
A GENERALIZED AND UNIFIED SPFD-BASED REWIRING TECHNIQUE

Pongstorn Maidee and Kia Bazargan

Department of Electrical and Computer Engineering, University of Minnesota
200 Union Street SE. Minneapolis, MN, 55455-0167, United States

email: pongstor,kia@ece.umn.edu

ABSTRACT

Traditionally, logic synthesis constrains the solution space
of later design steps, such as physical design, because they
are applied in sequence. Rewiring is a technique to restruc-
ture a circuit while maintaining its functionality. Since de-
sign properties and objectives can be considered during post-
synthesis rewiring, it can help relieve constraints put forth
by decisions made at earlier design steps. The extent of
rewiring of a rewiring algorithm has a great impact on the
success of the design flow. This paper presents a powerful
rewiring technique that in addition to unifying all previously
proposed Set-of-Pair-of-Functions-to-be-Distinguished based
rewiring techniques, it can perform rewiring with more than
one wire which increases our ability to circumvent poorly-
decided design constraints. With this ability, the rewiring
ability of using different numbers of wires is reported for
the first time in this paper. It can be used for runtime/quality
trade-off in any given rewiring application.

1. INTRODUCTION

Optimization is at the core of an integrated circuit design
flow. Due to intractability of the majority of VLSI prob-
lems, the flow is organized in a sequential manner. Al-
though interdependent, physical design is performed after
logic synthesis. Thus, traditional physical design techniques
are constrained by the circuit structure obtained from logic
synthesis, resulting in sub-optimality. Since both logic syn-
thesis and physical design are quite time consuming, reit-
erating over these two steps to improve solutions has found
limited use. Rewiring has been proposed to restructure a cir-
cuit while its functionality is maintained, ie., removing some
wires in the circuit and adding other wires at different loca-
tions in the circuit with the condition that the global func-
tions of primary outputs and flip-flop inputs are unchanged.
As a result, rewiring techniques can be used to adapt the cir-
cuit structure to suit optimizations during physical design.

Rewiring techniques can be classified into automatic-
test-pattern-generation (ATPG) and Set-of-Pair-of-Functions-
to-be-Distinguished (SPFD) based techniques. ATPG-based
rewiring relies heavily on the present node functions. Thus,

its solution space is severely limited as a function provides
minimal flexibility. SPFD was proposed to express a node’s
function flexibility [1]. Its application to rewiring has been
shown to provide better results both in theory [2] and ex-
periment [3]. SPFD-based rewiring can be used in many
applications. For example, it has been used to reduce the
number of Look-Up Tables used in implementing a circuit
[4] and also shown to help reduce FPGA power consump-
tion by 12% [5].

Rewiring ability is defined as a ratio of the number of
wires that can be rewired to the number of total wires in
a circuit. Thus, the rewiring algorithm with higher rewiring
ability has more optimization capability. As a result, rewiring
ability improvement is of great interest.

SPFD-based rewiring is composed of 2 steps: choosing
the sources and targets for additional wires and checking if
the circuit functionality is still maintained. The previously
proposed checking mechanisms either restrict target nodes
or limit the number of wires to be added or both. As a result,
the rewiring ability is limited.

The contributions of this paper can be summarized as :
1. Provide necessary and sufficient conditions for gener-

alized checking mechanism. The scheme unifies previous
approaches into a single framework and is applicable for
rewiring with more than one wire.

2. Show an efficient implementation of the scheme.
3. Report for the first time the rewiring ability of using

different numbers of additional wires, which can be used for
runtime/quality trade-offs in any rewiring application.

The paper is organized as follows. Section 2 summarizes
notations used in this paper. Section 3 explains SPFD. The
previous SPFD-based rewiring approaches are summarized
in Section 4. Section 5 introduces our generalized check-
ing scheme. An efficient implementation of the scheme is
detailed in Section 6. Section 7 shows experimental results.

2. BASIC TERMINOLOGIES

A combinational circuit consists of nodes and directed edges
between nodes. We use wire(na, nb) to call an edge from

node na to node nb. The source and sink nodes of a wire,
w, are denoted by sr(w) and sk(w), respectively. Thus,
sr(wire(na, nb)) = na. If there exists wire(na, nb), we
say that na is a fanin node of nb and nb is a fanout node
of na. Similarly, we call wire(na, nb) a fanin wire of nb

and fanout wire of na. FI(n) denotes both fanin nodes or
wires of Node n. FO(n) is similarly defined as fanout nodes
or wires. We use TFI(n) and TFO(n) to represent sets
of transitive fanin and fanout nodes of node n, respectively.
For example, if there exists wire(na, nb) and wire(nb, nc),
na, nb ∈ TFI(nc) and nb, nc ∈ TFO(na). Nodes with
no fanout and no fanin nodes are called primary output and
input nodes, PO, PI , respectively. As a circuit is a directed
acyclic graph, nodes can be organized into levels using topo-
logical sort. The level of node n is denoted by L(n).

Each node, n, implements a one output binary func-
tion, f(n). Iteratively composing f(n) using functions of
nodes in TFI(n), we obtain a global function of node n,
g(n). The global function of n before rewiring is denoted as
gorg(n).

3. SPFD

A binary function of n variables defines its ON and OFF
sets of n-tuple binary numbers. Since each variable can take
either 0 or 1, the total number of elements in both sets is
2n. For any given binary function, we can draw a graph
where each node represents one n-tuple number. Nodes in
the graph can be organized into two groups, one for each
set. To represent the fact that nodes from different sides will
be evaluated into different values, an edge is added between
any pair of nodes from different groups. The resulting graph
is a bipartite graph as nodes in different groups are separated
by an edge and there is no edge between nodes in the same
group. From this construction, we can see that there is a
one-to-one mapping between a set of n-input binary func-
tions and a set of bipartite graphs with 2n nodes. If there
are some don’t care tuples, the corresponding function is
called incompletely specified function (ISF). These don’t
care nodes can be placed on either groups. However, differ-
ent placement of them will represent different functions, but
each of them implements the given ISF.

In 1996, Yamashita, et al., cleverly expanded this idea
[1] by generalizing an edge to the following definitions.

Definition 3.1. [1] For any boolean functions, f and g, let
FX = x | f(x) = 1, GX = x | g(x) = 1, where x is the
primary input vectors. If GX ⊆ FX , f includes g, written
as g ≤ f or g → f , which is equivalent to g · f = 0.

Definition 3.2. [6] A function f is said to distinguish a pair
of functions g and h if either g ≤ f ≤ h or h ≤ f ≤ g is
satisfied. Note that g ≤ f ⇔ f ≤ g and if g ·h 6= 0, there is
no function that satisfies the pair.

For a given set of functions, Definition 3.2 can be ex-
tended to the following one.

Definition 3.3. [6] A function f satisfies a set of pairs to be
distinguished SPFD = {(g1, h1), ..., (gn, hn)} , if f distin-
guishes every pair of the set, i.e. [(g1 ≤ f ≤ h1) + (h1 ≤
f ≤ g1)] ∧ ... ∧ [(gn ≤ f ≤ hn) + (hn ≤ f ≤ gn)].

Equivalently, SPFD can also be used to represent a set
of functions that satisfy the SPFD. Therefore, f ∈ SPFD
can also be used to indicate that f satisfies SPFD

Essentially, SPFD is a collection of ISFs and it can be
conceptualized in the form of a graph as well. However, a
graph of SPFD may contain many connected components,
each for one ISF. SPFD has been shown to better express
flexibility of functions than ISF [6]. In a simple term, ISFs
in a SPFD can be assigned to ON or OFF sets separately,
instead of collectively when combining them into one ISF.

For a given circuit and its output functions, the SPFD at
the output pins can be constructed from their ON and OFF
sets. This SPFD can be represented as a bipartite graph.
Each edge of the graph will be distributed to one of the
node’s inputs which can distinguish the edge [6]. Nodes
will be processed from primary outputs to primary inputs.
The summary of SPFD computation at a node is shown in
Algorithm 1.

Algorithm 1 SPFD computation at a gate.

Require: SPFD = (fon
1 , foff

1), ..., (fon
n , foff

n), inputs to the gate are
y1, y2, ..., yk

1: for each (fon
q , foff

q) ∈ SPFD(f) do
2: Construct all possible minterms on the inputs of the gate,i.e., b0 =

000 = y1(x)y2(x)y3(x), ..., b2n−1 = 111.
3: Compute restricted minterms ai = bi(f

on
q + foff

q). (fon
q , foff

q)
is the care set. Thus, ai described all minterms needed to be distin-
guished.

4: Distribute all care minterms into two sets:
1. F1 = ai | ai ⊆ fon

q , ai 6= 0

2. F0 = ai | ai ⊆ foff
q , ai 6= 0

5: Build complete bipartite graph F = F1 × F0.
6: for each (ai, aj) ∈ F do
7: Add (ai, aj) to at least one input k such that ai ≤ fk ≤ aj or

aj ≤ fk ≤ ai.
8: end for
9: end for

Algorithm 1 can be summarized as follows. For each
pair of SPFD, care minterms are constructed (Line 2-3).
Line 4-5 categorizes the minterms into two sets of minterms
to be distinguished. Each pair of minterms will be assigned
to a fanin of the gate that can distinguish the pair at Line 7.
Applying Algorithm 1 to all nodes in the circuit from PO
backward, SPFD of each node and wire can be computed.

nr ns nanr nsa) b)
wa

wr
na1nr ns1c) wa1wrna2ns2wa2nb

Fig. 1. SPFD-based rewiring techniques. a) and b) are local and
global rewiring to replace one wire with none or one wire. c) re-
placement one wire with multiple wires, m-for-1 rewiring. Both
global and m-for-1 rewiring can be viewed as local rewiring if
nodes involved are merged as super nodes shown by shaded cir-
cles.

4. PREVIOUS WORK ON SPFD-BASED REWIRING

In this section, previous techniques on SPFD-based rewiring
are outlined. We assume that SPFD of each wire is already
computed. The wire to be removed is denoted as wr.

4.1. No additional wire for one wire removal (0-for-1)
and One additional wire for one wire removal (1-for-1)

If SPFD(wr) can be redistributed to other existing wires,
wr can be removed without adding another wire, so called 0-
for-1 rewiring. If another wire has to be added, the rewiring
is called 1-for-1 rewiring. Rewiring algorithms process both
rewiring techniques in similar ways. Hence, they are catego-
rized based on the location of the target of additional wires.

4.1.1. Local rewiring

Let nr = sk(wr), as shown in Figure 1a. If there is a wire
wa that satisfies SPFD(wr), ie., SPFD(wr) ⊆ SPFD(wa),
wa can be used to replace wr. f(nr) needs to be updated
after replacement. If SPFD(wr) is empty, wr can be re-
moved without adding any wire. Since the destination of
both wa and wr are the same, this operation is referred to as
local rewiring.

4.1.2. Global rewiring

A dominator node of wr is defined as nodes through which
all paths from wr to any PO pass. The set of dominator
nodes of wr is denoted as Dominator(wr). For example,
Dominator(wr) = {na, nb} in Figure 1b. Let sk(wr) =
nr. In global rewiring [3], the set of target nodes for addi-
tional wires is expanded from only nr to Dominator(wr).
If a node na ∈ Dominator(wr), the effect of removing
wr must pass through na. The global rewiring proceeds
by removing wr and propagating the change through fanout
nodes of nr until na is reached. A candidate wa will be

added as a fanin of na and checked if the resulting SPFD(na)
covers its original SPFD before removing wr [3].

4.2. Many additional wires for 1 wire removal (m-for-1)

Even though, wa1 and wa2 in Figure 1c may not be used
to individually replace wr, they may collectively substitute
wr. However, only conditions that are likely to lead to this
type of rewiring were suggested in [7]. For example, let
SPFD(wr) ⊆ SPFD(na1) ∪ SPFD(na2). If f(ns1)
distinguishes SPFD(wr) ∩ SPFD(wa1) and f(ns2) dis-
tinguishes SPFD(wr) ∩ SPFD(wa2), adding both
wire(ns1, na1) and wire(ns2, na2) directs SPFD(wr) away
from wr. Hence, SPFD(wr) = ∅ and wr can be removed.

5. A UNIFIED FRAMEWORK

A generalized rewiring scheme, which includes all previ-
ous approaches as special cases, is proposed in this section.
For a given n-variable function, f, we can also define the
corresponding SPFD, representing pairs of n-tuples that the
function can distinguish. Therefore, in this work we make
the distinction between SPFD obtained from Algorithm 1
and SPFD that f can distinguish.

Definition 5.1. 1 An SPFD derived from a node’s global
function is called arrival SPFD or SPFDA. SPFDA at
a node n can be computed from the functions of nodes in
TFI(n). Therefore, SPFDA can also be perceived as for-
ward propagation. If n = sr(e),SPFDA(e) = SPFDA(n).
An SPFD at a node obtained by backward distribution (Al-
gorithm 1) is call a required SPFD or SPFDR.

Properties of SPFDA and SPFDR can be shown in
the following lemma.

Lemma 5.2.

SPFDA(ni) ⊆ ∪nk∈FI(ni)SPFDA(nk) (1)

SPFDR(ni) = ∪nk∈FO(ni)SPFDR(nk) (2)

Lemma 5.3. A circuit, C, works if and only if
∪FI(n)SPFDR(n) = ∪FO(n)SPFDR(n),∀n ∈ C and
either one of the following conditions hold.

1. SPFDR(e) ⊆ SPFDA(e), ∀e ∈ C.
2. SPFDR(n) ⊆ SPFDA(n), ∀n ∈ C,

where SPFDR(n) = ∪e∈FO(n)SPFDR(e).

In SPFD computation outlined in Algorithm 1, a pair p
will be distributed to the input e if f(sr(e)) distinguishes
the pair, equivalently p ∈ SPFDA(sr(e)). Therefore, the
resulting SPFDs satisfy the above conditions.

1[8] also use arrival and required SPFDs but with different meanings.

A cut set can be derived from nodes’ levels as follows.
Each level has only one cut set. There are two types of nodes
in the cut set at level i: 1) nodes with level i and 2) over-
pass nodes defined as nodes at levels less than i which have
fanouts at levels greater then i but no fanout node at level
i. Organizing a circuit into levels, the following corollary is
obtained as a necessary and sufficient condition for correct
circuit functionality.

Corollary 5.4. A circuit works if
1. SPFDA(n) ⊂ SPFDR(n), ∀n ∈ PO.
2. Let Ni be the set of nodes in the cut set of level i. For

all levels i, ∪u∈POSPFDR(u) ⊆ ∪v∈NiSPFDA(v).

At a first glance, Corollary 5.4 is just a necessary condi-
tion because pairs may be lost according to (1). Therefore,
some pairs in SPFDA existing at level i may not reach the
output nodes which require them. However, if Corollary 5.4
holds, the first condition ensures that SPFDA exists at the
appropriate POs, while the second condition ensures that the
required SPFDR exists at all levels. However, Line 7 of
Algorithm 1 dictates the propagation of SPFDR through a
path from a primary input to a primary output. Thus, if the
flow of SPFDR is maintained, Corollary 5.4 will lead to
Lemma 5.3.

For a given circuit to be rewired, SPFDR at each node
and wire can be computed by using Algorithm 1. Let Wr

be a set of wires to be removed. The proposed replacement
wires, Wa, has to be chosen such that∪e′∈WrSPFDR(e′) ⊆
∪e∈WaSPFDA(sr(e)). After applying the wire removal
and addition as well as updating SPFDA and SPFDR of
all nodes in the circuit, Corollary 5.4 can be used to check
if the rewiring still yields the correct circuit functionality.
Note that the checking procedure does not pose any restric-
tions on the numbers of wires in Wr and Wa.

6. AN EFFICIENT IMPLEMENTATION

Since our scheme does not pose any restrictions on where
and how new wires should be added, the checking process
cannot be limited to a specific part of the circuit. As a re-
sult, a naı̈ve implementation would result in unacceptable
runtime. Three key techniques for efficient implementation
are outlined in this section.

6.1. Processing when necessary

Let i be the minimum of L(sr(e)) for all edge e ∈ Wr.
Since distribution of SPFDR at levels less than i are un-
touched, the checking can start at level i. Initially, all source
nodes of wires in Wa and all sink nodes of wires in Wr will
be processed. A node in any given level will be processed if
at least one of its fanin nodes is processed and their global
functions have been changed.

01101100 01101100a) OR b) XOR
Fig. 2. SPFDA and bipartition. All minterms of a 2-input gate
are organized into a graph. Different gate functions bipartition the
graph in different ways as seen in a) and b). Thus, they produce
different SPFDA, shown by thick edges.

6.2. Implementable node functions

During SPFD computations in Algorithm 1, SPFDR is com-
puted backwards. However, during the checking process,
we are trying to propagate ∪u∈FI(n)SPFDA(u) forward
across node n. Different node functions will produce dif-
ferent SPFDA(n) sets. Consider the graph in Figure 2,
which represent local SPFDA at a node with 2 inputs. The
bipartition in Figure 2a, representing OR, propagates only
(00,01), (00,10), (00,11) but not (01,10), (10,11), (01,11).
However, XOR, bipartition in Figure 2b, propagates (00,01),
(00,10), (11,01), (11,10).

At a given node n, we have to partition in such a way that
SPFDR(n) ⊆ SPFDA(n) and at the same time, we need
SPFDA(n) ⊆ SPFDR(wr) to redirect SPFDR(wr) away
from wr. This problem is formulated as a maximum cut
graph bipartitioning problem in which a graph of SPFDR(n)
is superimposed onto a graph of ∪u∈FI(n)SPFDA(u). For
those edges in SPFDR(n), their weights are set to be higher
than the others to ensure they will be cut and then distin-
guished by the new node function. As there are 2k nodes for
a graph representing a k-input LUT, there are 22k

ways to
bipartition the graph. Therefore, exhaustive search is ineffi-
cient even for k = 4. In a real situation, a graph representing
SPFDR(n) may consists of many components and each
component is a bipartite graph. The new node function must
maintain bipartiteness of these components. Therefore, each
component can be considered as one node and the maximum
number of nodes can be reduced as well as the number of
ways to bipartition them.

6.3. Early correctness declaration

When SPFDR(ni) ⊆ SPFDA(ni) for all nodes ni of a
cut set, it is tempting to declare that the circuit functional-
ity is correct by invoking Corollary 5.4 and assuming nodes
in the cut set as artificial PO. However, it had been men-
tioned that if the function of some nodes change, SPFDR

of their transitive fanouts may become non-bipartite which
is not implementable by any one output binary function [9].

A simple example to demonstrate the phenomenon can
be constructed as shown in Figure 3. A pair with 3-tuples
and 2-tuple represent a global and local SPFD, respectively.

f = x + yxy f f = x yxy fabc 001Gate 1 Gate 2011 0111 00
111101 110 111101 110001 011

f = x y f = ?0111 0001 11
abc xy

Fig. 3. Non-bipartiteness as a result of function changes.

SPFD at the output of Gate 2 contains two ISFs and they
are distributed to fanin wires of Gate 2 as shown. If Gate
1 changes from OR to XOR, it is still able to distinguish
(001,011) assigned to the gate. However, the new encoding
at the input of Gate 2 changesAs can be seen, the required
assignment is trying to distinguish between 11 and 01 in one
ISF, while forcing 11 and 01 to be on the same side in the
other ISF. Graphically, this encoding makes local SPFD at
Gate 2 non-bipartite which is not implementable by any sin-
gle output binary function.

However, if the new global function at a node n remains
the same or becomes the inverse of the original global func-
tion before wire replacement, the SPFDA(n) will remain
the same. Thus, entries in the column corresponding to
Node n of a local function truth table at a node nk ∈ FO(n)
will remain the same or flip which do not destroy the bipar-
titeness of local function at nk, which is not the case for the
example in Figure 3. Furthermore, g(nk) and SPFDA(nk)
will remain the same. As a result, if at a cut set i, g(ni)
equals to gorg(ni) or gorg(ni), for all nodes in the cut set,
the circuit can be declared correct invoking Corollary 5.4 by
using nodes in the cut set as artificial POs.

7. EXPERIMENTAL RESULTS

Rewiring can be used in various, diverse applications. In
this work, we do not attempt to investigate rewiring ability
for any application in particular. Therefore, our experiments
are directed toward revealing the capability of rewiring in-
dependent of any specific application by considering all pos-
sible replacement wires.

First, the process to select candidate wires will be dis-
cussed. After that, rewiring ability will be compared against
that of ATPG approach. Finally, rewiring ability using more
than one wires will be reported.

7.1. Choosing replacement wires

We assume that a node is a 4-input LUT and it can accept at
most one wire, even though it has more than one empty pins.
This assumption should not severely limit rewiring ability as
virtually no node has 3 free inputs and only some nodes have
more than 1 free pin. For a given wire wr to be removed,

SPFDR(wr) will be removed from TFO(sk(wr)). These
nodes will be used as possible targets for new wires.

The previous approaches search for wires with suitable
SPFDA. However, node functions, thus their SPFDA,
are derived without provisions for rewiring. Therefore, the
number of candidates is limited. Consider an example in
Figure 2. Let SPFDR(wr) = (11, 00). Assuming Node n
implements the XOR function, whose SPFDA(n) is shown
in Figure 2b, with SPFDR(n) = (00, 01), (00, 10). Ac-
cording to previous approaches, Node n is not a candidate
for rewiring. However, if the node function is changed to
OR, SPFDA(n) can satisfy all (00, 01), (00, 10) and (11, 00).

Thus, a node ns is a possible source for a new wire,
wire(ns, na), where na ∈ TFO(sk(wr)) if

1.∪u∈FI(ns)SPFDA(u) ⊇ SPFDR(wr)∩SPFDR(na).
2. The circuit depth does not increase.

7.2. Rewiring ability using none or one wire

In this experiment, the rewiring ability of using our scheme
is compared against that of other techniques. Table 1 shows
rewiring ability of different approaches. The circuits used
in the experiment and their numbers of nodes and wires are
shown in Columns 1,2 and 3, respectively. During SPFD
computation, BDD sizes can grow exponentially (also ob-
served in [10]). Thus, although our checking process is quite
efficient, only medium size circuits can be handled in the
current implementation. However, the technique proposed
in [10] can speedup SPFD computation by at least 23 times
which will make our techniques applicable to large circuits.

ATPG-based rewiring ability (quoted from [3]) are shown
in Column 4. The best known rewiring ability of SPFD-
based rewiring was reported in [3]. The order of SPFD dis-
tribution at Step 7 of Algorithm 1 affects rewiring ability as
it dictates concentration of SPFDR on a wire. This obser-
vation has been used to improve rewiring ability [11] as well
as power reduction for FPGAs [5]. Hence, Table 1 is not
meant to be a direct comparison between our scheme and
that of [3] as SPFD distribution of [3] is not known. Fur-
thermore, in [3], the rewiring was declare feasible as soon
as SPFDR of a target node covered the one before wire re-
moval. Thus, some nodes may not be implementable. (see
Section 6.3 for an example.) Thus, we quote the results as a
pseudo upper bound on rewiring ability in Column 6.

Our implementation uses CUDD (a BDD package) to
represent functions and SPFDs. As replacement wires are
observed to be close the removed wire [3], a circuit is parti-
tioned into clusters of 60 nodes by using hMetis, similar to
[3]. As partitioning might limit rewiring ability especially
for wires next to partition lines, we ran our scheme in multi-
ple passes. The wires with successful rewiring are not con-
sidered again in subsequent passes. To reduce the effect of
partitioning, a wire crossing a partition line are discouraged

Table 1. Rewiring ability.
circuits rewiring ability

name #nodes #wires ATPG attainable upper
from [3] rewiring bound

term1 106 244 60 93 99
ex2 220 433 42 124 136
x1 222 557 104 183 222
x3 403 958 65 292 318

apex6 421 1025 92 245 346
dalu 448 1338 157 465 704
alu2 162 510 106 184 253

C1908 160 423 18 80 96
C432 190 538 81 115 176

to be cut in the next pass. The rewiring ability of our scheme
using three passes is shown in Column 5 of Table 1.

Our attainable rewiring ability tracked the upper bounds
well. However, the difference is widen for circuits with
complex structures, measured by the ratio of the number of
wires to that of nodes. For example, the gaps are wide for
C432 and dalu which have the ratios about 2.8, but small
for term1 and x3 which have the ratios about 2.3. In com-
plex circuits, many nodes may have multi-component local
SPFDR which becomes un-implementable.

7.3. Rewiring ability using more than one wire

Rewiring using more than one wire was claimed to improve
rewiring ability when 5-input LUTs were used [7]. But,
the method implicitly used m-for-1 rewiring in delay op-
timization without reporting rewiring ability due to a lack of
explicit techniques [7]. Rewiring with many wires is usu-
ally time consuming. Thus, rewiring ability of using several
wires must be studied for runtime-quality tradeoffs. In this
section, the same checking scheme used in the previous ex-
periment was used to reveal rewiring ability.

Rewiring ability of our scheme for using 0 to 5 replace-
ment wires is shown in Table 2. Although logic synthesis is
supposed to remove all redundant wires, SPFDR redirec-
tion was able to make some wires redundant without adding
any wire (see Column 2). Rewiring ability of one additional
wire increased by multiple folds. However, as the number
of additional wires increases further, rewiring ability drasti-
cally decrease and becomes virtually zero if three or more
wires are used because for most of the time there are not
enough candidate replacement wires.

The orders of replacement wire generation vary for dif-
ferent applications and implementations. Thus, the runtime
for checking each proposed rewiring averaging across using
0 to 5 replacement wires was reported in Column 8 instead
of the total runtime. The upper bound on runtime of any ap-
plication can be estimated as the number of candidates times
this average checking time. The total runtime is consisted of
checking each candidate and SPFD computation, performed

Table 2. Rewiring ability with more than one wire.
circuit #repleacement wire average checking

0 1 2 3 4 5 time / candidate (sec)
term1 25 68 0 0 2 0 0.067
ex2 5 119 1 0 1 0 0.026
x1 15 168 8 0 0 0 0.050
x3 14 278 55 2 0 0 0.034
apex6 69 176 16 19 0 0 0.047
dalu 49 416 0 1 0 0 0.112
alu2 7 177 1 0 0 0 0.532
C1908 1 79 16 0 0 0 0.153
C432 6 109 3 1 4 0 0.430

once for a cluster. The SPFD computation time varies with
the cluster size as well as complexity of functions in the
cluster from seconds for term1 to 2 hours for some clus-
ters of dalu. Note that this SPFD computation is common
among all SPFD-based rewiring method and its runtime can
be reduced by at least 23 times using the simulation-and-
SAT (S&S) technique [10].

8. REFERENCES

[1] S. Yamashita, et al., “A new method to express functional
permissibilities for LUT based FPGAs and its applications,”
Proc. Int. Conf. Computer-Aided Design, 1996, pp. 254–261.

[2] S. Sinha, “SPFDs: A new approach to flexibility in logic
synthesis,” Ph.D Thesis, University of California, Berkeley,
2002.

[3] J. Cong, et al., “SPFD-based global rewiring,” Proc. the Int.
Symp. on Field-programmable gate arrays, 2002, pp. 77–84.

[4] T. Kouda, et al., “Reduction of the number of FPGA blocks
by maximizing flexibility of internal functions,” IEICE Trans
Fundamentals, vol. E81-A, no. 12, pp. 2554–2562, 1998.

[5] B. Kumthekar, et al., “Power and delay reduction via simul-
taneous logic and placement optimization in FPGAs,” Proc.
Design And Test in Europe Conf., 1998, pp. 202–207.

[6] R. K. Brayton, “Understanding SPFDs: A new method for
specifying flexibility,” Proc. Int. Works. on Logic Synthesis,
1997.

[7] K. Tanaka, et al., “SPFD-based flexible transformation of
LUT-based FPGA circuits,” IEICE Trans Fundamentals, vol.
E88-A, no. 4, pp. 1038–1046, 2005.

[8] S. Sinha, et al., “Topologically constrained logic synthesis,”
Proc. Int. Conf. Computer-aided design, 2002, pp. 679–686.

[9] S. Sinha and R. K. Brayton, “Implementation and use of
SPFDs in optimizing boolean networks,” Proc. Int. Conf.
Computer-Aided Design, 1998, pp. 103–110.

[10] A. Mishchenko, et al., “Using simulation and satisfiability to
computeflexibilities in boolean networks,” vol. 25, no. 5, pp.
743–755, May 2006.

[11] J. Cong, et al., “A new enhanced SPFD rewiring algorithm,”
Proc. Int. Conf. Computer-aided design, 2002, pp. 672–678.

