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Technical Notes and Correspondence

Design of Optimal Sparse Interconnection Graphs for
Synchronization of Oscillator Networks

Makan Fardad, Fu Lin, and Mihailo R. Jovanović

Abstract—We study the optimal design of a conductance network as
a means for synchronizing a given set of oscillators. Synchronization is
achieved when all oscillator voltages reach consensus, and performance
is quantified by the mean-square deviation from the consensus value.
We formulate optimization problems that address the tradeoff between
synchronization performance and the number and strength of oscillator
couplings. We promote the sparsity of the coupling network by penalizing
the number of interconnection links. For identical oscillators, we establish
convexity of the optimization problem and demonstrate that the design
problem can be formulated as a semidefinite program. Finally, for special
classes of oscillator networks we derive explicit analytical expressions for
the optimal conductance values.

Index Terms—Consensus, convex relaxation, optimization, oscillator
synchronization, reweighted minimization, semidefinite programming,
sparse graph.

I. INTRODUCTION AND MOTIVATION

Problems of synchronization are of interest in a variety of disci-
plines. In biology, examples include the synchronization of circadian
pacemaker cells in the brain, pacemaker cells in the heart, and flashing
fireflies and chirping crickets [1]. In engineering and applied mathe-
matics, extensive research has been devoted to the synchronization of
networks of Kuramoto oscillators and networks of power generators
[2]–[6]. Synchronization phenomena capture the attention of people
with diverse backgrounds, as illustrated through the synchronization of
mechanically coupled metronomes in the widely popular talk by Stro-
gatz [7], and constitute an important part of the by now rich literature
on network analysis and design [8]–[11].
We consider the synchronization problem for a network of oscil-

lators, and use the size of the conductance between any two nodes to
quantify the amount of coupling between the corresponding oscilla-
tors. Our aim is to synchronize the network in a cost-effective way
as far as the overall use of conductance is concerned. For oscillators
subject to white-noise excitations, performance is measured using the
variance of the steady-state deviation from the consensus value of os-
cillator voltages. We employ an optimal control framework to mea-
sure the amount of synchronization and also to penalize the amount of
conductance used. Additionally, in order to penalize the number of in-
terconnection links and thus promote a sparse coupling network, we
regularize the objective function with a weighted norm of the con-
ductance matrix.
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Fig. 1. Oscillator network of oscillators coupled through conductances de-
scribed by matrix .

Our main contributions can be summarized as follows. We employ
tools from optimal control, compressive sensing, and convex opti-
mization to formulate the synchronization problem and design optimal
sparse interconnection graphs. We develop a procedure for eliminating
the marginally stable and unobservable mode which corresponds
to the consensus value of oscillator voltages. Finally, we exploit
problem structure to identify a class of systems for which the optimal
design problem is convex, and provide a semidefinite programing
formulation.
The problem of optimal controller design for large-scale and dis-

tributed systems has been considered in [12]–[19]. Particular attention
is paid to the problem of optimal structured control in [20], where the

norm of the closed-loop system is minimized among all controllers
that respect a predetermined communication structure. The problem of
optimal sparse control is considered in [21], [22], where a combina-
tion of norm and sparsity-promoting penalty terms is minimized
with the purpose of achieving a desirable tradeoff between quadratic
performance and controller sparsity. The synchronization of coupled
second-order linear harmonic oscillators with local interaction is con-
sidered in [6]. In this technical note, we adopt a framework which com-
bines the optimization formulation of [21], [22] with the oscillator net-
work model of [6].

II. PROBLEM FORMULATION

Consider a network of LC-oscillators, interconnected by a set of
conductances and subject to random current excitations. The conduc-
tances that connect different oscillators form the edges of an undirected
(weighted) graph, with each oscillator connecting a node of the graph
to the ground, as illustrated in Fig. 1. For simplicity, we assume that all
capacitors have unit value implying that, when considered in isolation,
each oscillator resonates at frequency , .
Let denote the column -vector of node voltages. Then, taking the

integral of node voltages and the node voltages as state variables,
the dynamics of the entire network can be described by

(1)
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where is the state vector, is the vector of disturbance
currents injected into the nodes, and

The conductance matrix can be thought of as a weighted Laplacian
[23], which by default satisfies

Here, denotes inequality in the matrix semidefinite sense and is
the column -vector of all ones. We assume that the system’s graph
is connected, which implies the positive definiteness of the matrix
when it is restricted to the subspace .
Concisely, we write , where

(2)

It is desired to find an “optimal” (in a sense to be made precise in
what follows) matrix such that: (i) the difference in node voltages

is kept small for every and ; (ii) the total amount of conduc-
tance used to connect nodes is kept small; and (iii) the number of links
between nodes is kept small. Objective (i) attempts to synchronize the
oscillators by keeping the node voltages close to each other. Objective
(ii) tries tomaintain a small level of coupling between the nodes. Objec-
tive (iii) aims to obtain a sparse interconnection topology. We note that
objective (iii) is sometimes relaxed in this technical note, for example,
when a particular interconnection topology is determined a priori and
optimal values of conductances are sought within that topology.
In order to place the problem of designing in the framework of

optimal control theory, we rewrite system (1) in state-space form [24]
as

with , , and

The variables and respectively represent the exogenous and control
inputs that enter the nodes as currents, and the variables and respec-
tively represent the performance and measured outputs. The positive
semidefinite matrix and the positive definite matrix respectively
quantify state and control weights. In this control-theoretic framework,
the matrix denotes the static feedback gain, which is subject to the
structural constraint of being in the set defined in (2). Upon closing
the loop, the above problem can equivalently be written as

(3)

From the above definitions of the matrices , , and it is easy to see
the equivalence between equations (3) and (1).
We further assume that , , and

(4)

where satisfies and is a positive definite matrix when
restricted to the subspace , i.e.,

To justify the structural assumptions on , we note that in order to
achieve synchronization we are interested in making weighted sums
of terms of the form small. Owing to the choice of state
variables , such an objective corresponds to matrices with
the zero structure displayed in (4) and matrices that are positive
semidefinite and satisfy . For example, in a system of two
oscillators, if it is desired to make small then has the
structure shown in (4) with

We now state the main optimization problem addressed in this tech-
nical note, and then elaborate on the details of its formulation. Consider
the problem

(5)

where and are the optimization variables,
is the -norm of , is a weighting matrix, denotes elementwise
matrix multiplication, and is the set of weighted Laplacian matrices
corresponding to connected graphs, as defined in (2).
We next elaborate on the formulation of the optimization problem

(5). When , the objective function

determines the norm, from input to output , of the closed-loop
system (3) [24]. In a stochastic setting, the norm quantifies variance
amplification from to in statistical steady-state; in a deterministic
setting, it quantifies the -norm of the impulse response. Solving (5)
for is closely related to the design of structured feedback gains
[20]. The condition ensures that is a legitimate conduc-
tance matrix. It is important to note that due to our particular choice of
the performance output , by minimizing we are achieving the first
two of our optimal synchronization objectives outlined earlier. Further-
more, it has been demonstrated recently that optimization can be ef-
fectively employed as a proxy for cardinality minimization [25], [26],
where the cardinality of a matrix is defined as the number
of its nonzero entries. Indeed, the term in the objective
function of (5) attempts to approximate in penalizing the
number of nonzero elements of , which in terms of the synchroniza-
tion problem can be interpreted as penalizing the number of intercon-
nection links. The weighting matrix can be updated via an iterative
algorithm in order to make the weighted norm a better
approximation of [22], [26]. We next describe one such algo-
rithm.

A. Sparsity-Promoting Reweighted Algorithm

Reference [26] introduces the reweighted minimization algorithm
as a relaxation for cardinality minimization. This methodology was re-
cently used in [21], [22] to find optimal sparse controllers for inter-
connected systems. We now state the reweighted algorithm for the
optimal sparse synchronization problem.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL 2459

Algorithm 1 Reweighted algorithm

1: given and .

2: for do

3: If , set , set , form .

4: If , set equal to optimal from previous step, set
, form .

5: Solve (5) to obtain .

6: If , quit.

7: end for

Henceforth in this technical note, unless stated otherwise, we will only
address solving the optimization problem (5) for a given weighting ma-
trix , which corresponds to Step 5 of Algorithm 1.

B. Simplification of Problem (5)

We begin by exploiting the structure of the Lyapunov equation that
appears in the optimization problem (5)

Substituting the expressions for , , , , and

and rewriting the equation in terms of its components gives

(6)

The condition implies that and . Finally, we use
the block decomposition of to simplify the objective function in (5),

(7)

III. CASE OF UNIFORM INDUCTANCES: A CONVEX PROBLEM

For networks in which all inductors have the same value, we show
in this section that the optimization problem (5) can be formulated as
a semidefinite program.
Assumption 1: Let all inductors have the same value, i.e.,

(8)

for some . We hereafter refer to this as the “uniform inductance”
assumption.
Remark 1: This assumption is restrictive in that all oscillators now

have the same resonance frequency (recall that all capac-
itor values are equal to one). However, the synchronization problem
is still meaningful, as it forces the oscillators to reach consensus on
their amplitudes and phases and oscillate in unison. It can be shown
[27] that the uniform inductance scenario provides a valuable design
platform for the more general case in which different inductor values
constitute small deviations from some nominal value.
From the uniform inductance assumption (8) it follows that

commutes with any matrix and therefore the first equation in

(6) becomes

Hence the last equation in (6) simplifies to

(9)

with . Furthermore, from (7) it follows that the objective in (5) is
equal to and is independent of and . The optimization
problem (5) can thus be rewritten as

(10)

It is worth noting the close correspondence between the optimization
problem (10) and a related optimal sparse design problem for a network
of single-integrators [22].
To simplify the optimization problem further, we state the following

useful lemma.
Lemma 1: Let and be given symmetric matrices that

satisfy , where is the -vector of all ones, and suppose
that is negative definite when restricted to the subspace . For the
Lyapunov equation

(11)

the following statements hold.
(i) If is a solution of the Lyapunov (11) then so is for
any .

(ii) If is a solution of the Lyapunov (11) and is positive semidef-
inite on , then is an eigenvector of and is positive
semidefinite on . Furthermore, among all that satisfy
(11) the one with the minimum trace satisfies .

(iii) Any solution of the Lyapunov (11) satisfies

for some and matrix with , where is
independent of and , and denotes the Moore–Penrose
pseudoinverse of . Additionally, if is positive semidefinite
on then so is .

(iv) The identity holds
and any solution of the Lyapunov (11) satisfies

where is independent of and .
Proof: The proof uses a special similarity transformation to elim-

inate the common zero mode of and from the Lyapunov equation
; see Appendix for details.

Remark 2: An important consequence of Lemma 1 is that the new
description of

lends itself to the application of semidefinite programing (SDP)
methods, as we demonstrate below. This is reminiscent of the results
in [23].
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Applying Lemma 1 with and to the
Lyapunov (9) with gives

(12)

where is independent of and . The details of the sim-
plifications in (12) are as follows: Since is the Laplacian of a con-
nected graph then and is positive definite on . Also,
by assumption and is positive definite on . Thus

and is positive definite on . Therefore
Lemma 1 applies and the first equation follows. In the second equa-
tion, and the identities ,

are invoked. Finally, the last equation follows
from and the trace identity .
In summary, problem (5), which has been simplified to (10) using

the uniform inductance assumption, is further simplified with the help
of Lemma 1 and (12) to obtain the equivalent problem

(13)

where the parameter has been dropped from the objective, as it has
no effect on the solution of the optimization problem.

A. SDP Formulation

Proposition 2: The optimization problem (5), under the uniform in-
ductance assumption, is equivalent to the semidefinite program

(14)

where the optimization variables are the symmetric matrices ,
and the elementwise-nonnegative matrix , denotes elementwise
inequality of matrices, and .

Proof: See Appendix.
We note that the optimal conductancematrix is independent of the in-

ductance matrix when all inductances have the same value. In other
words, the optimal does not depend on the oscillator parameters
when all oscillators are identical.

B. Optimality Conditions for

Proposition 3: Consider subject to
the constraints in (5) and the uniform inductance assumption. Then

In particular, setting gives as a necessary
and sufficient condition for the optimality of .

Proof: The proof follows from a straightforward application of
variational methods to the expression in (12) and noting that is re-
stricted to the set . We omit the details due to space limitations.

IV. ILLUSTRATIVE EXAMPLES

Example 1 (Uniform All-to-All Coupling): A problem of particular
interest in oscillator synchronization is that of uniform all-to-all cou-
pling [1]. This structured (nonsparse) problem can be easily addressed
using the framework developed above. In this case, every oscillator is
connected to all other oscillators and all couplings have the same mag-
nitude. This implies a particular structure on , namely

It is easy to see that this belongs to .
Since the structure of is already determined, the sparsity-pro-

moting term can be dropped from the objective of (13),
and the problem simplifies to finding the value of that minimizes

. We have ,
, and

Setting , we obtain

thereby implying that the optimal conductance matrix is given by

(15)

Notice that because of the particular structure enforced on , the op-
timal conductance matrix depends only on the trace of and not on
its exact structure or its individual entries.
Example 2: In this example we consider identical oscillators

and design a sparse conductance matrix using the sparsity-promoting
algorithm of Section II, with the optimization problem in Step 5 of
Algorithm 1 being (14).
Let and denote the 7-by-7 version of the matrix

The optimal conductance matrices , for different values of , are
given below. For all computations we used CVX, a package for speci-
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fying and solving convex programs [28], [29]. As expected, for
we recover .

V. CONCLUSIONS AND FUTURE WORK

We have proposed an optimization framework for the design of
(sparse) interconnection graphs in LC-oscillator synchronization
problems. We have identified scenarios under which the optimization
problem is convex and can be solved efficiently.
Our ultimate goal is to establish a constructive framework for the

synchronization of oscillator networks, in which not just the issue of
synchronization but the broader questions of optimality and design
of interconnection topology can be addressed. For example, it can be
shown that a linearization around the consensus state of the nonlinear
“swing equations,” that arise in the description of power systems, can
be placed in the design framework developed in this technical note and
ultimately expressed as a semidefinite program. As another example, it
can be shown that after applying a sequence of transformations to (3),
the resulting equations closely resemble those of the Kuramoto oscil-
lator. We aim to exploit these similarities for the purpose of optimal
network design in our future work.

APPENDIX

Proof of Lemma 1: The proof of (i) follows from the symmetry of
and the assumption .
To prove (ii), note that since is symmetric it can be diagonalized

using a unitary transformation , , where ,
denote the orthonormal eigenvectors of and constitute the columns
of ; , denote the eigenvalues of and constitute the
diagonal elements of , . Recalling that

, we assume without loss of generality that

Then with , and ,
where . Since is negative definite on
then . Similarly, , which results from

and . And since is positive semidefinite on
then .
Multiplying from the left and right by and
, and using

we arrive at

where is a scalar, is a column vector, and is a matrix. Rewriting
the above equation component-wise gives

and is a ( - and -independent) free parameter. From it
follows that , and therefore . In particular,
this implies and thus is an eigenvector of with
as its corresponding eigenvalue. Furthermore, it is easy to show that

is the unique solution to the Lyapunov equation
when . Since then , and is

positive semidefinite when restricted to the subspace .
Finally, we have . If then .

Hence the minimum trace of is achieved for , which renders
. This proves statement (ii).

To prove (iii), we note that

with . From and it follows that
is positive semidefinite on .

Also, from and [30, Lemma 1], we have
, which implies

To express in terms of theMoore-Penrose pseudoinverse ,
note that from and the SVD procedure for finding the
pseudoinverse, we have . Thus,

, and

This proves statement (iii).
To prove (iv), we use [23] which

gives

This proves statement (iv). The proof of the lemma is now complete.
Proof of Proposition 2: If was positive definite and thus in-

vertible, then replacing with
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in the objective function of (13), subject to the linear
matrix inequality (LMI) constraint

would follow from a simple application of the Schur complement [31].
In particular, this would establish the positive definiteness, and thus
the invertibility, of , and the optimal that minimizes
the objective subject to the LMI constraint would be given by

. However, since and therefore
is singular, we can only conclude from the above LMI that
is positive semidefinite. We next demonstrate that

is indeed invertible.
Using the unitary transformation from the proof of Lemma 1 and

defining , the above LMI holds if and only if

where the upper-left 2-by-2 block is the appropriately partitioned
matrix , the upper-right 2-by-2 block is the partitioned matrix

in which the zero structure follows from , and the
lower-right 2-by-2 block is the partitioned matrix
in which the zero structure follows from . Using a permutation
of the rows and columns, the above LMI is equivalent to

which in particular implies that

Since is positive definite on then . Thus,
, and therefore .

This implies , and is invertible.
The term in the objective function can be replaced with

, subject to the LMI constraint [32] .
Finally, the constraint , which guarantees that is the weighted
Laplacian of a connected graph, is equivalent to the set of conditions

, , , . The first and
last of these conditions are automatically fulfilled when satisfies the
LMI, and are therefore dropped from the formulation of the optimiza-
tion problem. The proof of the proposition is now complete.
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