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Abstract: We consider the problem of identifying optimal sparse graph representations of dense
consensus networks. The performance of the sparse representation is characterized by the global
performance measure which quantifies the difference between the output of the sparse graph
and the output of the original graph. By minimizing the sum of this performance measure and
a sparsity-promoting penalty function, the alternating direction method of multipliers identifies
sparsity structures that strike a balance between the performance measure and the number of
edges in the graph. We then optimize the edge weights of sparse graphs over the identified
topologies. Two examples are provided to illustrate the utility of the developed approach.

Keywords: Alternating direction method of multipliers, cardinality minimization, consensus
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1. INTRODUCTION

We consider the problem of identifying a sparse repre-
sentation of a given dense graph such that the perfor-
mance of consensus algorithms operating on both graphs
is close in the sense of variance amplification. Consensus
networks have garnered much interest for problems dealing
with collective decision-making and collective sensing as
in Young et al. (2010), Xiao et al. (2007), and Zelazo
and Mesbahi (2011). These networks have applications
as varied as modeling animal group dynamics, formation
flying of spacecraft, and data fusion in sensor networks.
See Ballerini et al. (2008), Sumpter et al. (2008), Mesbahi
and Hadaegh (2001), and Xiao et al. (2005).

A sparse representation of a dense graph can identify valu-
able communication links or facilitate understanding of the
underlying dynamics of the original graph. Recent related
work in Fardad et al. (2011) and Lin et al. (2012) deals
with designing a sparse network to minimize input-output
variance amplification or focuses on improving the alge-
braic connectivity of an existing network by adding edges
in Ghosh and Boyd (2006) or removing edges of uniformly
weighted graphs in Asensio-Marco and Beferull-Lozano
(2010). This paper deals with the problem of removing
edges from an existing dense network and preserving its
input-output behavior as measured by the H2 norm.

Our approach minimizes a quadratic performance measure
which quantifies the difference between the outputs of the
sparse representation and the original dense graph subject
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to an stochastic disturbances. The algorithm consists of
two steps. First, an optimal sparse network topology is
obtained by augmenting the performance measure with a
term that penalizes the number of edges in the network.
Then, the optimal edge weights are chosen over the iden-
tified topology.

The rest of this paper is structured as follows: A descrip-
tion of consensus networks and our problem formulation is
given in Section 2. Our algorithm is presented in Section 3.
Section 4 provides examples of the algorithm and compares
our method to a truncation scheme.

2. PROBLEM FORMULATION

Given a network G executing a consensus algorithm sub-
ject to disturbances, we consider the design of a sparse
network Ĝ with the same set of nodes but a different set
of edges such that the outputs of both networks are close
in the H2 sense.

Let G be an undirected connected network with n nodes
represented by the set V and q edges represented by the
set E , where l ∼ (i, j) ∈ E means that there is an
edge between nodes i, j ∈ V. We consider the consensus
algorithm subject to disturbances

ẋ = −Lx + d, (1)

where x is the stacked states of the nodes, L is the weighted
Laplacian matrix whose sparsity structure is determined
by the topology of G, and d is the white stochastic process
with zero mean and unit variance. In particular, the ijth
entry of L is determined by the edge weight between nodes
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i and j. This dynamical system can be viewed as a set of
single-integrators

ẋi = ui + di,

with the feedback control

u = −Lx.

As shown in Xiao et al. (2007) and Bamieh et al. (2012),
the performance of the consensus network with distur-
bances is quantified by the steady-state variance of the
deviation from the consensus value,

x̄ =
1

n

n∑
i=1

xi = (1/n)1Tx,

where 1 is the vector of all ones. In Lin et al. (2010), the
authors designed the edge weights (i.e., the nonzero entries
of L) of G to minimize the steady-state variance of the
performance output that encapsulates both the deviation
from average and the control input, i.e.,

y =

[
x − x̄1

u

]
. (2)

In this paper, our emphasis lies on the sparse representa-
tion of a network G. Namely, given a network G with the
dynamics (1) and the output (2), it is of interest to identify
a different set of edges and then design the edge weights
such that the performance output of the new network Ĝ is
close to that of G. In particular, it is desired that Ĝ is a
subgraph of G with much fewer edges.

Fig. 1. A parallel connection quantifies the output differ-
ence between two systems with a dense graph G and
a sparse graph Ĝ subject to stochastic disturbance.

The state-space representation of the parallel connection
of G and Ĝ shown in Fig. 1 is given by[

ẋ
˙̂x

]
=

[
−L 0

0 − L̂

] [
x
x̂

]
+

[
I
I

]
d

z = y − ŷ =

[
Hg −Hg

−L L̂

] [
x
x̂

]
,

(3)

where Hg = I − (1/n)11T . Given a Laplacian matrix L,
we design both the structure and the entries of another
Laplacian matrix L̂ such that the steady-state variance
of z, denoted by J(L̂), is minimized. To induce a sparse

structure on L̂ and thus minimize the number of edges in
Ĝ, we penalize the number of nonzero entries of L̂, denoted
by card (L̂), which leads to the following optimization
problem

minimize J(L̂) + γ card (L̂), (4)

where the positive parameter γ controls the sparsity level
of L̂.

2.1 Change of coordinates to remove the unobservable
average mode

It is well-known that the Laplacian matrix has a zero
eigenvalue associated with the vector of all ones. Thus, the
average mode x̄ is not asymptotically stable (see Zelazo

and Mesbahi (2011)) and its steady-state variance is not
finite (see Xiao et al. (2007) and Bamieh et al. (2012)).
However, it is readily verified that x̄ is not observable from
the output y. We remove this unobservable mode by a
change of coordinates described in Zelazo and Mesbahi
(2011) and Lin et al. (2010).

Let edge l ∼ (i, j) ∈ E be associated with a vector
el ∈ Rn that has 1 and −1 as its ith and jth entries,
and 0 elsewhere. The incidence matrix of G is given by
E = [e1 · · · eq] ∈ Rn×q. Then the weighted Laplacian
matrix can be written as

L =

q∑
l=1

kl el e
T
l = EKET

where kl is the edge weight on l and K is the diagonal
matrix formed from k = [k1 · · · kq].
Since G is connected, it has a tree subgraph. Let Et be
the incidence matrix of a tree subgraph of G. Then it can
be shown that the change of coordinates from Zelazo and
Mesbahi (2011) and Lin et al. (2010),[

ψ
x̄

]
= Sx =

[
ETt

(1/n)1T

]
x

S−1 =
[
Et(E

T
t Et)

−1 1
]
,

(5)

separates the average mode x̄ from the differences between
nodes across the edges of the tree, i.e., ψ = ETt x. After
removing the unobservable average mode, we have the
following minimum realization of the system (1) with the
output (2)

ψ̇ = −ETt EtMKMTψ + ETt d

z =

[
Et(E

T
t Et)

−1

−EtMKMT

]
ψ,

(6)

where M = (ETt Et)
−1ETt E.

2.2 Computation of the steady-state variance

Since L̂ is the Laplacian matrix of the graph Ĝ, it can be
written as

L̂ = ÊK̂ÊT

where Ê is the incidence matrix of a graph with m edges
and K̂ is the diagonal matrix formed from the edge weights

k̂. The graph described by Ê defines the edges available
for forming Ĝ. Taking Ê = E restricts Ĝ to subgraphs of

G. Note that setting k̂l = 0 is equivalent to removing edge
l from Ĝ. Thus, the number of nonzero elements of L̂ is
determined by the number of edges in Ĝ (or equivalently

card(K̂)). It is easy to show that card (L̂) = n +

2 card (K̂).

After applying the change of coordinates (5) to each
subsystem of (3) and removing the unobservable average
modes x̄ and ¯̂x, we obtain
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[
ψ̇
˙̂
ψ

]
=

[
A 0

0 Â

]
︸ ︷︷ ︸
A

[
ψ

ψ̂

]
+

[
B1

B1

]
︸ ︷︷ ︸
B

d

z =

[
C1 −C1

C2 − Ĉ2

]
︸ ︷︷ ︸

C

[
ψ

ψ̂

] (7)

where, after defining M̂ = (ETt Et)
−1ETt Ê,

A = −ETt EtMKMT Â = −ETt EtM̂K̂M̂T

B1 = ETt C1 = Et(E
T
t Et)

−1

C2 = −EtMKMT Ĉ2 = −EtM̂K̂M̂T .

The steady-state variance J(K̂) is given by

J(K̂) = trace
(
CPCT

)
where P is the solution of the Lyapunov equation

AP + PAT = −BBT . (8)

Since P can be partitioned into 2× 2 block matrices

P =

[
X Y T

Y Z

]
,

equation (8) can be decomposed into one Sylvester equa-
tion

ÂY + Y AT = −B1B
T
1 , (9)

and two Lyapunov equations

AX + XAT = −B1B
T
1

ÂZ + ZÂT = −B1B
T
1 .

(10)

Since B1B
T
1 = ETt Et, we can exploit the structure of

A,AT , Â and ÂT as described in Lin et al. (2010) and
Zelazo and Mesbahi (2011) to obtain explicit solutions to
(10),

X = (1/2)(MKMT )−1

Z = (1/2)(M̂K̂M̂T )−1.

3. ALGORITHM

The algorithm presented in this paper consists of two
steps:

• sparse structure identification,
• optimal weight selection.

The first step identifies an optimal sparsity structure from
the solution to a relaxation of (4). The second ‘polishing’
step minimizes the H2 norm of (3) over this structure by
selecting the optimal edge weights.

Problem (4) is a combinatorial optimization problem
whose solution usually requires an intractable combinato-
rial search. The complexity arises from the presence of the
cardinality function; to facilitate tractable computations
we relax it with a sparsity-promoting penalty function
g(K̂) and solve the problem

minimize
K̂

J(K̂) + γ g(K̂), (11)

where g(K̂) is determined by the weighted `1 norm em-
ployed by Candès et al. (2008),

g(K̂) =

m∑
i=1

wi |K̂ii|. (12)

In (12), w ∈ Rm is a nonnegative vector of weights. Taking

these to be inversely proportional to K̂ii for nonzero K̂ii

uncovers the cardinality function. However, this weighting
strategy cannot be implemented because it depends on the
unknown optimal K̂. We instead employ a reweighted-`1
strategy from Candès et al. (2008) in which the weights

wi = (ε + |K̂ii|)−1 at each iteration are derived from
the optimal value found in the previous iteration. The
small parameter ε ensures that g(K̂) is well defined when

K̂ii = 0.

3.1 Sparse structure identification

For notational convenience we set K̂ = F in this sec-
tion. The solution to (11) identifies an optimal sparsity
structure associated with a particular γ. The Alternat-
ing Direction Method of Multipliers (ADMM) finds this
solution by separating the objective function into its com-
ponent functions, the H2 norm J(F ) and the sparsity
penalty g(F ), and alternating between optimization over
each component. This alternation allows us to exploit the
differentiability of J(F ) and the separable structure of
g(F ).

We recast the problem (11) in the form that is suitable for
the application of ADMM,

minimize J(F ) + γ g(G)

subject to F − G = 0.
(13)

For any feasible F and G, the solution to (13) coincides
with the solution to (11). The augmented Lagrangian

Lρ(F,G,Λ)=J(F ) + γ g(G) + trace (ΛT(F −G)) +

(ρ/2) ‖F −G‖2F
(14)

incorporates the constraints into a single unconstrained
minimization problem. The quadratic term (ρ/2)‖F−G‖2F
penalizes the violation of the constraint where a larger
parameter ρ results in a faster convergence of ‖F − G‖2F
to zero. Minimization of (14) is obtained using the ADMM
iterations described in Boyd et al. (2011),

F k+1=argmin
F

Lρ(F,G
k,Λk)

Gk+1=argmin
G

Lρ(F
k+1, G,Λk)

Λk+1=Λk + ρ(F k+1 −Gk+1)

(15)

which are performed until the residuals ‖Gk−Gk−1‖F and
‖F k −Gk‖F become smaller than a specified tolerance.

G-Minimization Step Minimizing (14) with respect to G
is equivalent to

minimize
G

γ g(G) + (ρ/2) ‖G− V ‖2F (16)

where V := (1/ρ)Λ+F k+1. Since the objective function in
(16) can be expressed as the sum of the independent terms,
γwi|Gii| + ρ

2 (Gii − Vii)2, minimization of g(G) yields the
soft-thresholding operator described in Boyd et al. (2011)
for the elementwise minimization problems

Gk+1
ii =


Vii − µwi, Vii > µwi

0, Vii ∈ [−µwi, µwi]
Vii − µwi, Vii < −µwi

(17)
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where µ := γ/ρ.

F -Minimization Step Minimizing (14) with respect to F
is equivalent to

minimize
F

J(F ) + (ρ/2) ‖F − U‖2F . (18)

where U := Gk − (1/ρ)Λ. The gradient (A.3) and Hessian
(A.4), given in the Appendix, are used to solve (18) with
descent methods.

We note that, in general, J is a nonconvex function of the
unknown matrix F . In view of this, we use descent methods
to find a local optimal solution. In particular, we employ
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method,
which chooses a descent direction based on an approxima-
tion of the Hessian. This approach converges to an optimal
value in fewer iterations than gradient descent, and is less
computationally expensive than Newton’s method. We are
currently in the process of identifying classes of problems
that result in a convex function J(F ).

At each iteration r, BFGS approximates the Hessian with
the matrix H̃r using a rank-two update on H̃r−1 so that
H̃r incorporates the change in the gradient as a result of
the change in the optimization variable. Namely, H̃r−1 is
modified to satisfy the secant equation (see Nocedal and
Wright (1999)),

∇J(xr) = ∇J(xr−1) + H̃r(xr − xr−1).

The Sherman-Morrison formula allows direct computation
of (H̃r)−1 using a rank-two update on (H̃r−1)−1.

Computing (H̃r)−1 requires O(m2) operations. In compar-
ison, computing the Hessian requires solving 4m Sylvester
equations of the size n× n; solving each of these requires
O(n3) operations, and inverting the resultingm×mmatrix
takes O(m3) operations. Thus, finding the inverse of the
Hessian amounts to operations of order O(max{mn3,m3})
.

For connected undirected graphs, m ∈ [n − 1, n2 − n],
so the BFGS update requires between O(n2) and O(n4)
operations and computing the inverse of the Hessian
requires between O(n4) and O(n6) operations.

3.2 Polishing - Optimal edge weight selection

The sparsity structure Ŝ of the edge weights K̂ found
in the previous step specifies a graph Ĝ which strikes a
balance between the performance of the graph and the

number of removed edges. Every zero edge weight k̂l = 0
corresponds a removed edge l. However, the weights K̂
minimize the objective function (11), which is not the same

as minimizing J(K̂) over Ĝ. To ‘polish’ the edge weights
and to obtain the optimal edge weights for this graph, we
solve the problem

minimize J(K̂)

subject to K̂ ∈ Ŝ.
(19)

This can be cast as an unconstrained optimization problem
by reforming (7) to reflect the graph described by Ŝ. We

take Ê to be composed of the columns el of E which are

associated with nonzero edge weights k̂l. We then select a
tree subgraph Êt of Ê; since Êt is also a subgraph of E, we
use it to perform the change of coordinates (5) to obtain
a system in the form of (7).

This system incorporates the identified topology into its
structure and its H2 norm quantifies the similarity be-
tween the output of the original graph and the output of
the graph specified by Ŝ. Minimization of the H2 norm of
this system yields the optimal edge weights.

The objective function in (19) is identical to that in
(18) without the quadratic penalty. Using the appropriate
gradient (A.2), the BFGS method is employed to solve (19)
and obtain the optimal edge weights.

4. EXAMPLES

The first example illustrates the performance of our al-
gorithm on a random graph and the tradeoff between
performance and sparsity. The second example compares
sparsity structures identified by our algorithm with spar-
sity structures obtained by truncating the edges with the
smallest weights.

4.1 Complete graph with random weights

In this example, we consider a complete 25-node, 300-
edge graph with random edge weights. Solving (11) with
increasing values of γ places increasing importance on the
sparsity of the graph. Figure 2 shows the number of edges
in the graph Ĝ as a function of the parameter γ.

Fig. 2. Number of edges of the sparse graphs at different
values of γ for the example of a complete graph with
randomly weighted edges.

Figure 3 shows the increasingly sparse topologies identified
by the algorithm. The sparser structures correspond to
larger values of the parameter γ.

Figure 4 illustrates the tradeoff between sparsity and
performance. The performance metric J(K̂) is plotted
against the numbers of edges removed and illustrates the
growing difference between the dense graph and sparser
topologies.

4.2 Comparison with truncation

In this example we illustrate the utility of our method by
comparing it with a simple truncation algorithm. Trunca-
tion of the edges with the smallest weights is an intuitive
strategy for identifying a sparsity structure. We consider
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(a) (b)

(c) (d)

Fig. 3. Identified sparse graphs for the example of a
complete graph with randomly weighted edges. (a)
300 edges for γ = 0 (b) 106 edges for γ = 0.0910 (c)
48 edges for γ = 0.5964 (d) 27 edges for γ = 1.8421.

Fig. 4. J(K̂) after polishing at different levels of sparsity
normalized by the H2 norm of G for the example of a
complete graph with randomly weighted edges

a truncation scheme in which the edge with the smallest
weight whose removal does not disconnect the graph is
iteratively removed until only the desired number of edges
remain.

Following an example provided in Motee and Jadbabaie
(2008), a graph is formed in the following manner:

• Nodes i are assigned random locations ξi.
• Edges are formed between nodes which lie within a

certain radius of one another.
• The weight on each edge is a function of the distance

between nodes, kl = e−‖ξi−ξj‖ where edge l connects
nodes i and j.

Figure 5 shows such a graph with 40 nodes connected by
425 edges. The truncation and ADMM algorithms were
used to identify various sparse topologies with the sparsest
topology consisting of 79 edges.

Figure 6 shows the sparsest topology specified by the
truncation scheme. Since edges between nodes which are
far apart have the smallest weights in this example, they
are removed by the truncation algorithm.

Figure 7 shows the sparsest topology specified by the
algorithm presented in this paper. The structure achieved
here does not show systematic removal of the longest edges

Fig. 5. Original graph with 425 edges.

Fig. 6. Sparse graph with 79 edges obtained using trunca-
tion.

and qualitatively preserves the ‘skeleton’ of the original
graph.

Fig. 7. Sparse graph with 79 edges obtained using ADMM
algorithm.

Polishing is performed on the respective topologies at sev-
eral levels of sparsity. The associated performance metrics
J(K̂) are plotted in Fig. 8 against the number of edges
removed. When the cardinalities of the feedback gain ma-
trices are the same, the sparse graphs identified by our
algorithm achieve closer performance to the original graph
than those identified by truncation.

Qualitatively, our algorithm preserves the shape of the
graph by maintaining the pattern of information exchange.
Since by definition the weakest edges connect nodes which
are geometrically far, their removal can greatly increase
geodesic distances. Our algorithm accounts for this effect
because it considers how well the outputs of the dense and
the sparse graphs match.
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Fig. 8. J(K̂) normalized by the H2 norm of G for different
sparsity structures identified by truncation (◦) and by
ADMM (×).
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Appendix A. GRADIENT AND HESSIAN
EXPRESSIONS

Computing the order ε variations in J(F ) as a result of
order ε variations in F yields

∇J(F ) = diag(2M̂TETt EtL
TY T M̂

+
1

2
M̂TETt EtM̂

− 2M̂TZ(ETt Et)
−1ZM̂

+ 2M̂TY LeE
T
t EtM̂

− 2M̂TETt C2Y
T M̂)

(A.1)

where L and Le satisfy the Sylvester equations,

ATL + LÂ = −CT1 C1

ATLe + LeÂ = −CT2 Ĉ2.
(A.2)

F is constrained to be diagonal so its gradient is also
diagonal. The gradient of (18) is then

∇FLρ(F,G,Λ) = ∇J(F ) + Λ + ρ(F −G). (A.3)

F and its gradient can be represented by vectors in Rm,
so the Hessian can be represented by a matrix in Rm×m.
The Hessian ∇2J(F ) quantifies the local curvature of the
objective function and the effect of order ε variations in F
on ∇J(F ). The ith row of ∇2J(F ) is the gradient of the
ith element of ∇J(F ), which is given by

eTi ∇2J(F ) = diag(− 2M̂TETt Et(Lα + Lδ)Y
T M̂

− 2M̂TETt EtL
TLβM̂

+ 8M̂TZM̂eie
T
i M̂

TZ(ETt Et)
−1ZM̂

− 2M̂TLTβ (LeE
T
t + CT2 )EtM̂

− 2M̂TY LγE
T
t EtM̂)

(A.4)

where Lα, Lβ , Lγ and Lδ solve the Sylvester equations

ÂTLα + LαA+ M̂eie
T
i M̂

TETt EtL
T = 0

ALβ + LβÂ
T + Y T M̂eie

T
i M̂

TETt Et = 0

ATLγ + LγÂ+ LeE
T
t EtM̂eie

T
i M̂

T = 0

ÂTLδ + LδA+ M̂eie
T
i M̂

TETt C2 = 0.

(A.5)
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