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Abstract— We consider social networks which contain agents
that spread misinformation and refuse to change their opinion.
For a fixed number of information disseminating agents, we
formulate an optimization problem to find their optimal location
within the network such that the spread of misinformation
is countered and public awareness is maximally raised. Once
the location of the information disseminators is identified, we
examine how to maximize their social influence either by
creating new social links or by strengthening their existing
links. Our formulation leads to a combinatorial optimization
problem that is solved using the alternating direction method of
multipliers. Illustrative examples are provided to demonstrate
our theoretical developments.

Index Terms— Alternating direction method of multipliers
(ADMM), leader selection, misinformation, optimization, social
networks, stochastic matrices.

I. INTRODUCTION

Influencing public opinion is the holy grail of political
parties, advertising agencies, media outlets, community
leaders, and economists. One of the main questions facing
these entities is how to most effectively sway public opinion
in their favor, under the constraints of limited resources and
rivaling entities.

This paper is motivated by recent work [1] on opinion
dynamics and the spread of (mis)information in social
networks. A successful example of spreading misinformation
is the Swift Boat Veterans for Truth campaign, which ran
ads during the 2004 US presidential race. The paper [1]
investigates how the presence of forceful agents, i.e., agents
that refuse to update their beliefs, affects the propagation of
misinformation in a society.

In contrast to [1], which performs an analysis of social
networks in a stochastic setting, we consider problems of
optimal design in a deterministic framework. Given a social
network with preassigned forceful misinforming agents, we
consider the problem of optimally choosing agents to serve
as forceful information disseminators in order to maximally
raise public awareness and counter misinformation.

To this end, we model the opinion of each individual
as a real scalar. Such a characterization has been noted
to be a good approximation of individuals’ opinions [2],
[3]; for example, it is argued in [2] that an individual’s
opinions on a wide range of social and political issues can
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be characterized by how liberal or conservative he/she is.
We model the discrete time evolution of opinions using
stochastic matrices, such that at every time step each agent
updates his/her beliefs by taking a weighted average of the
beliefs of those agents he/she socially interacts with.

The rest of the paper is organized as follows. In Sec. II
we address the problem of how to choose a fixed number
of information disseminators to maximize public awareness
in the presence of misinforming agents. Our formulation
leads to a combinatorial optimization problem that we tackle
using the alternating direction method of multipliers. In
Sec. III we consider the problem of optimally increasing the
social influence of our information disseminators. Illustrative
examples are provided in Sec. IV.

II. SELECTION OF INFORMATION DISSEMINATORS

Consider a social network composed of n agents whose
beliefs evolve according to

x̄(k + 1) = A x̄(k),

where x̄ is a column n-vector composed of nonnegative
values that represent the beliefs of the agents with regards
to a particular social issue. A is a (right) stochastic matrix
that satisfies Aij ≥ 0, A1 = 1, and 1 is the column
vector of all ones. The justification for A being a right
stochastic matrix is the following: At every time step, each
agent updates his/her beliefs by taking a weighted average
(equivalently, a convex combination) of the beliefs of those
agents he/she socially interacts with. This implies that every
row of A is composed of positive elements that sum up
to one. Note that A is not necessarily a symmetric matrix,
which means that the weight agent i puts on the beliefs of
agent j is not necessarily equal to the weight agent j puts
on the beliefs of agent i.

Next we consider a scenario in which kφ agents are
designated to be misinformers (MIs). The MI agents always
hold the belief zero and refuse to update it. Let φ be an n-
vector whose ith element is equal to one if agent i is an MI
and zero otherwise, and define

Dφ = diag{φ}.

The refusal of the MIs to update their beliefs means that the
evolution of the entire social network is described by

x̄(k + 1) = (I −Dφ)A x̄(k).

Furthermore, since the beliefs of the MIs are always equal to
zero, then a similar procedure to that described in [4] leads
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to the new evolution equations

x(k + 1) = T x(k),

where x is a column (n−kφ)-vector composed of the beliefs
of the non-MI agents, and T is the (n − kφ) × (n − kφ)
principal submatrix of A obtained by eliminating all rows
and columns corresponding to the MI agents.

We now describe the evolution model, which is used to
formulate the main optimization problem. Given x(k + 1) =
T x(k), we seek kψ agents to act as information dissemi-
nators (IDs), with the purpose of informing the public and
countering the spread of misinformation by the MIs. The ID
agents always hold the belief one and refuse to update it. Let
ψ be an (n− kφ)-vector whose ith element is equal to one
if agent i is an ID and zero otherwise, and define

Dψ = diag{ψ}.

The refusal of the IDs to update their beliefs means that
the evolution of the entire social network, minus the MIs, is
described by

x(k + 1) = (I −Dψ)T x(k) + Dψ 1.

After a reordering and partitioning of the states, the above
equation transforms into[

x̂(k + 1)
x̃(k + 1)

]
=
[

0 0
Uψ Tψ

] [
x̂(k)
x̃(k)

]
+
[
1

0

]
,

where x̂ is a column kψ-vector corresponding to the beliefs
of the ID agents, and x̃ is a column (n − kφ − kψ)-vector
corresponding to the beliefs of those agents who are neither
MIs nor IDs (i.e., x̃ encapsulates the beliefs of the general
public). Defining m := n − kφ − kψ , the matrix Tψ is the
m × m principal submatrix of T obtained by eliminating
all rows and columns corresponding to the ID agents, and
Uψ is the m × kψ submatrix of T obtained by eliminating
all rows corresponding to the ID agents and all columns
corresponding to the non-ID agents.

Since the beliefs of the IDs are always equal to one, the
public beliefs x̃ evolve according to

x̃(k + 1) = Tψ x̃(k) + Uψ x̂(k)
= Tψ x̃(k) + Uψ 1.

The matrix Tψ is a principal submatrix of the stochastic
matrix A and therefore its eigenvalues reside in the open unit
disk. Thus the above time evolution reaches steady-state x̃∞
for the public beliefs, x̃∞ = Tψ x̃∞ + Uψ1. Therefore

x̃∞ = (I − Tψ)−1 Uψ 1.

We are now in a position to formulate one of the main
optimization problems considered in this work. We assume
that limited resources available to the information dissem-
inators only allow kψ agents to act as IDs. Furthermore,
we assume that the overall level of ‘public awareness’ is
measured by the sum of the beliefs of all individuals in
society.1 Defining the objective function as the steady-state

1Note that all elements of x̃∞ have nonnegative values.

level of public awareness, we have

J := 1T x̃∞

= 1T (I − Tψ)−1 Uψ 1.

Therefore, to maximize the steady-state value of public
awareness using kψ information disseminating agents, we
solve the problem

minimize −1T (I − Tψ)−1 Uψ 1

subject to ψi ∈ {0, 1}, i = 1, . . . , n− kφ
1T ψ = kψ,

(1)

where the optimization variable is the binary vector ψ.

In the following proposition we reformulate the
optimization problem (1) in a way that lends itself to
the application of the alternating direction method of
multipliers (ADMM) algorithm [5], [6].

Proposition: The optimization problem (1) is equivalent
to

minimize −1T (I − (I −Dψ)T )−1Dψ 1

subject to ψi ∈ {0, 1}, i = 1, . . . , n− kφ
1T ψ = kψ,

in which ψ is the optimization variable, and Dψ = diag{ψ}.

Proof: Without loss of generality, we assume that a
reordering of the elements of the state vector x is performed,
so that the new state vector can be partitioned as

[
x̂T x̃T

]T
.

Correspondingly, the matrices T and Dψ are partitioned as

T =
[
Rψ Qψ
Uψ Tψ

]
, Dψ =

[
I 0
0 0

]
.

We have

(I − (I −Dψ)T )−1

=
([

I 0
0 I

]
−
[

0 0
0 I

] [
Rψ Qψ
Uψ Tψ

])−1

=
[

I 0
(I − Tψ)−1 Uψ (I − Tψ)−1

]
,

and thus

1T (I − (I −Dψ)T )−1Dψ 1

= 1T
[

I 0
(I − Tψ)−1 Uψ (I − Tψ)−1

] [
I 0
0 0

]
1

= 1T (I − Tψ)−1 Uψ 1 + kψ.

Since kψ is a fixed parameter, it is clear that the maximization
of 1T (I − (I − Dψ)T )−1Dψ 1 is equivalent to the
maximization of 1T (I − Tψ)−1 Uψ 1. Therefore the
optimization problem in the proposition statement is
equivalent to that in (1). This completes the proof.
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Using the proposition, we reformulate (1) as

minimize −trace(11T (I − (I −Dψ)T )−1Dψ)

subject to ψi ∈ {0, 1}, i = 1, . . . , n− kφ
1T ψ = kψ,

(2)

where Dψ = diag{ψ}.

Application of ADMM

We proceed as in [7]. We define the indicator function of
the constraint set in (2) as

g(ψ) =
{

0 if ψi ∈ {0, 1}, 1T ψ = kψ
∞ otherwise

and the objective function as

f(ψ) = −trace(11T (I − (I −Dψ)T )−1Dψ).

Hence, (2) can be formulated as the unconstrained optimiza-
tion problem

minimize f(ψ) + g(ψ).

which, in order to make more suitable for application of the
ADMM algorithm, we rewrite in the following form

minimize f(ψ) + g(ξ)

subject to ψ − ξ = 0,

with ξ being an auxiliary variable. We form the augmented
Lagrangian [5]

L(ψ, ξ, λ) = f(ψ) + g(ξ) + λT (ψ − ξ) +
ρ

2
‖ψ − ξ‖22,

where the vector λ is a dual variable, and the positive scalar
ρ is a penalty weight.

The ADMM algorithm now proceeds as follows [5]. Given
ξ0, λ0, for κ = 0, 1, . . . we carry out the updates

ψκ+1 := argmin
ψ

L(ψ, ξκ, λκ), (3)

ξκ+1 := argmin
ξ

L(ψκ+1, ξ, λκ), (4)

λκ+1 := λκ + ρ(ψκ+1 − ξκ+1),

until both of the conditions

‖ψκ+1 − ξκ+1‖2 ≤ ε, ‖ξκ+1 − ξκ‖2 ≤ ε,

are satisfied.

We now elaborate on each of the minimization problems
(3) and (4):

In general, problem (3) is nonconvex in ψ, but local
minima of the augmented Lagrangian can be found using
descent algorithms. It can be shown that

(∇L)i = −(11T (I − Eψ T )−1)ii
+ (T (I − Eψ T )−1Dψ 11

T (I − Eψ T )−1)ii
+ λi + ρ (ψi − ξi),

and

∇2L = 2 sym{(T (I − EψT )−1)◦(11T (I − EψT )−1)T }
− 2 sym{(T (I − EψT )−1)

◦(T (I − EψT )−1Dψ 11
T (I − EψT )−1)T }

+ ρ I,

where
Eψ = I −Dψ,

the operator sym gives the symmetric part of its matrix
argument,

sym(W ) = (1/2) (W +WT ),

and ◦ denotes elementwise matrix multiplication.

Problem (4) can be solved analytically; we present the
solution here and refer the reader to [7] for details of its
derivation. The optimal ξ solving (4) is found from

ξi =
{

1 if ξ̄i ≥ [ξ̄]k
0 if ξ̄i < [ξ̄]k

where
ξ̄ := ψκ+1 +

1
ρ
λκ,

and [ξ̄]k is the kth largest entry of ξ̄.

III. INCREASING THE INFLUENCE OF INFORMATION
DISSEMINATORS

In this section we assume that after choosing kψ
nodes to serve as information disseminators, we now
want to invest in increasing their influence on public
opinion. We model this as creating new links (respectively,
strengthening existing links) between the IDs and the public.

Let us recall that in the framework considered in this
work, each agent updates his/her belief by taking a weighted
average over the beliefs of those he/she interacts with.
Therefore, if an ID wants to create a link between itself
and an agent it did not interact with previously (or if an
ID wants to increase its influence on an agent it is already
interacting with), it would mean that the agent has to ‘make
room’ (or ‘make more room’) in his/her weighted averaging
scheme for the belief of the ID.

To model this we first notice that since all IDs are
identical (i.e., all have belief value equal to one at all times),
from a mathematical point of view it does not make any
difference which ID establishes a link with a given agent.2

Therefore, we proceed by finding merely the weight of the
new links between public agents and the IDs (or the added
weight between agents and IDs already interacting with
them), without specifying exactly which ID each agent will
be linked to. Once the optimal weights are found, one can
use metrics such as physical proximity or availability to
decide how to link (or strengthen existing links between)
IDs and agents.

2Of course, from a practical point of view, considerations such as physical
proximity would suggest that for a given agent the closest ID should be the
one to initiate social interactions.
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Suppose, for example, that a new social link is to be
established between an agent and an ID. And suppose that
the agent is to give a 10% weight in his/her averaging
scheme to the belief of the ID. Since the agent’s existing
weights sum to one, he/she makes room for the ID’s
belief by scaling all his/her existing weights by 0.9. (If
a social link already exists between an agent and an ID,
the procedure stays the same in the sense that all weights,
including that corresponding to the ID, are scaled down to
make room for the added weight.)

The description above corresponds to the following evo-
lution of beliefs[
x̂(k + 1)
x̃(k + 1)

]
=
[

0 0
Sσ Uψ + Uσ Sσ Tψ

][
x̂(k)
x̃(k)

]
+
[
1

0

]
,

where

σ =
[
σ1 · · · σm

]T
, 0 ≤ σi ≤ 1 for i = 1, . . . ,m,

σi = weight agent i puts on the belief of any ID,

Uσ = matrix whose only nonzero entry in its ith row is σi,

Sσ = I − diag{σ},

and m = n − kφ − kψ is the number of public (non-MI
non-ID) agents. Note that the exact location in which σi
appears in the ith row of Uσ is not important to us, as we
only care about the weight the ith agent puts on the belief
of some ID (i.e., the index of the ID is not important).

Since the beliefs of the IDs are always equal to one, the
public beliefs x̃ evolve according to

x̃(k + 1) = Sσ Tψ x̃(k) + (Sσ Uψ + Uσ)1
= Sσ Tψ x̃(k) + Sσ Uψ 1 + σ.

The above time evolution reaches steady-state x̃∞ for the
public beliefs, x̃∞ = Sσ Tψ x̃∞ + Sσ Uψ 1+ σ. Therefore

x̃∞ = (I − Sσ Tψ)−1 (Sσ Uψ 1 + σ).

Note that if σi = 1 then the ith node effectively becomes
an ID itself, since it fully ignores the beliefs of others
(including his/her own beliefs) and adopts that of the IDs at
all times.

We choose the objective function of our optimization
problem to account for both the steady-state level of public
awareness, 1T x̃∞, which we wish to maximize, and the total
weight of the links made to the IDs, 1T σ, which we would
like to keep small. Thus to maximize steady-state public
awareness while keeping down the resources spent by the
IDs, we solve the problem

minimize −1T (I − Sσ Tψ)−1 (Sσ Uψ 1 + σ) + γ 1T σ

subject to 0 ≤ σi ≤ 1, i = 1, . . . ,m,
(5)

where the optimization variable is the vector of weights
σ, with Sσ = I − diag{σ} and γ a positive scalar that
determines the relative importance of the two terms in the
objective function.

Customized Interior Point Method

Consider the following approximation of (5) using log-
barrier functions [8]

minimize −1T (I − Sσ Tψ)−1 (Sσ Uψ 1 + σ) + γ 1T σ

+
1
r

n∑
i=1

(− log(σi) − log(1− σi))

(6)
A sequence of optimization problems (6) are solved in
which r is gradually increased in every step, and at each
step the numerical scheme (e.g., Newton’s method) is
initialized with the solution of the previous iteration.

Defining J as the objective function in (6), we have

(∇J )i = (Tψ (I − Sσ Tψ)−1 (Sσ Uψ Π + Dσ 11
T )

(I − Sσ Tψ)−1)ii
+ ((Uψ Π − 11T ) (I − Sσ Tψ)−1)ii
+ γ − (1/r) (σ−1

i + (σi − 1)−1),

and

∇2J = −2 sym{(Tψ (I − Sσ Tψ)−1)◦(Tψ (I − Sσ Tψ)−1

(Sσ Uψ Π + Dσ 11
T ) (I − Sσ Tψ)−1)T }

− 2 sym{(Tψ (I − Sσ Tψ)−1) ◦ ((Uψ Π − 11T )

(I − Sσ Tψ)−1)T }
+ (1/r) diag{σ−2

i + (σi − 1)−2},

where Π is the kψ ×m matrix of all ones, and

Dσ = diag{σ}.

IV. EXAMPLES

In this section, we provide four examples: the first two
illustrate the problem of selecting IDs (cf.Sec. II), and the
other two illustrate the problem of increasing the influence
of IDs (cf. Sec. III).

Examples I & II: Selection of IDs

We consider the graph of the social network given in [4]
and shown here in Fig. 1; we ignore the coloring of the
nodes for the time being. We assume that certain nodes
have been determined a priori to serve as MIs, and we seek
the optimal locations for a given number of ID nodes.

Let M denote the (symmetric) adjacency matrix of the
graph, i.e., let Mij take the value 1 if node i is connected
to node j and the value 0 otherwise. We also assume that
each node has a self-loop (not shown in the figure) and thus
Mii = 1 for i = 1, . . . , n. Let di denote the number of
neighbors of node i, di =

∑n
j=1Mij .3 We define ijth entry

of the social interaction matrix A as

Aij =
Mij

di
. (7)

Clearly A is a stochastic matrix.

Figures 1 and 2 demonstrate two scenarios with one and

3Since Mii = 1, every node is a neighbor to itself.
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Fig. 1: The social network given in [4]. In Example I, when
node 13 is determined a priori to act as an MI, then the
optimal locations for two IDs are nodes 8 and 15.
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Fig. 2: In Example II, when nodes 8 and 15 are determined
a priori to act as MIs, then the optimal locations for two IDs
are nodes 7 and 19.

two MI agents (colored in red), respectively, and two ID
agents (colored in blue). In both examples the solution was
found by applying the ADMM algorithm to the optimization
problem (2) of Sec. II. We note that the solution found
in both cases is in agreement with that obtained using an
exhaustive search, which implies that the ADMM algorithm
(with ρ = 104) has indeed found the global minimum.
Furthermore, the solutions make sense from an intuitive
point of view; the IDs do their best to ‘isolate’ the MI
node(s) and limit the spread of misinformation to as few
nodes as possible.

We make a few notes and comparisons with respect to the
existing literature on social networks. The papers [2], [3]
characterize the social influence of agents in terms of the
entries of the left eigenvector v of A corresponding to the
eigenvalue one, vTA = vT ; the magnitude of the positive

number vi shows how much influence agent i has on public
opinion. Indeed, for the special class of graphs described by
(7), where agents use the average value of their neighbors’
beliefs to update their own, we have [2]

vi =
di∑n
i=1 di

.

This means that the influence of each agent is proportional
to his/her number of neighbors. Based on this result, one
would expect nodes 7, 8, 13, 25 in Fig. 1, 2 to make good
MIs and/or IDs, as they are the nodes with the largest
number of neighbors. However, note that once some nodes
are assigned to be MIs then the social interaction matrix
A no longer satisfies (7) and the given formula for vi is
invalid. Furthermore, computing v directly using vTA = vT

for a network with an MI agent (or any forceful agent that
refuses to update his/her belief) at node l renders v equal
to a vector whose only nonzero element appears in location
l. This means that only the MI agent is socially influential.
Therefore, the eigenvector approach does not give a good
indication of which nodes would serve as powerful IDs in
the presence of MIs. On the other hand, the formulation
proposed in this work for choosing IDs is general enough
to be applied to social networks that contain MI agents.

Examples III & IV: Increasing Influence of IDs
We now consider the scenario in which both the MI

and ID agents have already been selected and it is desired
to find the optimal σ to create new links (or strengthen
existing links) between the IDs and the public, such that
the influence of the ID agents is maximally increased. The
solutions are found by applying the customized interior
point method in (6) to the optimization problem (5) of
Sec. III.

Consider the MI and ID configuration of Fig.1, where node
13 is an MI and nodes 8 and 15 are IDs. For γ = 1 the
optimal value of the vector σ obtained from solving (5) is
given by

σi =
{

1 if i = 12, 14,
0 otherwise.

This result makes sense, since the only nodes that are not
already isolated from the MI by the IDs are nodes 12
and 14. For the obtained value of σ, the IDs aggressively
influence the opinion of nodes 12 and 14 by choosing
σ12 = σ14 = 1.

As another example, consider the MI and ID configuration
of Fig. 3, where node 13 is an MI and nodes 7 and 19
are IDs. Fig. 4 demonstrates the entries of the optimal σ
for γ = 0.1 obtained from solving (5). Once again, the
result makes sense, since the IDs attempt to aggressively
influence the opinion of those nodes through which the MI
communicates its misinformation to the rest of the network.

Not surprisingly, the optimal σ changes for different values
of γ in (5). Fig. 5, 6 demonstrate the entries of the optimal
σ for γ = 1 and γ = 10. Finally, it is interesting to note
that, while the IDs become less aggressive as γ increases,
the sparsity of σ does not change significantly as γ varies.
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Fig. 3: In Example IV, node 13 is an MI and nodes 7 and 19
are IDs. For different values of γ, the entries of the optimal
σ vector are given in Fig. 5–6.
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Fig. 4: The entries of the vector σ for the social network in
Fig. 3, obtained by solving (5) for γ = 0.1.

V. CONCLUSIONS AND FUTURE WORK

We consider two problems: First, given a social network
with misinforming agents, we find nodes that would best
serve as information disseminators to the public. Second,
once the best information disseminating nodes are found, we
consider the problem of optimally increasing their influence
on public opinion. The first problem is combinatorial in
nature, and we demonstrate that the alternating direction
method of multipliers is well-suited for addressing it.

Future work in this area would include deriving new objec-
tive functions that account for not only steady-state behavior
but also the transient characteristics and convergence rates
of public opinion.
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