On Achievable Rates of the Two-user Symmetric Gaussian Interference Channel

Omar Mehanna, John Marcos and Nihar Jindal

University of Minnesota

Allerton 2010
Interference channel is one of the most fundamental models for wireless communication systems
Interference Channel

- Interference channel is one of the most fundamental models for wireless communication systems

- Capacity region for the simplest two user symmetric Gaussian interference channel is not yet fully characterized
Interference Channel

• Interference channel is one of the most fundamental models for wireless communication systems

• Capacity region for the simplest two user symmetric Gaussian interference channel is not yet fully characterized

• Best known achievability strategy was proposed by Han and Kobayashi (1981)
 • Split each user’s transmitted message into private and common portions
 • Time sharing between multiples of such splits
State-of-the-Art

- *Low interference regime*: [Annapureddy *et al.*] [Motahari *et al.*] [Shang *et al.*]
 ⇒ Send only private message and treat interference as noise
State-of-the-Art

- **Low interference regime**: [Annapureddy et al.] [Motahari et al.] [Shang et al.]
 ⇒ Send only private message and treat interference as noise

- **Strong interference regime**: [Han-Kobayasi] [Sato]
 ⇒ Send only common message
State-of-the-Art

- **Low interference regime**: [Annapureddy et al.] [Motahari et al.] [Shang et al.]
 ⇒ Send only private message and treat interference as noise

- **Strong interference regime**: [Han-Kobayashi] [Sato]
 ⇒ Send only common message

- **Other interference regimes**:
 Etkin, Tse and Wang showed that Han-Kobayashi with Gaussian inputs, no time sharing and equal fixed power splitting ratios can achieve to within a single bit of the capacity
State-of-the-Art

- **Low interference regime**: [Annapureddy et al.] [Motahari et al.] [Shang et al.]
 ⇒ Send only private message and treat interference as noise

- **Strong interference regime**: [Han-Kobayashi] [Sato]
 ⇒ Send only common message

- **Other interference regimes**: Etkin, Tse and Wang showed that Han-Kobayashi with Gaussian inputs, no time sharing and equal fixed power splitting ratios can achieve to within a *single bit* of the capacity

- **Our Contributions** (Gaussian inputs):
 - Best power splitting ratios with no time sharing
 - The corresponding maximum achievable HK sum-rate
 - Comparison with orthogonal signaling (TDMA/FDMA)
 - Study of some time sharing schemes
Two-user Gaussian interference channel:

\[y_1 = h_{11} x_1 + h_{21} x_2 + \tilde{z}_1 \]
\[y_2 = h_{12} x_1 + h_{22} x_2 + \tilde{z}_2 \]
Network Model

Two-user Gaussian interference channel:

\[y_1 = h_{11} x_1 + h_{21} x_2 + \bar{z}_1 \]
\[y_2 = h_{12} x_1 + h_{22} x_2 + \bar{z}_2 \]

Normalized symmetric channel

\[|h_{11}| = |h_{22}|, |h_{12}| = |h_{21}|, a = \frac{|h_{21}|^2}{|h_{11}|^2} = \frac{|h_{12}|^2}{|h_{22}|^2}, 0 < a < 1, \]

\[z_i \sim C N(0, 1), P_1 = P_2 = P = \text{SNR} \]

\[y_1 = x_1 + \sqrt{a} x_2 + z_1, \quad y_2 = \sqrt{a} x_1 + x_2 + z_2 \]

Channel fully characterized by interference coefficient \(a \) and \(P \)
Virtual 3-user MAC Channel

Private/common power splitting ratio λ_i ($0 \leq \lambda_i \leq 1$)

\Rightarrow private message u_i: $P_{u_i} = \lambda_i P$

\Rightarrow common message w_i: $P_{w_i} = (1 - \lambda_i)P = \bar{\lambda}_i P$
Virtual 3-user MAC Channel

Private/common power splitting ratio $\lambda_i \ (0 \leq \lambda_i \leq 1)$

\Rightarrow private message u_i: $P_{u_i} = \lambda_i P$

\Rightarrow common message w_i: $P_{w_i} = (1 - \lambda_i)P = \bar{\lambda}_i P$

Symmetric Gaussian interference channel + rate splitting:

$$y_1 = \underbrace{u_1 + w_1 + \sqrt{a}w_2 + \sqrt{a}u_2}_\text{signals} + \underbrace{z_1}_\text{noise}$$

$\Rightarrow R_{1u}, R_{1w}, R_{2w} \in C_{\text{MAC-}1}(\lambda_1, \lambda_2)$

$$y_2 = \underbrace{u_2 + w_2 + \sqrt{a}w_1 + \sqrt{a}u_1}_\text{signals} + \underbrace{z_2}_\text{noise}$$

$\Rightarrow R_{2u}, R_{2w}, R_{1w} \in C_{\text{MAC-}2}(\lambda_1, \lambda_2)$
For fixed λ_1 and λ_2, the maximum sum-rate with rate splitting is:

$$R_{HK}(\lambda_1, \lambda_2) \triangleq \max_{R_{1u}, R_{1w}, R_{2u}, R_{2w}} \left(\frac{R_{1u} + R_{1w} + R_{2u} + R_{2w}}{R_1} \right)$$

$$= \gamma \left(\frac{\lambda_1 P}{1 + a\lambda_2 P} \right) + \gamma \left(\frac{\lambda_2 P}{1 + a\lambda_1 P} \right) +$$

$$\min \left\{ \gamma \left(\frac{a\lambda_2 P}{1 + \lambda_1 P + a\lambda_2 P} \right) + \gamma \left(\frac{a\lambda_1 P}{1 + \lambda_2 P + a\lambda_1 P} \right), \right.$$}

$$\left. \frac{1}{2} \gamma \left(\frac{\lambda_1 P + a\lambda_2 P}{1 + \lambda_1 P + a\lambda_2 P} \right) + \frac{1}{2} \gamma \left(\frac{\lambda_2 P + a\lambda_1 P}{1 + \lambda_2 P + a\lambda_1 P} \right) \right\}$$

where $\gamma(x) \triangleq \log_2(1 + x)$
HK Rate Optimization

For fixed λ_1 and λ_2, the maximum sum-rate with rate splitting is:

$$R_{HK}(\lambda_1, \lambda_2) \triangleq \max_{R_{1u}, R_{1w}, R_{2u}, R_{2w}} \left(\frac{R_{1u} + R_{1w} + R_{2u} + R_{2w}}{R_1} \right)$$

$$= \gamma \left(\frac{\lambda_1 P}{1 + a\lambda_2 P} \right) + \gamma \left(\frac{\lambda_2 P}{1 + a\lambda_1 P} \right) +$$

$$\min \left\{ \gamma \left(\frac{a\bar{\lambda}_2 P}{1 + \lambda_1 P + a\lambda_2 P} \right) + \gamma \left(\frac{a\bar{\lambda}_1 P}{1 + \lambda_2 P + a\lambda_1 P} \right), \right.$$

$$\left. \frac{1}{2} \gamma \left(\frac{\bar{\lambda}_1 P + a\bar{\lambda}_2 P}{1 + \lambda_1 P + a\lambda_2 P} \right) + \frac{1}{2} \gamma \left(\frac{\bar{\lambda}_2 P + a\bar{\lambda}_1 P}{1 + \lambda_2 P + a\lambda_1 P} \right) \right\}$$

where $\gamma(x) \triangleq \log_2(1 + x)$

The maximum HK sum-rate without time sharing is the solution to the following optimization problem:

$$R_{RS}(a, P) \triangleq \max_{0 \leq \lambda_1, \lambda_2 \leq 1} R_{HK}(\lambda_1, \lambda_2)$$
Symmetric Power Split

Theorem

If we only consider symmetric power splits (i.e., $\lambda_1 = \lambda_2 = \lambda_{sym}$), the maximum symmetric sum rate achievable with rate splitting is:

$$R_{sym}(a, P) = \max_{0 \leq \lambda_1 = \lambda_2 \leq 1} R_{HK}(\lambda_1, \lambda_2)$$

$$= \begin{cases}
2 \gamma \left(\frac{P}{1+aP} \right) & \text{if } P \leq \frac{1-a}{a^2} \\
2 \gamma \left(\frac{(a^2 P + a - 1)(1-a) + aP}{1 + a(a^2 P + a - 1)} \right) & \text{if } \frac{1-a}{a^2} < P \leq \frac{1-a^3}{a^3(a+1)} \\
\gamma \left(\frac{1-a}{2a} \right) + \gamma \left(\frac{(1+a)^2 P - (1-a)}{2} \right) & \text{if } P > \frac{1-a^3}{a^3(a+1)}
\end{cases}$$

and the corresponding optimal power split ratio is:

$$\lambda^*_\text{sym} = \begin{cases}
1 & \text{if } P \leq \frac{1-a}{a^2} \\
\frac{a^2 P + a - 1}{aP} & \text{if } \frac{1-a}{a^2} < P \leq \frac{1-a^3}{a^3(a+1)} \\
\frac{1-a}{(1+a)(aP)} & \text{if } P > \frac{1-a^3}{a^3(a+1)}
\end{cases}$$
Asymmetric Power Split

If we constrain one of the users to send only a common message (i.e., \(\lambda_1 = 0 \)), the corresponding maximum sum rate is:

\[
R_{asym} = \max_{0 \leq \lambda_2 \leq 1} R_{HK}(\lambda_1 = 0, \lambda_2) = \log_2 \left(\frac{(1 + \lambda_2^* P + aP)(1 + aP)}{1 + a\lambda_2^* P} \right)
\]

where \(\lambda_2^* \) is the solution to the following equation:

\[
\sqrt{\frac{1 + \lambda_2^* P}{1 + a\lambda_2^* P}} (1 + P + aP) = \frac{(1 + \lambda_2^* P + aP)(1 + aP)}{1 + a\lambda_2^* P}.
\]
If we constrain one of the users to send only a common message (i.e., $\lambda_1 = 0$), the corresponding maximum sum rate is:

$$R_{asym} = \max_{0 \leq \lambda_2 \leq 1} R_{HK}(\lambda_1 = 0, \lambda_2) = \log_2 \left(\frac{(1 + \lambda_2^* P + aP)(1 + aP)}{1 + a\lambda_2^* P} \right)$$

where λ_2^* is the solution to the following equation:

$$\sqrt{\frac{1 + \lambda_2^* P}{1 + a\lambda_2^* P}} (1 + P + aP) = \frac{(1 + \lambda_2^* P + aP)(1 + aP)}{1 + a\lambda_2^* P}.$$

Conjecture

The maximum HK sum-rate is achieved either using symmetric power splits or constraining one of the users send only a common message (i.e., $R_{RS} = \max\{R_{sym}, R_{asym}\}$)
Symmetric Rate

\[R_{sym} = \max_{0 \leq \lambda_1 = \lambda_2 \leq 1} R_{HK}(\lambda_1, \lambda_2) \]
Summary

Symmetric Rate

\[R_{sym} = \max_{0 \leq \lambda_1 = \lambda_2 \leq 1} R_{HK}(\lambda_1, \lambda_2) \]

Asymmetric Rate

\[R_{asym} = \max_{0 \leq \lambda_2 \leq 1} R_{HK}(\lambda_1 = 0, \lambda_2) \]
Summary

Symmetric Rate

\[
R_{sym} = \max_{0 \leq \lambda_1 = \lambda_2 \leq 1} R_{HK}(\lambda_1, \lambda_2)
\]

Asymmetric Rate

\[
R_{asym} = \max_{0 \leq \lambda_2 \leq 1} R_{HK}(\lambda_1 = 0, \lambda_2)
\]

Etkin, Tse and Wang

\[
R_{ETW} = R_{HK}(\lambda_1 = \lambda_2 = \frac{1}{aP}) \leq R_{sym}
\]
Summary

Symmetric Rate

\[
R_{sym} = \max_{0 \leq \lambda_1 = \lambda_2 \leq 1} R_{HK}(\lambda_1, \lambda_2)
\]

Asymmetric Rate

\[
R_{asym} = \max_{0 \leq \lambda_2 \leq 1} R_{HK}(\lambda_1 = 0, \lambda_2)
\]

Etkin, Tse and Wang

\[
R_{ETW} = R_{HK}(\lambda_1 = \lambda_2 = \frac{1}{aP}) \leq R_{sym}
\]

Orthogonal signaling (TDMA/FDMA)

\[
R_{orth} = \log_2(1 + 2P)
\]
Sum Rate vs. Interference Coefficient a

![Graph showing sum rate vs. interference coefficient](image)

- R_{sym}
- R_{orth}
- R_{asym}
- R_{UB}
- R_{ETW}

SNR = 10 dB

- Interference Coefficient a:
 - 0.1
 - 0.2
 - 0.3
 - 0.4
 - 0.5
 - 0.6
 - 0.7
 - 0.8
 - 0.9
 - 1

Sum Rate:
- 3.5
- 4
- 4.5
- 5
- 5.5
- 6
- 6.5
Sum Rate vs. Interference Coefficient a

![Graph showing the relationship between sum rate and interference coefficient a for different rates and interference levels.]

- R_{orth}
- R_{sym}
- R_{asym}
- R_{UB}
- R_{ETW}

SNR = 20 dB
Rate maximizing strategy
Rate maximizing strategy

\[\text{Interference Coefficient } a \]

\[\text{P (SNR) [dB]} \]

\[\text{Low SNR: } R_{\text{all-private}}, R_{\text{orth}} \quad - \quad \text{High SNR: } R_{\text{sym}}, R_{\text{asym}} \]
SNR vs. INR

\[
\text{INR}_{dB} = \text{SNR}_{dB} + 10 \log_{10} a
\]
SNR vs. INR

\[\text{INR}_{dB} = \text{SNR}_{dB} + 10 \log_{10} \alpha \]

\[\alpha \triangleq \frac{\text{INR}_{dB}}{\text{SNR}_{dB}} \]

\[
\begin{align*}
\text{all-private} & : 0 < \alpha < \frac{1}{2} \\
\text{orth} & : \alpha = \frac{1}{2} \\
\text{sym} & : \frac{1}{2} < \alpha < 1 \\
\text{asym} & : \alpha = 1
\end{align*}
\]

\(\alpha\) only explains behavior above 20 dB
Asymptotic sum-rate offset

Fix the interference coefficient a and take $P \to \infty$

$$\Delta R(a) \triangleq \lim_{P \to \infty} (R - \log_2(P))$$
Asymptotic sum-rate offset

Fix the interference coefficient a and take $P \rightarrow \infty$

$$\Delta R(a) \triangleq \lim_{P \rightarrow \infty} (R - \log_2(P))$$

$$\Delta R_{sym}(a) = \log_2 \left(\frac{(1 + a)^3}{4a} \right)$$

$$\Delta R_{asym}(a) = \log_2 \left(\frac{1 + a}{\sqrt{a}} \right)$$

$$\Delta R_{ETW}(a) = \log_2 \left(\frac{(2a + 1)(a + 1)}{4a} \right)$$

$$\Delta R_{orth}(a) = 1$$
High SNR Behavior

[Graph showing the high SNR offset behavior with labels for ΔR_{asym}, ΔR_{orth}, ΔR_{sym}, and ΔR_{ETW}.]
High SNR Behavior

\[R_{asym} > R_{sym} \text{ for } a > 0.087 \]
Time Sharing Schemes

Scheme I: 2 equal time slots (optimization over α_1, α_2, λ_1 and λ_2)

<table>
<thead>
<tr>
<th>TS_1</th>
<th>TS_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha_1(1)$ P, $\lambda_1(1)$</td>
<td>$\alpha_1(2)$ P, $\lambda_1(2)$</td>
</tr>
<tr>
<td>$\alpha_2(1)$ P, $\lambda_2(1)$</td>
<td>$\alpha_2(2)$ P, $\lambda_2(2)$</td>
</tr>
</tbody>
</table>

$\alpha_1(1) = \alpha_2(2)$, $\alpha_2(1) = \alpha_1(2)$
$\alpha_1(1) + \alpha_1(2) = 2$
$\lambda_1(1) = \lambda_2(2)$, $\lambda_2(1) = \lambda_1(2)$
Time Sharing Schemes

Scheme I: 2 equal time slots (optimization over α_1, α_2, λ_1 and λ_2)

<table>
<thead>
<tr>
<th>TS₁</th>
<th>TS₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha_1(1)P$, $\lambda_1(1)$</td>
<td>$\alpha_1(2)P$, $\lambda_1(2)$</td>
</tr>
<tr>
<td>$\alpha_2(1)P$, $\lambda_2(1)$</td>
<td>$\alpha_2(2)P$, $\lambda_2(2)$</td>
</tr>
</tbody>
</table>

$\alpha_1(1) = \alpha_2(2)$, $\alpha_2(1) = \alpha_1(2)$

$\alpha_1(1) + \alpha_1(2) = 2$

$\lambda_1(1) = \lambda_2(2)$, $\lambda_2(1) = \lambda_1(2)$

Scheme II: 4 time slots (optimization over β, λ_1 and λ_2) - Sason (04)

$TS_1 = TS_2 = \beta$

<table>
<thead>
<tr>
<th>TS₁</th>
<th>TS₂</th>
<th>TS₃ = TS₄ = (1-2 β)/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha_1(1) = 2\beta$, $\lambda_1(1)$</td>
<td>$\alpha_1(2) = 2\beta$, $\lambda_1(2)$</td>
<td>$\alpha_1(3)=2(1+2\beta)$</td>
</tr>
<tr>
<td>$\alpha_2(1) = 2\beta$, $\lambda_2(1)$</td>
<td>$\alpha_2(2) = 2\beta$, $\lambda_2(2)$</td>
<td>$\alpha_2(3)=0$</td>
</tr>
<tr>
<td>$\alpha_2(4)=2(1+2\beta)$</td>
<td>$\alpha_2(4)=2(1+2\beta)$</td>
<td>$\alpha_1(4)=0$</td>
</tr>
</tbody>
</table>

$\lambda_1(1) = \lambda_2(2)$, $\lambda_2(1) = \lambda_1(2)$
Numerical Results

SNR = 20 dB

Similar behavior at other SNR’s
• Derived expressions for the maximum achievable HK sum-rate with no time sharing and corresponding optimal power split ratios \Rightarrow tighter capacity lower bound
Conclusions

• Derived expressions for the maximum achievable HK sum-rate with no time sharing and corresponding optimal power split ratios ⇒ tighter capacity lower bound

• Despite the fact that the channel is symmetric, allowing for asymmetric power split ratio at both users (i.e., asymmetric rates) provides larger sum rate for a wide range of a and P values ($a > 0.087$ at the high SNR regime)
Conclusions

- Derived expressions for the maximum achievable HK sum-rate with no time sharing and corresponding optimal power split ratios ⇒ tighter capacity lower bound.

- Despite the fact that the channel is symmetric, allowing for asymmetric power split ratio at both users (i.e., asymmetric rates) provides larger sum rate for a wide range of a and P values ($a > 0.087$ at the high SNR regime).

- Orthogonal signaling is good for $\frac{\text{INR}_{dB}}{\text{SNR}_{dB}} \approx \frac{1}{2}$ and low SNR’s.
Conclusions

- Derived expressions for the maximum achievable HK sum-rate with no time sharing and corresponding optimal power split ratios \Rightarrow tighter capacity lower bound

- Despite the fact that the channel is symmetric, allowing for asymmetric power split ratio at both users (i.e., asymmetric rates) provides larger sum rate for a wide range of a and P values ($a > 0.087$ at the high SNR regime)

- Orthogonal signaling is good for $\frac{INR_{dB}}{SNR_{dB}} \approx \frac{1}{2}$ and low SNR’s

- Advantage of using time sharing schemes is quite small