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Abstract— We propose new characterizations of social influ-
ence, which quantify both the transient and the steady-state
propagation of beliefs across society. These characterizations
are used to optimally choose a desired number of agents in a
social network to serve as social leaders with maximal social
impact. We then consider a framework for optimally creating
new social links subject to resource constraints, in order to
improve the influence of designated agents or social leaders.
We show that the formulated optimization problems are convex
with respect to the individual elements of the optimization
variables. This motivates the use of the coordinate descent
method, a simple but efficient algorithm well-suited to large-
scale optimization problems. Finally, using demonstrative exam-
ples, we compare the ability of our proposed characterizations
of social influence in identifying the most influential agents
with that of other measures of influence developed in the social
networks literature.

Index Terms— Betweenness centrality, consensus, convex re-
laxation, coordinate descent, leader selection, optimization,
social influence, social networks, sparsity, stochastic matrices.

I. INTRODUCTION

Influencing public opinion, in order to enforce a desired
consensus in the beliefs of individuals, is of paramount
importance in social networks. A natural question then
is how to find the most influential group of agents that
can most effectively sway public opinion. To answer this
question, one first needs to develop a measure of social
influence. The present work is motivated by the papers
[1]–[4], which consider the problem of quantifying the
influence of agents in a social network. Similar problems
have also been investigated in [5], [6].

In this work we use techniques from systems theory to
develop alternative characterizations of social influence,
and employ them to formulate pertinent social network
design problems. To this end, we assume that the opinion
of each individual can be represented by a real scalar. Such
a description has been noted to be a good approximation of
individuals’ opinions [1], [4]; for example, it is argued in
[1] that an individual’s opinions on a wide range of social
and political issues can be characterized by how liberal or
conservative he/she is.

We describe the discrete-time evolution of beliefs using
(row) stochastic matrices, such that at every time step each
agent updates its belief by taking a weighted average of the
beliefs of those agents it socially interacts with. This is a
widely-used belief evolution scheme, often referred to as the
DeGroot model [7]. We point out that although the DeGroot
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model is simpler than those employed in some recent work
on social networks [8]–[10], it allows for more constructive
results by permitting the definition of performance measures
and the formulation of optimization problems for network
design.

We exploit the property that social networks are positive
systems [11], [12] to introduce multiple new characteriza-
tions of social influence that capture the efficiency of a given
set of nodes in propagating its opinion through society. We
then use these characterizations to formulate the problem
of optimally choosing an a priori determined number of
agents to serve as social leaders. Furthermore, given a set
of nodes, we address the problem of how to optimally
increase their social influence through the creation of new
social interactions, and the strengthening of existing social
interactions, subject to resource constraints.

Motivation
Our interest in developing alternative characterizations

of social influence is in part motivated by the observation
that some common definitions of social influence [1], [2],
[4] can render a poor characterization of an agent’s true
influence. We next elaborate on these observations.

Consider a social network with n agents described by
the evolution x(k + 1) = T x(k), where T is a matrix with
nonnegative entries whose row entries sum to one for every
row. This describes the averaging mechanism by which
agents update their beliefs over time. The papers [1], [4]
characterize the social influence of agents in terms of the
entries of the left eigenvector µ of T corresponding to the
eigenvalue one, µTT = µT , where the relative magnitudes
of the (positive) entries of µ characterize the relative
influence of agents on public opinion. To understand the
rationale behind such a characterization, we note that using
the properties of the matrix T it can be shown that as k →∞

x(k) → 1

µT1
(µTx(0))1,

with 1 denoting the column vector of all ones. The
interpretation of this result is that all agents converge to
the same opinion (µTx(0))/(µT1), and that the amount
of influence of the ith agent on the consensus opinion is
determined by the value of the ith entry µi of µ.

The shortcoming of using such an eigenvalue analysis
to measure social influence is that it focuses only on the
steady-state condition of the social network. In contrast to
the eigenvalue characterization, in this paper we propose
new measures of social influence that additionally account
for transient behavior and the speed of convergence to
the consensus opinion. We next use a simple example
to demonstrate the difference between these alternative
measures of social influence and the utility of our results.
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Fig. 1: The social network example of [13].

Consider the graph of a social network given in Fig. 1.
We assume that the matrix T is such that at every time
instant every agent updates its belief by taking the average
of its own belief with that of its neighbors’. It can be shown
[1] that for such a system µi is proportional to the number
of neighbors of node i (where it is assumed that every
node is also a neighbor to itself). For network in Fig. 1, this
implies that agents 7, 8, 13, 25 all have the same (and the
largest) social influence as they all have the same (and the
largest) number of neighbors.

On the other hand, using the measures of social influence
that will be introduced in Section II, it can be shown that

influence of 13> influence of 8> influence of 7> influence of 25.

Note that for this example, the above results agree with
our intuition of which agents are more influential: Based
on their location, one would expect agent 13 to be more
influential than agent 25, as it takes much longer for the
opinion of agent 25 to propagate through the network
compared to that of agent 13.

Another measure of social influence proposed in the
literature is betweenness centrality [2]. The betweenness
centrality of node i is related to the fraction of shortest
paths, between pairs of nodes in the network, that pass
through node i. Betweenness centrality is more sophisticated
than node degree, and counts the number paths that will
become longer if a particular node is removed.

However, betweenness centrality too has shortcomings for
measuring social influence. First, betweenness centrality is
only defined for single nodes and it is not immediate how
it should be used to measure the social influence of a group
of nodes. Furthermore, betweenness centrality depends only
on the interconnection topology of the graph and disregards
edge directions and edge weights. It is therefore not possible
to distinguish between nodes that strongly influence others
versus those that are easily influenced by others. Finally,
betweenness centrality ignores the temporal dynamics of
belief propagation through the network.

II. NEW CHARACTERIZATIONS OF SOCIAL INFLUENCE

Consider a social network composed of n agents whose
beliefs evolve according to [7]

x(k + 1) = T x(k), (1)

where x(k) is a column n-vector composed of nonnegative
values that represent the beliefs of the agents with regards
to a particular social issue at time k. T is a (row) stochastic

matrix with nonnegative entries that satisfies T 1 = 1,
where 1 is the column vector of all ones. The justification
for T being a stochastic matrix is as follows: At every time
step, each agent updates its belief by taking a weighted
average (equivalently, a convex combination) of the beliefs
of those agents it socially interacts with. This implies that
every row of T is composed of nonnegative entries that sum
to one. Note that T is not necessarily a symmetric matrix,
which means that the weight agent i puts on the beliefs of
agent j is not necessarily equal to the weight agent j puts
on the beliefs of agent i.

In what follows, we develop a framework for quantifying
the social influence of a designated agent, or a group of
agents, in a social network. To this end, we assume that these
agents always hold the belief zero and refuse to update it.
We will henceforth refer to these as ‘forceful’ agents (FAs),
and to the remaining nodes as ‘regular’ agents (RAs).
By communicating with the rest of the network, the FAs
propagate their opinion through society. If the network
is strongly connected, in the sense that any given node
is affected by the opinion of some FA after a sufficient
number of time steps, then it can be shown that eventually
the beliefs of all agents in the network will converge to zero.

Let φ be an n-vector whose ith element is equal to one if
agent i is an FA and zero otherwise, and let

Dφ = diag(φ).

The refusal of the FAs to update their beliefs means that the
evolution of the entire social network is described by

x(k + 1) = (I −Dφ)T x(k).

After a reordering and partitioning of the states, it can be
shown that the above equation becomes[

x̆(k + 1)
x̃(k + 1)

]
=

[
0 0
Vφ Tφ

] [
x̆(k)
x̃(k)

]
,

where x̆ is a column nφ-vector corresponding to the beliefs
of the FAs, and x̃ is a column (n−nφ)-vector corresponding
to the beliefs of the RAs. Tφ is the (n − nφ) × (n − nφ)
principal submatrix of T obtained by eliminating all rows
and columns corresponding to the FAs, and Vφ is the (n −
nφ) × nφ submatrix of T obtained by eliminating all rows
corresponding to the FAs and all columns corresponding to
the RAs. Finally, since the beliefs of the FAs are always
equal to zero, the time evolution of the RAs is described by

x̃(k + 1) = Tφ x̃(k). (2)

We now use this framework to characterize the influence
of the FAs. The basic idea is that, assuming there are
nonzero initial beliefs of the RAs propagating across the
social network, the faster the FAs can bring the beliefs of
the network back to zero the more influential they are. Let
ei denote the ith basis vector in Rn−nφ , and let x̃(0) = ei.
This can be interpreted as a social network in which all the
RAs have zero initial belief except for the ith RA, whose
belief is equal to one. From (2) it follows that the propagation
of this initial belief through society is described by

x̃(k) = T kφ ei.
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Since all entries of Tφ are nonnegative, x̃(k) has nonnegative
entries for all k. Furthermore, since Tφ is a principal sub-
matrix of the stochastic matrix T associated with a strongly
connected network and therefore its eigenvalues reside in
the open unit disk [14, Theorem 11.4], we have T kφ ei → 0

as k → ∞ and it can be shown that
∑∞
k=0 T

k
φ ei =: yi

converges and
yi = (I − Tφ)−1 ei.

Note that the entries of yi show the cumulative effect
(in time) of the opinion of agent i on the entire network.
Therefore the total (in both time and space) effect of the
initial condition ei on society is equal to 1T yi. Clearly,
the FAs, who maintain the belief zero at all times, are
responsible for the decay in T kφ ei as k increases; the more
influential the FAs are the faster the decay will be, and also
the smaller the cumulative effect of ei on society.

Lastly, letting i range over all RAs in the network, we
define

J1(Tφ) =

n−nφ∑
i=1

1T yi =

n−nφ∑
i=1

1T (I − Tφ)−1 ei

= 1T (I − Tφ)−1 1. (3)

Thus J1(Tφ), which is equal to the sum over all entries
of the matrix (I − Tφ)−1, captures the social influence of
the FAs on the network. Indeed, the smaller J1(Tφ) is the
larger the social influence of the FAs.

Using similar reasoning, we can define J2(Tφ) =∑n−nφ
i=1 yTi yi as a measure of social influence, and we have

J2(Tφ) =

n−nφ∑
i=1

trace(yi y
T
i ) = trace

(
(I − Tφ)−T (I − Tφ)−1

)
.

Finally, motivated by the notion of the H2 norm of
linear dynamical systems, we can define J3(Tφ) =∑n−nφ
i=1

∑∞
k=0(T kφ ei)

T (T kφ ei) as a measure of social influ-
ence, and we have

J3(Tφ) =

n−nφ∑
i=1

trace(ei e
T
i + TTφ Tφ ei e

T
i + · · · ) = trace(P ),

where P satisfies the discrete-time algebraic Lyapunov
equation P = TTφ P Tφ + I.

To compare the three measures J1, J2, J3, we consider the
optimal selection of FAs for the network shown in Fig. 1. We
use an exhaustive search to find the globally optimal selection
of FAs and report the results in Table I. Note that all three
measures result in a similar selection of FAs for the number
of agents nφ = 1, . . . , 7.

III. FA SELECTION PROBLEM

We now turn to the problem of choosing nφ forceful agents
that, as a group, have the maximal amount of social influence.
This problem can be formulated as

minimize
φ

J1(Tφ)

subject to 1Tφ = nφ, φi ∈ {0, 1}, i = 1, . . . , n,

where the vector φ is the optimization variable, and φi = 1
if agent i is an FA and φi = 0 otherwise. This is equivalent

to the optimization problem

minimize
φ

f(φ) = 1T (I − (I −Dφ)T (I −Dφ))−11

subject to 1Tφ = nφ, φi ∈ {0, 1}, i = 1, . . . , n.
(4)

To see this, note that with a reordering and partitioning of
the states we have (I−Dφ)T (I−Dφ) =

[
0 0
0 Tφ

]
, and thus

(I − (I −Dφ)T (I −Dφ))−1 =

[
Inφ×nφ 0nφ×p
0p×nφ (Ip×p − Tφ)−1

]
,

where p = n− nφ. It follows that

f(φ) = J1 + nφ.

Problem (4) is nonconvex, in part due to the Boolean
constraints φi ∈ {0, 1}. Instead of solving (4), we relax the
Boolean constraint set to its convex hull by taking φi ∈ [0, 1],
and consider the optimization problem

minimize
φ

f(φ) + γ 1Tφ

subject to φi ∈ [0, 1], i = 1, . . . , n,
(5)

where 1Tφ =
∑
i φi is the `1 norm of the nonnegative

vector φ, and γ is a positive scalar that determines the
relative importance of the two terms in the objective
function. By incorporating the `1 norm of φ in the objective,
we encourage an optimal solution that is sparse. When
γ = 0, the global solution to (5) is φ = 1, i.e., all agents
are forceful agents. As γ increases, the number of nonzero
elements in the optimal φ decreases while the value of f
increases. Since we have relaxed the Boolean constraints
to φi ∈ [0, 1], the solution of (5) is not integer-valued
in general. We thus choose the FAs to be the nodes
corresponding to the largest nφ entries of φ.

We next examine the convexity property of the objective
function f .

Proposition 1: Let φ be a nonzero n-vector with its entries
belonging to [0, 1]. Then the objective function f(φ) in (4)
is convex with respect to each element of φ, that is, f(φi) is
a convex function of φi when other elements of φ are held
fixed.

Proof: See Appendix.
Proposition 1 establishes the elementwise convexity of f ,
which is a much weaker result than the convexity of f with
respect to the entire vector φ. Nevertheless, Proposition 1
allows the use of the coordinate descent method for problem
(5), a simple but efficient algorithm which we describe in
Section III-A.

A. Coordinate Descent Method

The coordinate descent method has been widely used in
sparse signal processing and machine learning [15]–[18].
Due to its simple implementation, this method is often
used for large-scale problems [19], [20]. Furthermore, this
method has the desirable property of being applicable to,
and convergent for, nonsmooth problems [21], [22].

Instead of minimizing the objective function in (5) with
respect to the entire vector φ, the coordinate descent method
holds fixed n − 1 variables φj for j 6= i and minimizes
the objective function with respect to the scalar variable φi.
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TABLE I: The globally optimal selection of FAs obtained using an exhaustive search for the measures J1, J2, J3, for the network shown
in Fig. 1.

nφ J1 forceful agents J2 forceful agents J3 forceful agents
1 1104.0 13 7356.0 13 108.1 13
2 334.0 8, 19 1195.1 8, 21 61.6 8, 25
3 173.5 8, 15, 25 534.4 8, 16, 25 47.8 8, 16, 25
4 129.5 7, 8, 15, 25 362.4 7, 8, 16, 25 40.1 3, 7, 16, 25
5 88.3 3, 7, 9, 15, 25 217.9 3, 7, 9, 16, 25 32.5 3, 7, 9, 16, 25
6 55.5 3, 7, 9, 13, 16, 25 117.1 3, 7, 9, 13, 16, 25 27.1 3, 7, 9, 13, 16, 25
7 34.1 3, 7, 9, 13, 16, 19, 25 65.6 3, 7, 9, 13, 16, 19, 25 23.2 3, 7, 9, 13, 16, 19, 25

Specifically, for i = 1, . . . , n, we solve the subproblem

minimize
φi

f(φi) + γ φi

subject to φi ∈ [0, 1],
(6)

where we have abused notation by using f(φi) to denote
f(φ) with φi being the only optimization variable. We
then update the ith entry of φ with the obtained solution,
increment i, and solve (6) again. This update sequence
starting from i = 1 to i = n is then repeated in a cyclic
fashion until convergence.

The convergence of coordinate descent method to a sta-
tionary point of problem (5) is guaranteed by the smoothness
and convexity of subproblem (6) in each coordinate [19],
[21]. Furthermore, since each subproblem (6) is a smooth
convex optimization problem with box constraints, it can
be solved efficiently, for example using projected gradient
methods [19]. Here, we provide the expression for the
gradient of f(φi),

∂f

∂φi
= −1TM−1φ (eie

T
i T (I−Dφ)+(I−Dφ)Teie

T
i )M−1φ 1,

where Mφ = I − (I −Dφ)T (I −Dφ).

B. An Example
We next examine the network shown in Fig. 1. The results

obtained using the coordinate descent method of Section III-
A are shown in Fig. 2. As Figs. 2a and 2b demonstrate,
the number of forceful agents nφ decreases and the social
influence measure J1 increases with γ. Additionally, we use
an exhaustive search to find the globally optimal selection
of FAs for nφ ≤ 7. It can be seen in Table II that the
coordinate descent method finds the global solution for
nφ = 6, 7.

The betweenness centrality [2] of node i is defined as

β(i) =
∑
j 6=i 6=l

τjl(i)

τjl
,

where τjl is the total number of shortest paths from node
j to node l, and τjl(i) is the number of those paths that
pass through node i. Betweenness centrality can be used
to measure the importance of a node, as it quantifies the
number of shortest paths that will become longer when a
node is removed [2], [3].

To compare the selection of FAs based on betweenness
centrality versus that obtained from solving (5), we first
rank the nodes in Fig. 1 in descending order based on their
betweenness centrality, and then choose the first nφ nodes as
FAs. We note that this selection is outperformed by the FAs
obtained from solving problem (5) using coordinate descent.

number of FAs social influence measure J1

(a) (b)

Fig. 2: The performance of the coordinate descent method for
problem (5), for the network shown in Fig. 1. As γ increases, (a)
the number of forceful agents nφ decreases, and (b) J1 increases.

The reason for the poor performance of the betweenness-
centrality-based algorithm can be attributed to the fact that
the nodes with large betweenness centrality are all clustered
along the path from node 8 to node 25. In contrast, the FAs
obtained from (5) spread out in the network to maximally
influence the RAs.

IV. OPTIMAL INCREASE OF FAS’ INFLUENCE

In this section we assume that having chosen nφ nodes
to serve as FAs, we now want to invest in increasing their
social influence. We model this as creating new links (and,
if necessary, strengthening existing links) between the FAs
and the RAs.

Let us recall that in the framework considered in this
work, each agent updates its belief by taking a weighted
average over the beliefs of those agents it interacts with.
Therefore, if an FA wants to create a link between itself and
an RA it did not interact with previously (or if an FA wants
to increase its influence on an RA it is already interacting
with), that RA would have to ‘make room’ (or ‘make more
room’) in its weighted averaging scheme for the belief of
the FA.

To model this we first notice that since all FAs are
identical (i.e., all have belief value equal to zero at all
times), from a mathematical point of view it does not make
any difference which FA establishes a link with a given
RA. Therefore, we proceed by finding merely the weight
of the new links between RAs and the FAs (or the added
weight between RAs and FAs already interacting with
them), without specifying exactly which FA each RA will
be linked to. Once the optimal weights are found, one can
use other metrics such as physical proximity or availability
to decide how to link the FAs and RAs.

Suppose, for example, that a new social link is to be
established between an RA and an FA. And suppose that
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TABLE II: For the network shown in Fig. 1, the performance of the coordinate descent method of Section III-A is compared to the
globally optimal selection of FAs obtained using an exhaustive search, and is also compared to the selection of FAs based on betweenness
centrality.

coordinate descent exhaustive search betweenness centrality
nφ J1 forceful agents J1 forceful agents J1 forceful agents
1 4508.0 25 1104.0 13 1326.0 8
2 724.0 7, 25 334.0 8, 19 752.0 8, 13
3 261.8 7, 13, 25 173.5 8, 15, 25 400.0 8, 13, 15
4 175.8 7, 13, 16, 25 129.5 7, 8, 15, 25 260.0 8, 13, 15, 19
5 95.6 3, 7, 13, 16, 25 88.3 3, 7, 9, 15, 25 190.0 8, 13, 15, 19, 21
6 55.5 3, 7, 9, 13, 16, 25 55.5 3, 7, 9, 13, 16, 25 146.0 7, 8, 13, 15, 19, 21
7 34.1 3, 7, 9, 13, 16, 19, 25 34.1 3, 7, 9, 13, 16, 19, 25 102.0 7, 8, 13, 15, 19, 21, 25

the RA is to give a 10% weight in its averaging scheme to
the belief of the FA. Since the RA’s existing weights sum
to one, it makes room for the FA’s belief by scaling all its
existing weights by 0.9. (If a social link already existed
between an RA and an FA, the procedure stays the same
in the sense that all weights, including that corresponding
to the FA, are scaled down to make room for the new weight.)

The description above corresponds to the following evo-
lution of beliefs[

x̆(k + 1)
x̃(k + 1)

]
=

[
0 0

S Vφ + Vσ S Tφ

] [
x̆(k)
x̃(k)

]
,

where
σ =

[
σ1 · · · σn−nφ

]T
,

0 ≤ σi ≤ 1 for i = 1, . . . , n− nφ,

σi = weight agent i puts on the belief of any FA,

Vσ = matrix whose only nonzero entry in its ith row is σi,

S = I − diag(σ).

Note that the exact location in which σi appears in the ith
row of Vσ is not important to us, as we only care about the
weight the ith agent puts on the belief of some FA (i.e., the
index of the FA is not important).

Once again, since the beliefs of the FAs are always equal
to zero, the public beliefs x̃ evolve according to

x̃(k + 1) = S Tφ x̃(k).

Note that if σi = 1 then the ith node effectively becomes an
FA itself, since it will stubbornly maintain the belief zero at
all times.

It can be demonstrated that the eigenvalues of S Tφ
all reside in the open unit disk. This means that S Tφ
defines a stable evolution and therefore the social influence
metrics Ji, i = 1, 2, 3 developed in the previous section are
applicable, in which we replace Tφ with S Tφ. We keep in
mind that the variable in Ji(S Tφ) is now σ rather than φ.

We choose the objective function of our optimization
problem such that it accounts for both the social influence of
the FAs, which we wish to maximize, and the total weight
of the new links made to the FAs, which we would like to
keep small. Thus to maximize the social influence of the FAs
while keeping down the resources spent by them, we solve
the problem

minimize
σ

J1(S Tφ) + γ 1Tσ

subject to σi ∈ [0, 1], i = 1, . . . , n− nφ,
(7)

where the vector of weights σ is the optimization variable,
S = I − diag(σ), and γ is a positive scalar that determines
the relative importance of increasing the social influence of
the FAs versus keeping down the total weight of the new
social links.

A. Coordinate Descent Method with Analytical Solution

Using an argument analogous to that in the proof of
Proposition 1, it can be shown that J1 in (7) is a convex
function of individual elements σi of the vector σ. Thus,
we can apply coordinate descent method to problem (7).
Furthermore, we next show that each coordinate descent
step can be solved analytically.

Let σ = σ̄i + σiei, where

σ̄i = [σ1, . . . , σi−1, 0, σi+1, . . . , σn−nφ ]T ∈ Rn−nφ

and ei is the ith basis vector of Rn−nφ . Then, using the
Sherman-Morrison formula for the inverse of a matrix with
a rank-1 modification, it can be shown that

1T (I − STφ)−11 + γ 1Tσ = γ σi −
aiσi

1 + biσi
+ ci,

where

ai = 1T Σ̄−1i eie
T
i TφΣ̄−1i 1, bi = eTi TφΣ̄−1i ei,

ci = 1T Σ̄−1i 1 + γ 1T σ̄i, Σ̄i = I − Tφ + diag(σ̄i)Tφ.

Thus, the minimization problem of (7) with respect to σi can
be formulated as

minimize
σi

γ σi −
aiσi

1 + biσi

subject to σi ∈ [0, 1],

and its solution is given by

σi =


1, γ < ai/(1 + bi)

2

σ∗i , ai/(1 + bi)
2 ≤ γ ≤ ai

0, γ > ai

(8)

with σ∗i = (
√
ai−
√
γ)/(bi

√
γ). Since the spectral radius of

the nonnegative matrix (I − diag(σ̄i))Tφ is less than 1, we
have Σ̄−1i =

∑∞
r=0((I − diag(σ̄i))Tφ)r, and thus Σ̄−1i is

an elementwise nonnegative matrix. Therefore ai in (8) is a
nonnegative number.

B. An example

We again consider the network shown in Fig. 1, and apply
the coordinate descent method of Section IV-A to problem
(7). When node 13 is selected as an FA, the tradeoff between
the number of social links (between the RAs and node 13)
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number of additional links social influence measure J1

(a) (b)

Fig. 3: The performance of the coordinate descent method for
problem (7), for the network shown in Fig. 1 in which node 13
is an FA. As γ increases, (a) the number of social links between
RAs and the FA decreases, and (b) J1 increases.

and the performance J1 is illustrated in Fig. 3. As γ increases,
the number of social links decreases and J1 increases. When
γ is large (γ ≥ 4), 6 new links are created between the FA
at node 13 and the RAs at nodes {3, 7, 9, 16, 19, 25}. It is
interesting to note that these 6 nodes together with node 13
form the globally optimal selection of FAs shown in Table II.
Note that when γ = 0, the solution of the optimization
problem is such that every RA communicates with some
FA. For large γ (γ ≥ 4), using only 6 additional social
links between the RAs and the FA, the measure of social
influence J1 decreases to J1 = 55 compared to J1 = 1104
before additional social links were introduced.

V. CONCLUSIONS

We define several new measures of social influence and
compare them to some existing ones in the literature. Using
these measures, we address the problems of optimal leader
selection in social networks and the optimal creation of new
social interactions; also see [23], [24] for related efforts. We
show that although the formulated optimization problems
are nonconvex, they still possess the property of being
convex with respect to individual entries of the optimization
variables. This motivates the use of the coordinate descent
method. We provide an example that demonstrates the ef-
fectiveness of our proposed measures of social influence and
our optimization algorithms.

APPENDIX

Proof of Proposition 1
Let z := 1 − φ where each element of the vector φ

belongs to [0, 1]. Since φ is not identically equal to zero, then
Dz := diag (z) satisfies 0 � Dz � I and Dz 6= I . Using
Neumann series, we have f(z) = 1T (I − DzTDz)

−11 =∑∞
r=0 1

T (DzTDz)
r1. Therefore, to show the convexity of

f(z) with respect to each element zi ∈ [0, 1], it is sufficient
to show that each entry of W r = (DzTDz)

r is a convex
function of zi. Let W r

pq be the pqth entry of W r with p, q =
1, . . . , n. Since T is a nonnegative matrix and since z is a
nonnegative vector, it follows that W r

pq(zi) is a polynomial of
zi with nonnegative exponents and nonnegative coefficients.
This implies that taking the second-order derivative of W r

pq

with respect to zi, we again obtain a polynomial of zi
with nonnegative coefficients. Thus, ∂2W r

pq/∂z
2
i ≥ 0 for

zi ∈ [0, 1], i.e., W r
pq(zi) is a convex function over [0, 1]. The

proof is complete by noting that the composition of a convex
function W r

pq(zi) with an affine function zi = 1 − φi is a
convex function of φi; see [25, Section 3.2.2].
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selection in stochastically forced consensus networks,” IEEE Trans-
actions on Automatic Control, 2012, conditionally accepted; also
arXiv:1302.0450.

[25] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

4789


