the time i.e., the TP of the dom-
inant input is in the range [1,0.9].

We believe that the reason for a single input dominat-
ing all other inputs to a logic block in FPGAs for the most
part can be attributed to the constraints in the routing ar-
chitecture. Though the depth of logic on different input
to output paths in designs implemented on both FPGAs
and ASICs are balanced, the routing paths may not be bal-
anced. The restricted routing architecture in FPGAs can
cause the router to take more detours than in ASICs. As
a result of the limited routing flexibility in FPGAs due to
the pre-fabricated routing structures, we are more likely to
have balanced routing paths in addition to a balanced circuit
topology for ASICs. Another reason this might be happen-
ing can be due to the fact that the connections in FPGAs
pass through a lot of programmable elements and hence is
much slower than the routes in ASICs. Variations play a
more critical part when the fraction of the delay change due
to variations is significant when compared to the delay at
nominal process conditions. In ASICs, this ratio is likely to
be more since they are inherently much faster than the FP-
GAs and consequently, the change would be more significant
in ASICs than in FPGAs.

This means that the critical paths through a majority
of the blocks are unaffected by process variations. Never-
theless, the table provides information about only individ-
ual blocks and not paths in the circuit. Analyzing different
paths in the circuit would provide more information about
the extent to which variations affect critical and near-critical
paths of circuits. This lead us to perform more studies on
the criticalities of different paths in the presence of varia-
tions.

We first enumerated the top 10 critical paths of the cir-
cuits by performing a deterministic timing analysis with all

Circuit Perc. of Blocks with Tightness Prob. of slowest Input
1 [0.95,1) [0.9,0.95) [0.8,0.9) [0.75,0.8) [0.5,0.75) <0.5

Ex5p 79.24 9.20 2.91 2.53 1.03 4.88 0.18
alu4 71.63 11.16 3.41 3.61 2.23 7.61 0.32
misex3 61.08 17.02 4.64 5.50 2.07 8.94 0.71
apex4 78.52 9.66 2.85 2.77 0.63 5.15 0.39
apex2 72.43 12.82 2.87 4.20 1.64 5.69 0.31
ex1010 84.34 6.93 1.67 2.73 0.86 3.30 0.13
pdc 88.57 5.22 1.48 1.52 0.69 2.36 0.13
spla 72.22 13.27 3.16 3.73 1.59 5.79 0.18
seq 70.70 12.79 3.19 4.79 1.59 6.73 0.17
des 79.27 9.35 2.32 2.63 1.31 4.89 0.18

Average 75.80 10.74 2.85 3.40 1.37 5.53 0.27

Table 3: Tightness Probabilities

parameters set to nominal values. We then perform Monte
Carlo simulation with 10,000 samples to enumerate top 10
statistically most critical paths. We compute the statistical
criticality of a net as the ratio of the number of times the
net was on the critical path while performing Monte Carlo
simulation to the total number of trials. The statistical crit-
icality of a node is computed similarly. Arrival tightness
probabilities of all nets are then computed using the same
procedure as in [14]. The criticality probability of a path is
defined as the product of the tightness probabilities of all
nets on a path. We then enumerate the top 10 statistically
critical paths. If all paths in a circuit are considered, the
critical path coverage would be 1. However, the number of
critical paths could potentially be exponential in terms of
the circuit size. Hence we settled for the 10 most critical
paths which corresponds to a critical path coverage of 0.999
for our benchmarks. The motivation behind this study was
to check whether the paths that were deemed critical by STA
also had a high criticality probability under the effect of vari-
ations. If the same paths are reported as critical by both
STA and Monte Carlo, then we can conclude that even in
the presence of variations, STA predicts critical paths with
high accuracy.

We performed these studies for both the MCNC bench-
marks and the ISCAS89 standard-cell benchmarks. The re-
sults of a benchmark from MCNC and ISCAS89 benchmark
suites are shown in Figures 6(a) and 6(b). The results of the
other MCNC and ISCAS89 benchmarks were similar to Fig-
ure 6. In Figure 6, we show the deterministic path delays on
the y-axis and the statistical path criticalities of the paths
that were indentified by STA obtained from Monte Carlo
simulation on the x-axis. The graphs show a marked differ-
ence in the way FPGA and Standard-cell designs are affected
by variations. For the MCNC benchmark, misex3, the top 6
paths reported by STA were also among the top 6 paths re-
ported by Monte Carlo although the third and fourth most
critical paths in STA were interchanged in Monte Carlo.
The top 6 paths had a total path criticality of 0.9996. This
indicates that STA does a good job of predicting critical
paths and we can do a good job at optimization if we con-
sider the critical and the top few near-critical paths given
by STA rather than concentrating only on the most critical
path. Nevertheless, there still exists a non-zero probability
that another path could be critical under the impact of vari-

ations 4. On the other hand, when we look at the ISCAS89
benchmark, s38417, only two of the paths determined by
STA to be critical had a non-zero probability of being criti-
cal with Monte Carlo. The path criticalities of those paths
summed up to 0.3554. This number is much lower than the
number for the FPGA design (0.9996). This indicates that
for standard-cell designs, STA does a poor job of finding crit-
ical paths and that the impact of variations on standard-cell
designs are much higher and hence statistical optimization
techniques are more critical to standard-cell designs than
FPGAs.

Though the discussion in this section makes a case that
statistical optimization is more critical for ASICs, we do not
discount the importance of using it for FPGAs. From our
studies, it is clear however that we have not yet reached the
stage when statistical optimization techniques are as criti-
cal for FPGA designs as they are for standard-cell designs.
In [2], the authors report a yield loss of only about 7 chips
out of 10,000 chips for the MCNC benchmarks with a deter-
ministic timing analysis inside the optimization loop. This
further supports our belief that we have not yet reached the
stage where statistical optimization is as critical for FPGAs
as they are for ASICs. Nevertheless, process variations will
have a more substantial impact in future technologies and
we need to explore various optimization techniques. [2] pro-
poses a variation aware placement for FPGAs and in Section
4 we propose a variation aware router for FPGAs to maxi-
mize the timing yield.

4. VARIATION-AWARE ROUTER
At the routing stage, we have a better estimate of the con-

gestion of the routing resources unlike the placement stage
when an optimistic delay estimate is used to estimate the
criticalities of nets. Consequently, we believe that intro-
ducing statistical optimization at the routing stage would
be more beneficial. In this section, we present a variation
aware router to optimize timing and to maximize the timing
yield. We modify the router in VPR[8] to optimize statisti-
cal criticalities of nets.

VPR uses a negotiated congestion-delay algorithm where
timing critical nets are given a higher priority to use the

4For instance, if the circuit in Figure 6(a) has 10,000 paths,
statistically there are 4 paths not identified by STA that
may turn out to be critical and cause a timing violation due
to variations

(a) Path Criticalities for Misex3,∑
Path Criticality = 0.9996

(b) Path Criticalities for S38417,∑
Path Criticality = 0.3554

Figure 6: Path Criticalities of FPGA Vs. Standard-Cell Designs

fastest routing resources available and less critical nets are
forced to take a detour if needed, to alleviate congestion. In
every routing iteration, all nets are ripped-up and re-routed
and this process is repeated until there are no over-congested
regions. To get the minimum delay, all the nets are marked
as critical for the very first routing iteration. Once a routing
iteration is complete, the net delays are known and a timing
analysis is used to compute the criticalities of nets. The
cost function that the router tries to optimize consists of
a criticality component and a congestion component. The
congestion cost of routing resources are also updated after
every routing iteration. The cost of using a routing resource,
n, as a part of routing a net (i,j) is given by[8]:

Cost(n) = Crit(i, j)delay(n)+[1−(Crit(i, j)][b(n)+h(n)]p(n)
(9)

where, Crit(i,j) is the criticality of the net, delay(n) is the
delay of the routing resource n. The second term in the
cost function captures the effect of congestion. b(n) is the
base cost of using a resource and is set to delay(n) and h(n)
is the historic congestion factor which keeps track of the
congestion levels of the resource in previous iterations and
p(n) is monitors congestion in the present iteration.

In our router, to perform timing optimization in the pres-
ence of variations, we replace the criticality computation in
[8] with statistical criticality. We make no changes to the
first routing iteration and set the criticality of all nets to be
1.0. After the first routing iteration, we traverse the rout-
ing trees of all the nets and compute the statistical means
and standard deviations of the net delays in the form shown
in Equation 3. We then perform SSTA and compute the
arrival and required tightness probabilities. We use the crit-
icality computation technique presented in [14] to compute
the statistical criticalities of the nets. For subsequent rout-
ing iterations of VPR, we use statistical criticalities inside
the optimization engine. The pseudo-code for our algorithm
is shown in Figure 7 and is adapted from [13].

4.1 Experimental Setup
We compare the efficiency of our variation-aware router

with VPR’s timing-driven router for the MCNC benchmark
circuits. When using the deterministic router, we adopt the
standard practice of guard-banding the delay of individual
circuit components with their 3σ values. The timing yield
with guard-banding depends on the value of the guard-band
factor and there is a trade-off between the guard-band factor
chosen and the extra margin this places on the critical path
delay. This trade-off has been explored in [2] and we use
the 3σ value as the guard-band factor since it gives the best
yield in [2]. As in [2], we define yield loss as the number
of chips that fail timing specifications out of 10,000 chips.
We do not modify the placement algorithm and run VPR’s
timing-driven placement engine to generate placements for
the benchmarks. We use the same placement and routing
channel-width for both VPR’s router and our router. The
architecture of the FPGA we used for our experiments is
described in Section 3.1. We present our results in Table 4.

4.2 Results and Discussion
Table 4 presents the results of running VPR and our varia-

tion aware router on 20 MCNC benchmarks. First, we place
and route circuits with all the elements guard-banded with
a factor of 3σ. We then perform STA to obtain the guard-
banded delay and this is shown in the column, Tguard band.
This value is used as the cut-off delay when we calculate the
yield loss of the conventional router and our variation aware
router. A SSTA is then performed on the same physical de-
sign to estimate the mean and the standard deviation of the
delay of the circuit that is optimized with guard-banding.
These values are reported in columns 3 and 4. We retain
the placement and route the circuit with our router and
estimate the mean and standard deviation of the circuit.
Columns 6 and 7 present these results. The yield loss re-
ported in columns 5 and 8 is the number of chips that fail out
of 10,000 chips with the delay reported in Tguard band as the
timing specification. The yield loss numbers are fractional
since we estimate the yield from the cumulative distribution
function of the output delay. Column 9 in the table, Yield

Circuit Tguard band VPR Variation Aware Router Yield Delay Runtime
(ps) Mean(ps) Sigma(ps) Yloss Mean(ps) Sigma(ps) Yloss loss Impr. Impr.(%) Ratio

ex5p 12144.80 9034.83 979.54 7.49 8754.44 869.81 0.33 22.70 X 6.58 1.55
alu4 12052.90 9203.27 913.50 9.06 9193.98 861.79 4.54 1.99 X 1.50 1.12

misex3 12057.00 9122.83 957.92 10.95 8728.27 879.07 0.76 14.41 X 5.76 1.42
apex2 12354.20 9668.55 851.08 8.01 9161.15 880.68 1.44 5.56 X 3.24 1.70
apex4 11259.40 8171.35 964.10 6.80 8297.57 845.53 2.30 2.96 X 2.57 1.75

pdc 20223.70 15347.10 1547.15 8.11 14596.10 1492.22 0.81 10.01 X 4.74 1.28
seq 11429.60 8991.70 763.89 7.08 8226.58 831.44 0.60 11.80 X 4.37 1.47
des 11403.54 8940.83 788.36 8.93 8107.74 898.94 1.23 7.26 X 3.73 1.59

spla 22604.60 17358.80 1690.36 9.57 16373.40 1662.72 0.89 10.75 X 4.82 1.00
ex1010 19595.50 14868.50 1354.97 2.43 14658.80 1315.03 0.87 2.79 X 1.83 1.08

frisc 16877.60 12547.50 1333.58 5.83 12283.90 1273.81 1.55 3.76 X 2.84 1.36
elliptic 14467.00 10925.50 1122.55 8.03 10867.35 1132.86 7.43 1.08 X 0.17 1.41
bigkey 6381.37 5039.69 453.72 15.53 5025.27 450.96 13.19 1.18 X 0.35 1.52

s298 18843.30 14518.60 1340.72 6.28 13371.70 1297.13 0.12 52.33 X 7.10 1.12
tseng 7797.39 5969.87 583.967 8.76 5654.55 546.49 0.44 19.91 X 5.93 1.36
diffeq 9052.21 6850.52 726.60 12.22 6752.71 648.09 1.94 6.30 X 4.16 2.33
dsip 9805.97 7857.53 640.05 11.66 7237.09 615.09 0.15 77.73 X 7.37 1.16

s38417 14437.40 11132.90 1075.88 10.65 10647.97 927.28 0.22 48.41 X 7.56 1.14
s38584.1 13387.60 10671.80 886.90 10.99 10047.16 860.87 0.52 21.13 X 5.43 1.39

clma 22793.60 16828.10 1866.62 6.97 17534.50 1722.72 11.34 0.61 X -1.17 1.56

Mean 10103.99 979.52 8.27 9731.51 941.98 1.09 7.61 X 3.95 1.39

Table 4: Results of our Variation Aware Router

Initialization: Stat Crit(i,j) =1.0 for all nets i and
sinks j;
while (overused resources exist) do

for (each net, i) do
Rip-up routing tree of net i;
Update affected components in Equation (9);
for (each sink j, of net(i) in decreasing
Stat Crit(i,j) order) do

Find the least cost route of for sink j;
for (all nodes in the path from i to j) do

Update affected Components in Equation
(9);

end
Update Elmore delay of the route;

end
end
Update Historic Congestion();
Compute NetDelay mean and variance();
Compute Arrival Tightness Probabilities();
Compute Required Tightness Probabilities();
Compute Statistical Criticalities();
Update Stat Crit(i,j) ∀ i,j;

end

Figure 7: Pseudo-code for Variation Aware Router

Loss Impr., gives the improvement in yield loss that can be
achieved by using our router over the deterministic router.

On average, our router reduces the yield loss from about
8.27 chips out of 10,000 chips to about 1.08, which is a gain
of 7.61X for the benchmarks considered. The column labeled
Delay Impr. presents the improvement in circuit delay that
can be obtained with our router if we maintain the yield
same as that given by the deterministic router. We get an
average improvement of about 3.95% in circuit delay. This
is possible because our router, for the most part reduces
both the mean and standard deviation of the circuit delay.
This means that we can run the design with a slightly faster
clock if we are willing to tolerate a few more chips failing.
The last column gives the run time penalty incurred by our
router. Though asymptotically SSTA has the same time
complexity as STA, the constant involved is much higher.
If we divide the chip into k grids, there will be k principal
components for every process parameter and if we consider
m process parameters there will be a total of mk coefficients
in Equation 3. Thus the total time complexity is O(mk(E +
V)), where E is the number of nets and V is the number of
logic blocks. From the last column in the table, our router is
1.39X slower than VPR’s timing driven router. We believe
that this runtime penalty is not too high considering the
improvement in yield loss.

5. CONCLUSION
In this paper, we studied the difference between the im-

pact of process variations on designs mapped to standard-
cells and FPGAs. We considered spatial correlation between
process parameters of devices on different regions of the chip
and adopted a simple piece-wise linear model to model its
effects. We enumerated critical and near-critical paths in
FPGA and standard-cell designs, first by ignoring process
variations and then by considering variations. We performed

Monte Carlo simulations to obtain the criticalities of differ-
ent paths in the presence of variations. This was done to
compare the effectiveness of using STA to identify critical
paths. We observed that STA surprisingly did a much better
job of identiying critical paths in FPGAs than in standard-
cell designs in the presence of variations. We also proposed
a variation aware router that reduces the average loss by
7.61X when compared to the router in VPR which uses de-
terministic timing analysis in its optimization engine. We
observed that we can also reduce the delay by about 3.95%
with our router if we maintain the same yield as VPR’s tim-
ing driven router.

In the future, we will try to develop heuristics that can
exploit the results presented in Table 3 to speed up compu-
tation in SSTA to reduce the run time penalty. We will also
explore post-layout yield optimization techniques to maxi-
mize timing yield in the presence of variations.

6. REFERENCES
[1] H.Y. Wong, L.Cheng, Y.Lin, L.Hei, ”FPGA Device

and Architecture Evalutaion Considering Process
Variations”,International Conference on
Computer-Aided Design,2005.

[2] Y. Lin, M.Hutton, L.Hei, ”Placement and Timing for
FPGAs Considering Variations”, International
Conference on Field Programmable Logic and
Applications, August 2006.

[3] H. Chang, S. Sapatnekar, ”Statistical Timing Analysis
Under Spatial Correlations”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, Vol. 24 No. 9, pp. 1467-1482.

[4] P. Froedberg, Y. Cao, J. Cain, R. Wang, J. Rabaey,
C. Spanos, ”Modeling Within-Die Spatial Correlation
Effects for Process-Design Co-Optimization”,
International Symposium on Quality of Electronic
Design pp. 516-521, 2005.

[5] C. Clark, ”The greatest of a finite set of random
variables,”, Operations Research, vol. 9, pp. 85-91,
1961.

[6] I.T. Jolliffe, ”Principal Component Analysis”.
SpringerVerlag, New York, 1986.

[7] Berkeley Device Group, ”Predictive Technology
model”, in http://www.eas.asu.edu/ ptm

[8] V. Betz, J. Rose, ”VPR: A New Packing, Placement
and Routing Tool for FPGA Research”, International
Conference of Field Programmable Logic and
Applications, 1997.

[9] OpenAccess Gear: Library Core of EDA algorithms
and infrastructure for OpenAccess, in

http://www.openedatools.org/projects/oagear

[10] ”Capo,
A large scale fixed-die placer from UCLA,” Available at
http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/Placement.

[11] SIS: A System for Sequential Circuit Synthesis.
Release 1.2. UC Berkely Software Distribution.

[12] C.J. Alpert, J. Hu, S.S. Sapatnekar, P.G. Villarubia,
”A Practical Methodology for Early Buffer and Wire
Resource Allocation”, Design Automation Conference,
2001, pp. 189-194.

[13] V. Betz, J. Rose, A. Marquardt, ”Architecture and
CAD for Deep-Submicron FPGAs”. Kluwer Academic
Publishers, Boston, 1999.

[14] C. Visweswariah, K. Ravindran, K. Kalafala. S.G.
Walker, S. Narayan, ”First-Order Incremental
Block-Based Statistical Timing Analysis”, Design
Automation Conference, 2004.

[15] M.R. Guthaus, N. Venkateswaran, C.Visweswariah,
V.Zolotov, ”Gate Sizing using Incremental
Parameterized Statistical Timing Analysis”,
International Conference on Computer-Aided Design,
2005.

[16] K.Chopra, S.Shah, A.Srivastava, A.Blaauw,
D.Sylvester, ”Parametric Yield Maximization using
Gate sizing based on efficient Statistical Power and
Delay gradient computation”, International
Conference on Computer-Aided Design, 2005.

[17] S.Raj, S.Vrudhula, J.M.Wang, ”A methodology to
improve timing yield in the presence of process
variations”, Design Automation Conference, 2004.

