Dynamics and control of wall-bounded shear flows

Mihailo Jovanović

www.umn.edu/~mihailo

Center for Turbulence Research, Stanford University; July 13, 2012

Flow control

technology: shear-stress sensors; surface-deformation actuators

application: turbulence suppression; skin-friction drag reduction

challenge: distributed controller design for complex flow dynamics

Outline

- DYNAMICS AND CONTROL OF WALL-BOUNDED SHEAR FLOWS
 - The early stages of transition
 - initiated by high flow sensitivity
 - Controlling the onset of turbulence
 - simulation-free design for reducing sensitivity

Key issue: high flow sensitivity

- ② CASE STUDIES
 - Sensor-free flow control
 - ⋆ streamwise traveling waves
 - Feedback flow control
 - * design of optimal estimators and controllers
- SUMMARY AND OUTLOOK

Transition to turbulence

- LINEAR HYDRODYNAMIC STABILITY: unstable normal modes
 - * successful in: Benard Convection, Taylor-Couette flow, etc.
 - * fails in: wall-bounded shear flows (channels, pipes, boundary layers)

DIFFICULTY 1

Inability to predict: Reynolds number for the onset of turbulence (Re_c)

Experimental onset of turbulence: $\begin{cases} & \text{much before instability} \\ & \text{no sharp value for } Re_c \end{cases}$

DIFFIGULTY 2

Inability to predict: flow structures observed at transition

(except in carefully controlled experiments)

LINEAR STABILITY:

 \star For $Re \geq Re_c \Rightarrow \text{exp. growing normal modes}$ corresponding e-functions $\left\{ \text{TS-waves} \right\} = \text{exp. growing flow structures}$

NOISY EXPERIMENTS: streaky boundary layers and turbulent spots

Matsubara & Alfredsson, J. Fluid Mech. '01

- FAILURE OF LINEAR HYDRODYNAMIC STABILITY caused by high flow sensitivity
 - ★ large transient responses
 - large noise amplification
 - ★ small stability margins

TO COUNTER THIS SENSITIVITY: must account for modeling imperfections

TRANSITION ≈ STABILITY + RECEPTIVITY + ROBUSTNESS

flow unmodeled disturbances dynamics

Farrell, Ioannou, Schmid, Trefethen, Henningson, Gustavsson, Reddy, Bamieh, etc.

Tools for quantifying sensitivity

• INPUT-OUTPUT ANALYSIS: spatio-temporal frequency responses

IMPLICATIONS FOR:

transition: insight into mechanisms

control: control-oriented modeling

Transient growth analysis

• STUDY TRANSIENT BEHAVIOR OF FLUCTUATIONS' ENERGY

E-values: misleading measure of transient response

A toy example

$$\left[\begin{array}{c} \dot{\psi}_1 \\ \dot{\psi}_2 \end{array}\right] \ = \ \left[\begin{array}{cc} -1 & \mathbf{0} \\ \mathbf{k} & -2 \end{array}\right] \left[\begin{array}{c} \psi_1 \\ \psi_2 \end{array}\right]$$

Response to stochastic forcing

forcing:

 $\begin{array}{ccc} & \text{white} & \text{in } t \text{ and } y \\ & \text{harmonic} & \text{in } x \text{ and } z \end{array}$

$$\mathbf{d}(x, y, z, t) = \hat{\mathbf{d}}(k_x, y, k_z, t) e^{i(k_x x + k_z z)}$$

Ensemble average energy density

channel flow with Re = 2000:

 Dominance of streamwise elongated structures streamwise streaks!

> Farrell & Ioannou, Phys. Fluids A '93 Jovanović & Bamieh, J. Fluid Mech. '05 Schmid, Annu. Rev. Fluid Mech. '07 Gayme et al., J. Fluid Mech. '10

ANALYSIS OF LINEAR DYNAMICAL SYSTEMS

State-space representation

state equation: $\dot{\psi}(t) = A \psi(t) + B d(t)$

output equation: $\phi(t) = C \psi(t)$

Solution to state equation

$$\psi(t) = \mathrm{e}^{At} \psi(0) + \int_0^t \mathrm{e}^{A(t-\tau)} B \, d(\tau) \, \mathrm{d}\tau$$

$$\downarrow \qquad \qquad \downarrow$$

$$\text{unforced} \qquad \text{forced}$$

$$\text{response} \qquad \text{response}$$

Transform techniques

$$\dot{\psi}(t) = A \psi(t) + B d(t)$$
 Laplace transform $s \hat{\psi}(s) - \psi(0) = A \hat{\psi}(s) + B \hat{d}(s)$

$$\psi(t) = e^{At} \psi(0) + \int_0^t e^{A(t-\tau)} B d(\tau) d\tau$$

$$\downarrow \downarrow$$

$$\hat{\psi}(s) = (sI - A)^{-1} \psi(0) + (sI - A)^{-1} B \hat{d}(s)$$

Natural and forced responses

Unforced response

matrix exponential	resolvent
$\psi(t) = e^{At} \psi(0)$	$\hat{\psi}(s) = (sI - A)^{-1} \psi(0)$

Forced response

impulse response	transfer function
$H(t) = C e^{A t} B$	$H(s) = C(sI - A)^{-1}B$

★ Response to arbitrary inputs

$$\phi(t) = \int_0^t H(t-\tau) d(\tau) d\tau$$
 Laplace transform $\hat{\phi}(s) = H(s) \hat{d}(s)$

UNFORCED RESPONSES

Systems with non-normal \boldsymbol{A}

$$\dot{\psi}(t) = A \psi(t)$$

Non-normal operator: doesn't commute with its adjoint

$$AA^* \neq A^*A$$

 \star E-value decomposition of A

ullet Let A have a full set of linearly independent e-vectors

 \star normal A: unitarily diagonalizable

$$A = V \Lambda V^*$$

• E-value decomposition of A^*

choose w_i such that $w_i^* v_j = \delta_{ij}$

• Use V and W^* to diagonalize A

 \star solution to $\dot{\psi}(t) = A \psi(t)$

$$\psi(t) = e^{At} \psi(0) = \sum_{i=1}^{n} e^{\lambda_i t} \mathbf{v_i} \langle w_i, \psi(0) \rangle$$

Right e-vectors

* identify initial conditions with simple responses

$$\psi(t) = \sum_{i=1}^{n} e^{\lambda_i t} v_i \langle w_i, \psi(0) \rangle$$

$$\downarrow \psi(0) = v_k$$

$$\psi(t) = e^{\lambda_k t} v_k$$

• E-value decomposition of $A=\begin{bmatrix} -1 & 0 \\ k & -2 \end{bmatrix}$

$$\left\{ v_1 = \frac{1}{\sqrt{1+k^2}} \begin{bmatrix} 1 \\ k \end{bmatrix}, v_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$

$$\left\{ w_1 = \begin{bmatrix} \sqrt{1+k^2} \\ 0 \end{bmatrix}, w_2 = \begin{bmatrix} -k \\ 1 \end{bmatrix} \right\}$$

solution to $\dot{\psi}(t) = A \psi(t)$:

$$\psi(t) = (e^{-t} v_1 w_1^* + e^{-2t} v_2 w_2^*) \psi(0)$$

$$\downarrow$$

$$\begin{bmatrix} \psi_1(t) \\ \psi_2(t) \end{bmatrix} = \begin{bmatrix} e^{-t} \psi_1(0) \\ k (e^{-t} - e^{-2t}) \psi_1(0) + e^{-2t} \psi_2(0) \end{bmatrix}$$

E-values: misleading measures of transient response

FORCED RESPONSES

Amplification of disturbances

Harmonic forcing

$$d(t) = \hat{d}(\omega) e^{i\omega t}$$
 steady-state response $\phi(t) = \hat{\phi}(\omega) e^{i\omega t}$

* Frequency response

$$\hat{\phi}(\omega) = \underbrace{C(i\omega I - A)^{-1}B}_{H(\omega)} \hat{d}(\omega)$$

example: 3 inputs, 2 outputs

$$\begin{bmatrix} \hat{\phi}_1(\omega) \\ \hat{\phi}_2(\omega) \end{bmatrix} = \begin{bmatrix} H_{11}(\omega) & H_{12}(\omega) & H_{13}(\omega) \\ H_{21}(\omega) & H_{22}(\omega) & H_{23}(\omega) \end{bmatrix} \begin{bmatrix} \hat{d}_1(\omega) \\ \hat{d}_2(\omega) \\ \hat{d}_3(\omega) \end{bmatrix}$$

 $H_{ij}(\omega)$ - response from jth input to ith output

Input-output gains

• Determined by singular values of $H(\omega)$

left and right singular vectors:

$$H(\omega)H^*(\omega) \, \underline{u_i(\omega)} = \sigma_i^2(\omega) \, \underline{u_i(\omega)}$$
$$H^*(\omega)H(\omega) \, \underline{v_i(\omega)} = \sigma_i^2(\omega) \, \underline{v_i(\omega)}$$

- $\{u_i\}$ orthonormal basis of output space
- $\{v_i\}$ orthonormal basis of input space

• Action of $H(\omega)$ on $\hat{d}(\omega)$

$$\hat{\phi}(\omega) = H(\omega) \, \hat{d}(\omega) = \sum_{i=1}^{r} \sigma_i(\omega) \, \underline{u_i(\omega)} \, \langle v_i(\omega), \hat{d}(\omega) \rangle$$

- Right singular vectors
 - * identify input directions with simple responses

$$\begin{aligned}
\sigma_1(\omega) &\geq \sigma_2(\omega) \geq \cdots > 0 \\
\hat{\phi}(\omega) &= \sum_{i=1}^r \sigma_i(\omega) u_i(\omega) \left\langle v_i(\omega), \hat{d}(\omega) \right\rangle \\
&\downarrow \hat{d}(\omega) = v_k(\omega) \\
\hat{\phi}(\omega) &= \sigma_k(\omega) u_k(\omega)
\end{aligned}$$

 $\sigma_1(\omega)$: the largest amplification at any frequency

Worst case amplification

• H_{∞} norm: an induced L_2 gain (of a system)

$$G = \|H\|_{\infty}^2 = \max rac{ ext{output energy}}{ ext{input energy}} = \max_{\omega} \sigma_1^2(H(\omega))$$

Robustness interpretation

modeling uncertainty

(can be nonlinear or time-varying)

Closely related to pseudospectra of linear operators

$$\dot{\psi}(t) = (A + B \Gamma C) \psi(t)$$

stability margins

Back to a toy example

$$\begin{bmatrix} \dot{\psi}_1 \\ \dot{\psi}_2 \end{bmatrix} = \begin{bmatrix} -\lambda_1 & \mathbf{0} \\ k & -\lambda_2 \end{bmatrix} \begin{bmatrix} \psi_1 \\ \psi_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} d$$

$$G = \max_{\omega} |H(i\omega)|^2 = \frac{k^2}{(\lambda_1 \lambda_2)^2}$$

ROBUSTNESS

modeling uncertainty

$$\det\left(\left[\begin{array}{cc} s & 0 \\ 0 & s \end{array}\right] - \left[\begin{array}{cc} -\lambda_1 & \gamma \\ k & -\lambda_2 \end{array}\right]\right) = s^2 + (\lambda_1 + \lambda_2)s + \underbrace{(\lambda_1\lambda_2 - \gamma k)}_{>0}$$

Response to stochastic forcing

White-in-time forcing

$$\mathcal{E}(d(t_1) d^*(t_2)) = I \delta(t_1 - t_2)$$

* Hilbert-Schmidt norm

power spectral density:

$$||H(\omega)||_{\mathrm{HS}}^2 = \operatorname{trace}(H(\omega) H^*(\omega)) = \sum_{i=1}^r \sigma_i^2(\omega)$$

$\star H_2$ norm

variance amplification:

$$||H||_{2}^{2} = \frac{1}{2\pi} \int_{-\infty}^{\infty} ||H(\omega)||_{HS}^{2} d\omega = \int_{0}^{\infty} ||H(t)||_{HS}^{2} dt$$

Computation of H_2 and H_{∞} norms

$$\dot{\psi}(t) = A \psi(t) + B d(t)$$

$$\phi(t) = C \psi(t)$$

- H_2 norm
 - Lyapunov equation

$$\mathcal{E}(d(t_1) d^*(t_2)) = W \delta(t_1 - t_2) \Rightarrow \begin{cases} ||H||_2^2 = \text{trace}(C P C^*) \\ A P + P A^* = -B W B^* \end{cases}$$

- H_{∞} norm
 - * E-value decomposition of Hamiltonian in conjunction with bisection

$$\|H\|_{\infty} \geq \gamma \ \Leftrightarrow \left[\begin{array}{cc} A & \frac{1}{\gamma}BB^* \\ -\frac{1}{\gamma}C^*C & -A^* \end{array}\right] \text{ has at least one imaginary e-value}$$

BACK TO FLUIDS

Frequency response: channel flow

harmonic forcing:

$$\mathbf{d}(x,y,z,t) \ = \ \hat{\mathbf{d}}(k_x,y,k_z,\omega) \, \mathrm{e}^{\mathrm{i}(k_x x \, + \, k_z z \, + \, \omega t)}$$

$$\downarrow \mathbf{steady\text{-state response}}$$

$$\mathbf{v}(x,y,z,t) \ = \ \hat{\mathbf{v}}(k_x,y,k_z,\omega) \, \mathrm{e}^{\mathrm{i}(k_x x \, + \, k_z z \, + \, \omega t)}$$

ullet Frequency response: operator in y

* componentwise amplification

$$\begin{bmatrix} \mathbf{u} \\ v \\ w \end{bmatrix} = \begin{bmatrix} H_{u1} & H_{u2} & H_{u3} \\ H_{v1} & H_{v2} & H_{v3} \\ H_{w1} & H_{w2} & H_{w3} \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$$

Amplification mechanism in flows with high Re

• HIGHEST AMPLIFICATION: $(d_2, d_3) \rightarrow u$

• LINEARIZED DYNAMICS OF NORMAL VORTICITY η

AMPLIFICATION MECHANISM: vortex tilting or lift-up

spanwise direction

Linear analyses: Input-output vs. Stability

AMPLIFICATION:

 $\mathbf{v} = H \mathbf{d}$

singular values of H

typical structures cross-sectional dynamics

STABILITY:

 $\dot{\psi} = A \psi$

e-values of A

FLOW CONTROL

- Objective
 - **★** controlling the onset of turbulence
- Transition initiated by
 - * high flow sensitivity
- Control strategy
 - * reduce flow sensitivity

Sensor-free flow control

- GEOMETRY MODIFICATIONS
 - * riblets
 - * surface roughness
 - * super-hydrophobic surfaces

- BODY FORCES
 - ★ temporally/spatially oscillatory forces
 - ★ traveling waves

- WALL OSCILLATIONS
 - * transverse wall oscillations

common theme: PDEs with spatially or temporally periodic coefficients

Blowing and suction along the walls

NORMAL VELOCITY:
$$V(y=\pm 1) = \mp \alpha \cos (\omega_x(x-ct))$$

TRAVELING WAVE PARAMETERS:

spatial frequency: ω_x

speed: $c \qquad \left\{ \begin{array}{ll} c>0 & {\rm downstream} \\ c<0 & {\rm upstream} \end{array} \right.$

amplitude: α

- INVESTIGATE THE EFFECTS OF c, ω_x , α ON:
 - * base flow
 - * cost of control
 - * onset of turbulence

Min, Kang, Speyer, Kim, J. Fluid Mech. '06

CHALLENGE: selection of wave parameters

THIS TALK:

- * cost of control
- * onset of turbulence

Effects of blowing and suction?

- DESIRED EFFECTS OF CONTROL:
 - ⋆ bulk flux
 - ⋆ net efficiency /
 - ⋆ fluctuations' energy \

TRAVELING WAVE

induces a bulk flux (pumping)

PUMPING DIRECTION

* opposite to a traveling wave direction

Nominal velocity

$$V(y=\pm 1) = \mp \alpha \cos (\omega_x(x-ct)) \\ = \mp \alpha \cos (\omega_x \bar{x})$$
 \Rightarrow $\bar{\mathbf{u}} = (U(\bar{x},y), \ V(\bar{x},y), \ 0)$ \Rightarrow steady in a traveling wave frame periodic in \bar{x}

 SMALL AMPLITUDE BLOWING/SUCTION weakly-nonlinear analysis

$$U(\bar{x},y) = U_0(y) + \alpha^2 U_{2,0}(y) + \alpha^2 (U_{1,-1}(y) e^{-i\omega_x \bar{x}} + U_{1,1}(y) e^{i\omega_x \bar{x}}) + \alpha^2 (U_{2,-2}(y) e^{-2i\omega_x \bar{x}} + U_{2,2}(y) e^{2i\omega_x \bar{x}}) + O(\alpha^3)$$

Best-case scenario for net efficiency

Assume:

no control: laminar

with control: laminar

Assume:

no control: turbulent with control: laminar

Velocity fluctuations: DNS preview

Lieu, Moarref, Jovanović, J. Fluid Mech. '10

Ensemble average energy density: controlled flow

EVOLUTION MODEL: linearization around $(U(\bar{x},y),\ V(\bar{x},y),\ 0)$

 \star periodic coefficients in $\bar{x} = x - ct$

Simulation-free approach to determining energy density

Moarref & Jovanović, J. Fluid Mech. '10

effect of small wave amplitude:

 $(\theta, k_z) \rightsquigarrow \text{spatial wavenumbers}$

Energy amplification: controlled flow with Re = 2000

explicit formula:

 $\frac{\text{energy density with control}}{\text{energy density w/o control}} \, \approx \, 1 \, + \, \frac{\alpha^2}{2} g_2(\theta, k_z; \, \omega_x, c)$

• $(\theta = 0, k_z = 1.78)$: most energy w/o control

g_2 , downstream: 10^1 wave frequency 10^0 -2-4 $10_{-0.1}^{-3}$ 100 10 wave speed

Recap

facts revealed by perturbation analysis:

Blowing/Suction Type	Nominal flow analysis	Energy amplification analysis
Downstream	reduce bulk flux	reduce amplification √
Upstream	increase bulk flux √	promote amplification

Moarref & Jovanović, J. Fluid Mech. '10

DNS results: avoidance/promotion of turbulence

small initial energy

(flow with no control stays laminar)

DOWNSTREAM: NO TURBULENCE

UPSTREAM: PROMOTES TURBULENCE

NO TURBULENCE:

DOWNSTREAM moderate initial energy

TURBULENCE:

UPSTREAM moderate initial energy

OPTIMAL CONTROL AND ESTIMATION

Linear Quadratic Regulator (LQR)

Minimize quadratic objective subject to linear dynamic constraint

$$\begin{array}{ll} \text{minimize} & J(\psi,u) = \frac{1}{2} \int_0^T \left(\left< \psi(\tau), Q \, \psi(\tau) \right> + \left< u(\tau), R \, u(\tau) \right> \right) \mathrm{d}\tau \, + \, \frac{1}{2} \left< \psi(T), Q_T \, \psi(T) \right> \\ \\ \text{subject to} & A \, \psi(t) \, + \, B \, u(t) \, - \, \dot{\psi}(t) \, = \, 0 \\ \\ & \psi(0) \, = \, \psi_0, \ \, t \, \in \, [0,\, T] \end{array}$$

⋆ optimization variable is a function

$$u \colon [0, T] \longrightarrow \mathbb{H}_{\mathbf{u}}$$

* state and control weights

$$\begin{cases} Q, Q_T & \text{self-adjoint, non-negative} \\ R & \text{self-adjoint, positive} \end{cases}$$

* infinite number of constraints

Introduce Lagrangian

$$\mathcal{L}(\psi, u, \lambda) = J(\psi, u) + \int_0^T \left\langle \lambda(\tau), A\psi(\tau) + Bu(\tau) - \dot{\psi}(\tau) \right\rangle d\tau$$

\star form variations wrt ψ , u, λ

$$\mathcal{L}(\psi, u + \tilde{u}, \lambda) - \mathcal{L}(\psi, u, \lambda) = \int_0^T \langle R u(\tau) + B^* \lambda(\tau), \tilde{u}(\tau) \rangle d\tau = 0$$

$$\downarrow$$

$$u(t) = -R^{-1}B^* \lambda(t), \quad t \in [0, T]$$

necessary conditions for optimality:

Solution to finite horizon LQR

two-point boundary value problem:

$$\begin{bmatrix} \dot{\psi}(t) \\ \dot{\lambda}(t) \end{bmatrix} = \begin{bmatrix} A & -BR^{-1}B^* \\ -Q & -A^* \end{bmatrix} \begin{bmatrix} \psi(t) \\ \lambda(t) \end{bmatrix}$$
$$\begin{bmatrix} \psi_0 \\ 0 \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \psi(0) \\ \lambda(0) \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ Q_T & -I \end{bmatrix} \begin{bmatrix} \psi(T) \\ \lambda(T) \end{bmatrix}$$
$$u(t) = -R^{-1}B^*\lambda(t)$$

Differential Riccati Equation

can show: $\lambda(t) = X(t) \psi(t)$

$$-\dot{X}(t) = A^* X(t) + X(t) A + Q - X(t) B R^{-1} B^* X(t)$$

 $X(T) = Q_T$

* optimal controller: determined by state-feedback

$$u(t) = -K(t) \psi(t)$$

$$K(t) = R^{-1}B^*X(t)$$

Infinite horizon LQR

minimize
$$J \,=\, \frac{1}{2} \int_0^\infty \! \left(\, \langle \psi(\tau), Q\,\psi(\tau) \rangle \,+\, \langle u(\tau), R\,u(\tau) \rangle \,\right) \,\mathrm{d}\tau$$
 subject to
$$\dot{\psi}(t) \,=\, A\,\psi(t) \,+\, B\,u(t)$$

• Optimal controller: $\begin{cases} u(t) = -K \psi(t) \\ K = R^{-1}B^*X \end{cases}$

 $\star X = X^*$ - non-negative solution to Algebraic Riccati Equation (ARE)

$$A^*X + XA + Q - XBR^{-1}B^*X = 0$$

$$(A,B)$$
 stabilizable (A,Q) detectable \Rightarrow stability of $\dot{\psi}(t) = (A-BK)\psi(t)$

Scalar example

$$\dot{\psi} = a \psi + u$$

$$J = \frac{1}{2} \int_0^\infty (q \psi^2(\tau) + r u^2(\tau)) d\tau$$

Optimal controller

$$k_{\text{lqr}} = a + \sqrt{a^2 + \frac{q}{r}} \implies \psi(t) = \exp\left(-\sqrt{a^2 + \frac{q}{r}}t\right)\psi(0)$$

tradeoff:

	large q/r	small q/r
convergence rate	fast √	slow
control effort	large	low √

State-feedback H_2 controller

subject to
$$\dot{\psi}(t) = A \psi(t) + B_d d(t) + B_u u(t)$$

$$\mathcal{E}(d(t_1) d^*(t_2)) = W_d \delta(t_1 - t_2)$$

Minimum variance controller

state-feedback controller:

$$u(t) = -K \psi(t)$$

$$K = R^{-1}B_u^* X$$

$$0 = A^* X + X A + Q - X B_u R^{-1}B_u^* X$$

State estimation

state equation: $\dot{\psi}(t) = A \psi(t) + B_d d(t) + B_u u(t)$

measured output: $\varphi(t) = C \psi(t) + n(t)$

d(t) - process disturbance; n(t) - measurement noise

- Estimator (observer)
 - * copy of the system + linear injection term

$$\hat{\psi}(t) = A \hat{\psi}(t) + 0 \cdot d(t) + B_u u(t) + L (\varphi(t) - \hat{\varphi}(t))$$

$$\hat{\varphi}(t) = C \hat{\psi}(t) + 0 \cdot n(t)$$

 \star estimation error: $\tilde{\psi}(t) = \psi(t) - \hat{\psi}(t)$

$$\dot{\tilde{\psi}}(t) = (A - LC)\tilde{\psi}(t) + \begin{bmatrix} B_d & -L \end{bmatrix} \begin{bmatrix} d(t) \\ n(t) \end{bmatrix}$$
 $\tilde{\varphi}(t) = C\tilde{\psi}(t) + n(t)$

(A,C): detectable \Rightarrow can design L to provide stability of the error dynamics

Kalman filter

$$\dot{\psi}(t) = A \psi(t) + B_d d(t) + B_u u(t)$$

$$\varphi(t) = C \psi(t) + n(t)$$

$$\mathcal{E}(d(t_1) d^*(t_2)) = W_d \delta(t_1 - t_2); \quad \mathcal{E}(n(t_1) n^*(t_2)) = W_n \delta(t_1 - t_2)$$

- Kalman filter: optimal estimator
 - \star minimizes steady-state variance of $\, \hat{\psi}(t) \, = \, \psi(t) \, \, \hat{\psi}(t) \,$

Kalman gain:

$$L = Y C^* W_n^{-1}$$

$$0 = A Y + Y A^* + B_d W_d B_d^* - Y C^* W_n^{-1} C Y$$

Output-feedback H_2 controller

minimize
$$\lim_{t\to\infty}\mathcal{E}\big(\langle \psi(t),Q\,\psi(t)\rangle + \langle u(t),R\,u(t)\rangle\big)$$
 subject to $\dot{\psi}(t)=A\,\psi(t)+B_d\,d(t)+B_u\,u(t)$ $\varphi(t)=C\,\psi(t)+n(t)$

$$\mathcal{E}(d(t_1) d^*(t_2)) = W_d \delta(t_1 - t_2); \quad \mathcal{E}(n(t_1) n^*(t_2)) = W_n \delta(t_1 - t_2)$$

Minimum variance controller

observer-based controller:

$$\dot{\hat{\psi}}(t) = (A - \mathbf{L}C)\hat{\psi}(t) + B_u u(t) + \mathbf{L}\varphi(t)$$

$$u(t) = -\mathbf{K}\hat{\psi}(t)$$

$$\star$$
 feedback and observer gains:
$$\begin{cases} K & \text{LQR gain} \\ L & \text{Kalman gain} \end{cases}$$

H_{∞} controller

• BLENDS CLASSICAL WITH OPTIMAL CONTROL

Boundary actuation

Example: heat equation

$$\phi_t(y,t) = \phi_{yy}(y,t) + d(y,t)$$

$$\phi(-1,t) = u(t)$$

$$\phi(+1,t) = 0$$

- Problem: control doesn't enter additively into the equation
- Coordinate transformation

$$\psi(y,t) = \phi(y,t) - f(y) u(t)$$

- \star Choose f(y) to obtain $\psi(\pm 1, t) = 0$
- * Many possible choices

Conditions for selection of *f*:

$$\{f(-1) = 1, f(1) = 0\}$$
 simple option $f(y) = \frac{1-y}{2}$

In new coordinates:

$$\phi_t(y,t) = \phi_{yy}(y,t) + d(y,t)$$

$$\phi(-1,t) = u(t)$$

$$\phi(+1,t) = 0$$

$$\downarrow \phi(y,t) = \psi(y,t) + f(y)u(t)$$

$$\psi_t(y,t) + f(y)\dot{u}(t) = \psi_{yy}(y,t) + f''(y)u(t) + d(y,t)$$

$$\psi(\pm 1,t) = 0$$

• New input: $v(t) = \dot{u}(t)$

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} \psi(t) \\ u(t) \end{bmatrix} = \begin{bmatrix} A_0 & f'' \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \psi(t) \\ u(t) \end{bmatrix} + \begin{bmatrix} I \\ 0 \end{bmatrix} d(t) + \begin{bmatrix} -f \\ I \end{bmatrix} v(t)$$

$$\phi(t) = \begin{bmatrix} I & f \end{bmatrix} \begin{bmatrix} \psi(t) \\ u(t) \end{bmatrix}$$

$$A_0 = rac{\mathrm{d}^2}{\mathrm{d}y^2}$$
 with Dirichlet BCs

Blowing and suction along the walls

$$v(x, \pm 1, z, t) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-1}^{1} K_{v}^{\pm}(x - \xi, y, z - \zeta) v(\xi, y, \zeta, t) dy d\xi d\zeta + \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-1}^{1} K_{\eta}^{\pm}(x - \xi, y, z - \zeta) \eta(\xi, y, \zeta, t) dy d\xi d\zeta$$

 $K_v^-(0-\xi,y,0-\zeta)$:

Optimal controller: exponentially decaying convolution kernels

$$-0.8$$
 -1
 -0.5
 x
 0.5
 0.2
 0.2
 0.2

Högberg, Bewley, Henningson, J. Fluid Mech. '03

0.5

Optimal localized control

Blowing and suction along the discrete lattice

* DNS verification

Moarref, Lieu, Jovanović, CTR Summer Program 2010

Sparsity-promoting optimal control

• Strike balance between quadratic performance and sparsity of K

• $\operatorname{card}(K)$ – number of non-zero elements of K

$$K = \begin{bmatrix} 5.1 & -2.3 & 0 & 1.5 \\ 0 & 3.2 & 1.6 & 0 \\ 0 & -4.3 & 1.8 & 5.2 \end{bmatrix} \Rightarrow \mathbf{card}(K) = 8$$

• $\gamma > 0$ - quadratic performance vs. sparsity tradeoff

Lin, Fardad, Jovanović, IEEE TAC '11 (conditionally accepted; arXiv:1111.6188v1)

SUMMARY AND OUTLOOK

Summary: transition

- INPUT-OUTPUT ANALYSIS
 - quantifies flow sensitivity
 - * reveals distinct mechanisms for subcritical transition streamwise streaks, oblique waves, TS-waves
 - * exemplifies the importance of streamwise elongated flow structures

Jovanović & Bamieh, J. Fluid Mech. '05

- LATER STAGES OF TRANSITION
 - * challenge: relative roles of flow sensitivity and nonlinearity

Waleffe, Phys. Fluids '97

Farrell & Ioannou, CTR Summer Program '12

Summary: sensor-free flow control

CONTROLLING THE ONSET OF TURBULENCE

facts revealed by perturbation analysis:

Blowing/Suction Type	Nominal flow analysis	Energy amplification analysis
Downstream	reduce bulk flux	reduce amplification √
Upstream	increase bulk flux √	promote amplification

- POWERFUL SIMULATION-FREE APPROACH TO PREDICTING FULL-SCALE RESULTS
 - * DNS verification

Moarref & Jovanović, J. Fluid Mech. '10

Lieu, Moarref, Jovanović, J. Fluid Mech. '10

Outlook: model-based sensor-free flow control

GEOMETRY MODIFICATIONS	WALL OSCILLATIONS	BODY FORCES
riblets super-hydrophobic surfaces	transverse oscillations	oscillatory forces traveling waves

- Use developed theory to design geometries and waveforms for
 - ★ control of transition/skin-friction drag reduction
- CHALLENGES
 - * control-oriented modeling of turbulent flows
 - * optimal design of periodic waveforms

 Flow disturbances

 Spatially Invariant PDE

 Spatially Periodic

 Multiplication

CONTROL OF TURBULENT FLOWS

control-oriented modeling turbulent stochastic forcing turbulent mean flow equations turbulent viscosity $v_T = c \frac{k^2}{\epsilon}$

model-based control design

flow structures

Moarref & Jovanović, J. Fluid Mech. '12 (in press; arXiv:1206.0101)

Acknowledgments

Rashad Moarref (Caltech)

Binh Lieu (U of M)

Armin Zare (U of M)

SUPPORT:

TEAM:

NSF CAREER Award CMMI-06-44793 NSF Award CMMI-09-27720 U of M IREE Early Career Award CTR Summer Programs '06, '10, '12

COMPUTING RESOURCES:

Minnesota Supercomputing Institute

SPECIAL THANKS:

Prof. Moin