Sparsity-promoting wide-area control of power systems

F. Dörfler, Mihailo Jovanović, M. Chertkov, and F. Bullo

UNIVERSITY OF MINNESOTA

2013 American Control Conference

Electro-mechanical oscillations in power systems

1

- Local oscillations
 - * single generators swing relative to the rest of the grid
 - typically damped by Power System Stabilizers (PSSs)

Inter-area oscillations

- * groups of generators oscillate relative to each other
- * associated with dynamics of power transfers

Inter-area oscillations

• Blackout of Aug. 10, 1996

\star resulted from instability of the $0.25\,\mathrm{Hz}$ mode

western interconnected system:

California-Oregon power transfer:

Slow coherency theory

• WHERE ARE THE INTER-AREA MODES COMING FROM?

***** slow coherency theory

Chow, Kokotović, et al. '78, '82

time

Conventional control

• Blue layer: generators with transmission lines

• Fully decentralized controller

- ★ effective against local oscillations
- ★ ineffective against inter-area oscillations

Wide-area control

• Blue layer: generators with transmission lines

wide-area controller

KEY CHALLENGE:

identification of a signal exchange network

performance vs sparsity

Outline

- SPARSITY-PROMOTING WIDE-AREA CONTROL
 - ***** Safeguard against inter-area oscillations
 - ***** Performance vs sparsity

- **OASE STUDY**
 - ***** IEEE New England power grid model

SUMMARY AND OUTLOOK

Case study: IEEE New England Power Grid

- MODEL FEATURES
 - ★ detailed sub-transient generator models
 - ★ exciters
 - ★ carefully tuned PSS data

Preview of a key result

 \Rightarrow

single long range interaction

nearly centralized performance

Optimal wide-area control

linearized dynamics: $\dot{x} = Ax + B_1d + B_2u$

objective function: $J = \lim_{t \to \infty} \mathcal{E} \left(x^T(t) Q x(t) + u^T(t) R u(t) \right)$

memoryless controller: u = -Kx

* no structural constraints

globally optimal controller:

$$A^{T}P + PA - PB_{2}R^{-1}B_{2}^{T}P + Q = 0$$
$$K_{c} = R^{-1}B_{2}^{T}P$$

Sparsity-promoting optimal control

$$\star \gamma > 0$$
 – performance vs sparsity tradeoff

 $\star W_{ij} \geq 0$ – weights (for additional flexibility)

Lin, Fardad, Jovanović, IEEE TAC '13 (in press; arXiv:1111.6188)

Parameterized family of feedback gains

 $K(\gamma) := \arg\min_{K} \left(J(K) + \gamma g(K) \right)$

ALGORITHM: alternating direction method of multipliers

Performance index

• Energy of power network without inter-area modes

★ inspired by slow coherency theory

$$J := \lim_{t \to \infty} \mathcal{E} \left(\theta^T(t) Q_\theta \theta(t) + \dot{\theta}^T(t) \dot{\theta}(t) + u^T(t) u(t) \right)$$
$$Q_\theta := \epsilon I + \left(I - \frac{1}{N} \mathbb{1} \mathbb{1}^T \right)$$

 \star other choices possible

Open-loop dynamics

Dominant inter-area modes with local PSSs

Performance vs sparsity

• Signal exchange network

$$\begin{array}{c} 0 \\ 5 \\ 10 \\ 0 \end{array} \begin{array}{c} 20 \end{array} \begin{array}{c} 40 \end{array} \begin{array}{c} 60 \end{array}$$

$$\gamma = 0.0289$$
, card $(K) = 90$

$$\gamma = 1$$
, card $(K) = 37$

• Robustness?

Summary and outlook

- SPARSITY-PROMOTING OPTIMAL CONTROL
 - ★ Performance vs sparsity tradeoff

Lin, Fardad, Jovanović, IEEE TAC '13 (in press; arXiv:1111.6188)

★ Software

www.umn.edu/~mihailo/software/lqrsp/

- WIDE-AREA CONTROL OF POWER NETWORKS
 - ★ Remedy against inter-area oscillations
 - ★ IEEE New England power grid model
- OPEN QUESTIONS
 - ★ Extension to structure-preserving descriptor models
 - ★ Theoretic analysis of robustness degradation
 - ★ Exploit the rotational symmetry of the models