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Abstract— Conventional analysis and control approaches to
inter-area oscillations in bulk power systems are based on a
modal perspective. Typically, inter-area oscillations are identi-
fied from spatial profiles of poorly damped modes, and they
are damped using carefully tuned decentralized controllers.
To improve upon the limitations of conventional decentralized
strategies, recent efforts aim at distributed wide-area control
which involves the communication of remote signals. Here, we
introduce a novel approach to the analysis and control of inter-
area oscillations. Our framework is based on a stochastically
driven system with performance outputs chosen such that the
H2 norm is associated with incoherent inter-area oscillations.
We show that an analysis of the output covariance matrix offers
new insights relative to modal approaches. Next, we leverage the
recently proposed sparsity-promoting optimal control approach
to design controllers that use relative angle measurements and
simultaneously optimize the closed-loop performance and the
control architecture. For the IEEE 39 New England model, we
investigate performance trade-offs of different control architec-
tures and show that optimal retuning of decentralized control
strategies can effectively guard against inter-areas oscillations.

I. INTRODUCTION

Inter-area oscillations in bulk power systems are associated
with the dynamics of power transfers and involve groups
of synchronous machines oscillating relative to each other.
These system-wide oscillations arise from modular network
topologies (with tightly clustered groups of machines and
sparse interconnections among these clusters), heterogeneous
machine dynamics (resulting in slow and fast responses),
and large inter-area power transfers. As the system loading
increases and renewables are deployed in remote areas, long-
distance power transfers will outpace the addition of new
transmission facilities. As a result, inter-area oscillations
become ever more weakly damped, induce severe stress and
performance limitations on the transmission network, and
may even become unstable and cause outages [1]; see the
1996 Western U.S. blackout [2].

Traditional analysis and control approaches to inter-area
oscillations are based on modal approaches [3], [4]. Typi-
cally, inter-area oscillations are identified from the spatial
profiles of eigenvectors and participation factors of poorly
damped modes [5], [6]. Such oscillations are conventionally

Financial support from the University of Minnesota Initiative for Re-
newable Energy and the Environment under Early Career Award RC-0014-
11 and from University of California, Los Angeles Electrical Engineering
Department start-up funds is gratefully acknowledged.

Xiaofan Wu and Mihailo R. Jovanović are with the Department of Elec-
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damped via decentralized controllers, whose gains are care-
fully tuned according to root locus criteria [7]–[9].

To improve upon the limitations of decentralized con-
trollers, recent research efforts aim at distributed wide-area
control strategies that involve the communication of remote
signals, see the surveys [10], [11] and the excellent articles
in [12]. The wide-area control signals are typically chosen
to maximize modal observability metrics [13], [14], and the
control design methods range from root locus criteria to
robust and optimal control approaches [15]–[17].

Here, we investigate a novel approach to the analysis and
control of inter-area oscillations. Our unifying analysis and
control framework is based on a stochastically driven power
system model with performance outputs inspired by slow
coherency theory [18], [19]. We analyze inter-area oscilla-
tions by means of the H2 norm of this system, as in recent
related approaches for interconnected oscillator networks and
multi-machine power systems [20]–[22]. We show that an
analysis of power spectral density and variance amplification
offers new insights that complement conventional modal
approaches.

To identify sparse wide-area control architecture and de-
sign optimal controllers, we appeal to the recently proposed
paradigm of sparsity-promoting optimal control [23]–[26].
Sparsity-promoting control approaches have been success-
fully employed for wide-area control in power systems [27]–
[29]. Here, we follow the sparsity-promoting optimal control
framework developed in [30] and find a linear static state
feedback that simultaneously optimizes a standard quadratic
H2 optimal control criterion (associated with incoherent and
poorly damped inter-area oscillations) and induces a sparse
control architecture. Reference [30] augments the approach
developed in [25] by imposing one additional structural
constraint on the distributed controller. This structural con-
straint requires relative angle exchange between different
generators, thereby preserving rotational symmetry of the
original power system.

We investigate different performance indices resulting in
controllers that strike a balance between low communication
complexity and closed-loop performance. We are able to
identify fully decentralized controllers that achieve compa-
rable performance relative to the optimal centralized con-
trollers. Thus, our results also provide a constructive answer
to the much-debated question whether locally observable
oscillations in a power network are also locally controllable;
see [31]. This leads to a potential optimal feedback control
design algorithm for retuning of the decentralized PSS gains
to achieve better wide-area performance. We illustrate the
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utility of our approach with the IEEE 39 New England power
grid model, whose data can be found in [32].

The remainder of this paper is organized as follows. In
Section II-A, we briefly summarize the model and highlight
causes for inter-area oscillations in power networks. In
Section II-B, we utilize power spectral density and vari-
ance amplification analyses to provide new insights into
inter-area oscillations. In Section II-C, we formulate the
sparsity-promoting optimal control problem subject to struc-
tural constraints on relative angle information exchange. In
Section III, we present our control design and examine
performance of open- and closed-loop systems for the IEEE
39 New England power grid. Finally, in Section IV, we
conclude the paper.

II. PROBLEM FORMULATION

A. Modeling and background on inter-area oscillations

A power network is described by the nonlinear system of
differential-algebraic equations. Differential equations gov-
ern the dynamics of generators and their control equipments,
and the algebraic equations describe load flow, generator
stator, and power electronic components [33]. After lineariza-
tion around a stationary operating point and elimination of
the algebraic equations, we obtain a linear state-space model

ẋ = Ax + B1 d + B2 u. (1)

Here, x is the state, u is the control input provided by
generator excitation/governor control or power electronics
devices, and d is the white-noise disturbance which may arise
from fluctuations in renewable generation and uncertain load
demand [33], [34].

The dominant dynamical behavior of a multi-machine
power system typically arises from the electro-mechanical
interactions among the generators and it is captured by the
swing equation [33],

M θ̈ + D θ̇ + Lθ = 0. (2)

This equation does not account for control and disturbance
inputs and it is obtained by neglecting the fast electrical
dynamics. Here, θ and θ̇ are the generator rotor angles and
frequencies, M and D are the diagonal matrices of generator
inertia and damping coefficients, and L is a Laplacian matrix
that describes the interactions between generators [28]. The
swing dynamics (2) feature an inherent rotational symmetry
and are invariant under a rigid rotation of all angles θ.

The swing equations (2) describe a system of heterogenous
oscillators which are harmonically coupled through a spring-
type network with Laplacian matrix L. Inter-area oscillations
arise when densely connected groups of generators (so-
called areas) are sparsely connected with each other. These
areas can be aggregated into coherent groups of machines
which swing relative to each other using the slow coherency
analysis [18], [19].

In this paper, we design wide-area controllers to sup-
press such inter-area oscillations. With a linear static state-

feedback, u = −Gx, the closed-loop system takes the form

ẋ = (A − B2G)x + B1 d

z =

[
z1
z2

]
=

[
Q1/2

−R1/2G

]
x

(3)

where z is a performance output with state and control
weights Q and R. The preceding discussion on inter-area
oscillations suggests that homogeneous networks (with iden-
tical all-to-all coupling among generators) feature no inter-
area oscillations. This suggests a state objective of the form

xT Qx =
1

2
θT Lunif θ +

1

2
θ̇T M θ̇

where Lunif is the uniform Laplacian (or projector) matrix

Lunif = I − (1/N)11T (4)

and 1 is the vectors of all ones. The objective function
xTQx quantifies the kinetic and potential energy of the
swing dynamics in a homogeneous network, and it preservers
rotational symmetry. The term uTRu quantifies the control
effort; for simplicity, we choose the control weight R to be
the identity matrix.

B. Power spectral density and variance amplification

The conventional analysis of inter-area oscillations in
power systems is based on spatial profiles of eigenvectors
and participation factors of poorly damped modes. Simi-
larly, the traditional control design is based on a modal
perspective [5], [6]. In this paper, we quantify performance
of both open- and closed-loop systems using power spectral
density and variance amplification analyses. This approach
offers additional and complementary insights to a modal
analysis. More specifically, an eigenvalue decomposition of
the output covariance matrix reveals the sources of variance
amplification, and a power spectral density analysis reveals
the dominant frequencies corresponding to the inter-area
modes.

We briefly review the power spectral density and variance
amplification analysis of a linear state space system of the
form (3). The H2 norm from the white noise input d to the
performance output z is defined as [35]

‖H(jω)‖22 =
1

2π

∫ ∞
−∞
‖H(jω)‖2HS dω

= trace
(
X (Q + GTRG)

) (5)

where H(jω) is the frequency response from d to z, and the
controllability Gramian X is the solution to the Lyapunov
equation [35]

(A−B2G)X + X (A−B2G)T = −B1B
T
1 . (6)

The Hilbert-Schmidt norm quantifies the power spectral
density of the stochastically forced system (3),

‖H(jω)‖2HS = trace (H(jω)H∗(jω))

=
∑
i

σ2
i (H(jω))

(7)
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where the σi’s are the singular values of H(jω).

The controllability Gramian X in (6) is also the steady-
state covariance matrix of the state x, and

Y = Q1/2XQ1/2

is the steady-state covariance matrix of the output z1. The
eigenvalue decomposition of the matrix Y ,

Y =
∑
i

λi vi v
T
i (8)

provides insight about relative roles of different modes in the
variance amplification. Since the total variance amplification
from d to z1 is determined by the sum of the eigenvalues
λi of Y , each mode vi contributes λi to the total variance
amplification. Thus, the spatial structure of the mode that
contributes most to the variance amplification is determined
by the principal eigenvector of the matrix Y , v1.

C. Sparsity-promoting linear quadratic control with struc-
tural constraints

The sparsity-promoting optimal control framework devel-
oped in [23], [25] aims at finding a static state feedback
G that simultaneously optimizes the H2 norm of system
(3) and induces a sparse control architecture. Compared to
conventional optimal control and stabilization problems, as a
result of the rotational symmetry, both the open-loop matrix
A and the state performance weight Q feature a common
zero eigenvalue with identical eigenvector associated with
the average of all rotor angles. In earlier work [27], [28],
to arrive at a stabilizing and numerically feasible solution,
we have removed the natural rotational symmetry by adding
a small regularization term to the diagonal elements of
the performance matrix Q. The resulting controllers require
the use of absolute angle measurements (with respect to
a common reference) to stabilize the average rotor angle.
Furthermore, such a regularization induces a slack bus (a
reference generator with fixed angle) and thereby changes
structure of the original network.

In this article, we restrict our attention to only relative
rotor angle measurements which preserve the natural network
symmetries. Note that this requirement imposes additional
structural constraints on the feedback gain G: the average
rotor angle has to remain invariant under the state feedback
u = −Gx. To cope with these structural constraints, the
approach of [25] has been recently augmented in [30].

Following [30], we introduce the orthonormal coordinate
transformation

T =

[
U 0
0 I

]
where the columns of the matrix U ∈ RN×(N−1) form an
orthonormal basis for the subspace 1⊥, and N denotes the
number of generators. For example, the columns of U can be
obtained from the (N − 1) eigenvectors of the matrix Lunif

in (4) corresponding to the non-zero eigenvalues. In the new
set of coordinates, the matrices of the closed-loop system (3)

change to

Ā := TTAT, B̄i := TT Bi, Q̄1/2 := Q1/2 T.

The feedback matrices G (in the original set of coordinates)
and F (in the new set of coordinates) are related by

F = GT ⇔ G = F TT .

The H2 norm from d to z is then obtained as

J(F ) :=

{
trace

(
B̄T

1 P (F ) B̄1

)
for F stabilizing

∞ otherwise

where P (F ) is the closed-loop observability Gramian that
satisfies the Lyapunov equation

(Ā − B̄2 F )TP + P (Ā − B̄2 F ) = −(Q̄ + FT R̄ F ).

The objective is to achieve a desirable tradeoff between the
H2 performance of the closed-loop system and the sparsity
of the feedback gain. While the H2 performance is expressed
in terms of the matrix F in the new set of coordinates,
it is desired to enhance sparsity of the matrix G in the
original set of coordinates. In order to achieve this task, the
following sparsity-promoting optimal control problem has
been formulated in [30],

minimize J(F ) + γ g(G)

subject to F TT − G = 0.
(9)

The non-negative parameter γ determines the emphasis on
sparsity, and the regularization term is given by the weighted
`1-norm of G,

g(G) :=
∑
i, j

Wij |Gij |.

In [30], the alternating direction method of multipliers
(ADMM) algorithm [36] was used to efficiently solve the
optimization problem (9). We refer the reader to [25], [30]
for algorithmic details.

III. CASE STUDY: IEEE 39 NEW ENGLAND EXAMPLE

We consider the IEEE 39 New England Power Grid
Model. This system is illustrated in Fig. 1 and it consists
of 39 buses and 10 detailed two-axis generator models.
Generators 1 to 9 are equipped with excitation control
systems, and generator 10 is an equivalent aggregated model
representing a neighboring transmission network area. In this
example, all loads are modeled as constant power loads.

We follow a two-level control strategy that combines
local and wide-area control. The local control inputs are
used to suppress local oscillations and they are based on a
conventional power system stabilizer (PSS) design; the wide-
area controller is designed to damp inter-area oscillations.
For the local control, we use a standard PSS controller
with lead/lag elements and carefully tuned coefficients taken
from [9]; see [28] for further details. For the subsequent
analysis and the wide-area control design, we assume that the
local PSS controllers are embedded in the open-loop system
matrix A.
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Fig. 1: IEEE 39 New England Power Grid and its groups of
coherent machines

A. Analysis of the open-loop system

Despite the action of the local PSS controllers, modal
and participation factor analyses reveal the presence of five
dominant inter-area modes in the open-loop New England
power grid model [28]. These modes are reported in Table I,
and the groups of coherent machines (identified from the
spatial profiles of eigenvectors) are illustrated in Fig. 1.
This spatial profile together with modal controllability and
observability metrics was previously used to indicate which
wide-area controller links need to be added to dampen or
distort the inter-area modes [13], [14].

Here, we depart from this modal perspective and follow a
different path. We first examine the power spectral density
and variance amplification of the open-loop system. This type
of analysis allows us to identify the temporal frequencies
for which large amplification occurs and spatial structure of
strongly amplified responses. We note that in general these do
not correspond to the spatial profiles of the weakly-damped
system modes.

TABLE I: Inter-area modes of the New England power grid

mode eigenvalue damping frequency coherent
no. pair ratio [Hz] groups
1 −0.6347± i 3.7672 0.16614 0.59956 10 vs. all others
2 −0.7738± i 6.7684 0.11358 1.0772 1,8 vs. 2-7,9,10
3 −1.1310± i 5.7304 0.19364 0.91202 1,2,3,8,9 vs. 4-7
4 −1.1467± i 5.9095 0.19049 0.94052 4,5,6,7,9 vs. 2,3
5 −1.5219± i 5.8923 0.25009 0.93778 4,5 vs. 6,7

Figure 2 illustrates the power spectral density of the open-
loop system. While the largest amplification occurs for small
temporal frequencies, we observe two resonant peaks. The
first peak at ω1 = 5.7882 rad/s (f1 = ω1/2π = 0.9212 Hz)
corresponds to the inter-area modes 2, 3, 4, 5 in Table I. The
second peak at ω2 = 3.7896 rad/s (f2 = ω2/2π = 0.5996
Hz) corresponds to inter-area mode 1 in Table I.

Next, we study the contribution of each generator to the
variance amplification and examine the spatial structure of

Fig. 2: Power spectral density of the open-loop system.

the modes of the output covariance matrix Y for the open-
loop system. In Fig. 3, the diagonal elements of the output
covariance matrix show variances of angles and frequencies
of the individual generators. We see that frequencies are
better aligned than angles and conclude that the bulk of
the variance amplification arises from the misalignment of
angles of generators 4, 5, 8 and 9. A similar observation
can be made from Fig. 4 which displays the eigenvectors
corresponding to the four largest eigenvalues of the open-
loop output covariance matrix Y . We note that in Figs. 3
and 4, the first 10 indices correspond to angles and the
remaining ones correspond to frequencies.

Fig. 3: Diagonal elements of open-loop covariance matrix Y .

In summary, the eigenvalue analysis of the output covari-
ance matrix provides important insights into the sources of
variance amplification. Since sparsity-promoting H2 optimal
control design is based on minimizing the variance amplifica-
tion, our framework can also be used to explain the sparsity
pattern of the resulting controllers. In what follows, we illus-
trate why the addition of certain long-range communication
links can improve the closed-loop performance.
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(a) eigenvector of the largest eigen-
value

(b) eigenvector of the second largest
eigenvalue

(c) eigenvector of the third largest
eigenvalue

(d) eigenvector of the fourth largest
eigenvalue

Fig. 4: Eigenvectors corresponding to the four largest eigen-
values of the covariance matrix Y of the open-loop system.

B. Sparsity-promoting optimal control

We use sparsity-promoting optimal control formulation (9)
with 100 logarithmically-spaced points for γ = [ 10−4 , 2 ].
In Fig. 5, sparsity patterns of the feedback matrix G for
different values of γ are illustrated. When γ = 0.1099,
controller on generator 9 needs to have access to the rotor
angles of generator 5 and the aggregated model 10. This
wide-area control architecture is not surprising since gen-
erator 9 is the least connected generator (in terms of the
effective resistance metric, see [37]), the aggregated model
10 dominates1 the power system’s kinetic energy 1/2 θ̇TMθ̇,
and generator 5 dominates the most energetic coherent group
consisting of generators 4 and 5 (see the spatial distribution
in Figs. 3 and 4) in terms of angle misalignment. For
γ = 0.4460, we obtain a fully-decentralized controller, and
performance is compromised by about 7.5% relative to the
optimal centralized controller; see Fig. 6. By increasing γ to
2, the performance is compromised by about 10.5%.

We emphasize that we can embed our fully decentralized
controller into the local generator excitation control systems.
For example, this can be done by directly feeding the de-
centralized and local state-feedback to the automatic voltage
regulator or by retuning the gains of the existing local PSS
controllers. In other words, inter-area oscillations can be
suppressed by purely local control strategies while achieving
nearly the same performance of the optimal centralized
controller.

1The inertia of the aggregated equivalent model 10 is an order of
magnitude larger than those of the physical generators 1, . . . , 9.

(a) γ = 0.1099, card (G) = 39

(b) γ = 0.4460, card (G) = 24

(c) γ = 2, card (G) = 18

Fig. 5: Sparsity pattern of G.

Fig. 6: Performance vs sparsity comparison relative to the
optimal centralized controller Gc.

C. Comparison of open-loop and closed-loop systems

The structure of the sparsity-promoting controller with
γ = 2 is shown in Fig. 5c. This controller is fully decen-
tralized with only 18 nonzero elements. In this section, we
compare the power spectral density and variance amplifica-
tion of the following three systems: the open-loop system,
the closed-loop system with optimal centralized controller,
and the closed-loop system with the sparse decentralized
controller depicted in Fig. 5c.

Figure 7 provides a comparison between the power spec-
tral densities of three cases. The fully decentralized sparse
controller performs almost as well as the optimal centralized
controller for high frequencies; for low frequencies, we
observe some discrepancy that accounts for about 10 % of
performance degradation in the variance amplification.

In Fig. 8, we plot the eigenvalues of the output covariance
matrix Y for the three cases mentioned above. Relative
to the open-loop system, both the optimal centralized and
the decentralized feedback gains significantly reduce the
variance amplification. The diagonal elements of the output
covariance matrix for all three cases are shown in Fig. 9. We
observe that our control strategy is capable of diminishing
the variance of both angles and frequencies. Additionally,
the diagonal elements of the output covariance matrix are
equalized and balanced by both the optimal centralized and

MTNS 2014
Groningen, The Netherlands

661



Fig. 7: Power spectral density comparison.

the decentralized controller. We conclude that, similar to the
modal observations discussed in [28], the optimal feedback
gain not only increases the damping of the eigenvalues asso-
ciated with the inter-area modes, but it structurally distorts
these modes by rotating the corresponding eigenvectors.

(a) Variance amplification compari-
son

(b) Variance amplification closed-
loop system

Fig. 8: Variance amplification comparison. ∗’s represent
open-loop system, ◦’s represent closed-loop system with
sparse decentralized controller, and +’s represent closed-loop
system with optimal centralized controller.

(a) Angle comparison (b) Frequency comparison

Fig. 9: Variances of angles and frequencies of different
generators.

IV. CONCLUDING REMARKS

In this paper, we have analyzed inter-area oscillations
of power systems by studying their power spectral density

functions and output covariance matrices. Our analysis of
the open-loop system identifies the root cause for inter-area
oscillations. By comparing performance of open- and closed-
loop systems, we have been able to understand the effect of
the sparsity-promoting control both in terms of performance
and with regards to the resulting closed-loop communication
pattern. For the IEEE 39 New England model, we have
provided a systematic method for optimal retuning of the
decentralized PSS gains that leads to nearly the same per-
formance levels as the optimal centralized controller.
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