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Flow control

technology: shear-stress sensors; surface-deformation actuators
application: turbulence suppression; skin-friction drag reduction

challenge: distributed controller design for complex flow dynamics



Outline
@ DYNAMICS AND CONTROL OF WALL-BOUNDED SHEAR FLOWS

e The early stages of transition )

* initiated by high flow sensitivity Kev i
ey issue:

_ high flow sensitivity
e Controlling the onset of turbulence

» simulation-free design for reducing sensitivity

® CASE STUDIES

e Sensor-free flow control

* streamwise traveling waves

e Feedback flow control
* design of optimal estimators and controllers

® SUMMARY AND OUTLOOK



Transition to turbulence
e LINEAR HYDRODYNAMIC STABILITY: unstable normal modes
x successful in: Benard Convection, Taylor-Couette flow, etc.

* fails In: wall-bounded shear flows (channels, pipes, boundary layers)

e DIFFICULTY 1
Inability to predict: Reynolds number for the onset of turbulence (Re..)

much before instability

Experimental onset of turbulence:
no sharp value for Re.

e DIFFICULTY 2

Inability to predict: flow structures observed at transition
(except in carefully controlled experiments)



LINEAR STABILITY:

* For Re > Re. = exp. growing normal modes
corresponding e-functions }

(TS-waves) = exp. growing flow structures

Matsubara & Alfredsson, J. Fluid Mech. ‘01



e FAILURE OF LINEAR HYDRODYNAMIC STABILITY
caused by high flow sensitivity

* large transient responses
* large noise amplification
= small stability margins

TO COUNTER THIS SENSITIVITY: must account for modeling imperfections

TRANSITION =~ STABILITY + RECEPTIVITY + ROBUSTNESS

| |

flow unmodeled
disturbances dynamics

Farrell, loannou, Schmid, Trefethen, Henningson, Gustavsson, Reddy, Bamieh, etc.



Tools for quantifying sensitivity

e INPUT-OUTPUT ANALYSIS: spatio-temporal frequency responses
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transition: insight into mechanisms

control: control-oriented modeling




Transient growth analysis

e STUDY TRANSIENT BEHAVIOR OF FLUCTUATIONS’ ENERGY

kinetic energy:

Re < 5772
1Ay _b-_.-
_ v
- % — ’w}*u
Yy = A

time

i E-values: misleading measure of transient response
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Response to stochastic forcing

Re = 2000 |
forcing:

—

-

v.d, . .
? w,dgj—.u,dl white intandy

——

harmonic in x and z

d(z,y,z,t) = d(ky,y, ks, t)eFa® +Fz2)

Kinetic energy
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Ensemble average energy density

channel flow with Re = 2000:
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TS waves
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{0} streamwise
P> streaks

streamwise wavenumber
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spanwise wavenumber

e Dominance of streamwise elongated structures

streamwise streaks!
Farrell & loannou, Phys. Fluids A "93

Jovanovic & Bamieh, J. Fluid Mech. ‘05
Schmid, Annu. Rev. Fluid Mech. ‘07
Gayme et al., J. Fluid Mech. ’10
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ANALYSIS OF LINEAR DYNAMICAL SYSTEMS

Schmid, Annu. Rev. Fluid Mech. ‘07



State-space representation

state equation: (t) = Ay(t) + Bd(t)
output equation: ¢(t) = Cy(t)

e Solution to state equation

t
P(t) = eMy0) + /0 e =T Bd(r)dr

| !

unforced forced
response response
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Ap(t) + Bd(t)

Transform techniques

Laplace transform

13




Natural and forced responses

e Unforced response

matrix exponential | resolvent

P(t) = ep(0) | W(s) = (sI — A) (0)

e Forced response

impulse response | transfer function

H(t) = Ce*B | H(s) = C(sl — A™'B

= Response to arbitrary inputs

Laplace transform\ ¢

o(t) = /OH(t — 1) d(7)dr

14



UNFORCED RESPONSES

15



Systems with non-normal A
o(t) = Ap(t)
e Non-normal operator: doesn’t commute with its adjoint

AA* £ A*A

= E-value decomposition of A

16



e Let A have a full set of linearly independent e-vectors

= hormal A: unitarily diagonalizable

A= VAV”

17



e E-value decomposition of A*

choose w; such that w v; = d;;




e Use VV and W* to diagonalize A

« solutionto  ¥(t) = Ay(t)

(t) = eM(0) = Y e ui(wi, p(0))

1=

19



¢ Right e-vectors

= Identify initial conditions with simple responses

P(t) = Y eMhu; (w;,1(0))

1=1

20



e E-value decomposition of A = [

oo
vl 1)

fon = [0 o= | ]

solution to (1) = A(t):

Y1 (1)
Pa(t)

h(t)

] _

= (e7tvywi + e Hvgwi) ¥(0)

L

|

e "1p1(0)
e” ) ¥1(0) + e~ hy(0)

e E-values: misleading measures of transient response

21



FORCED RESPONSES

22



Amplification of disturbances

e Harmonic forcing

d(t) = d(w) e steady-state response

(t)

*= Frequency response

(D] o [ Hnle) fhale) o)

H,;;(w) — response from jth input to ith output
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(w) eiwt
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Input-output gains

e Determined by singular values of H (w)

left and right singular vectors:

HW)H*(w)u;(w) = o2(w)u(w)
H*(w)H (W) vi(w) = o2(w)v;(w)

{u;} orthonormal basis of output space

{v;} orthonormal basis of input space

24



Bw) = = Y @) i) (i) dw))

1=1

¢ Right singular vectors

= identify input directions with simple responses

al(w) > ag(w) > - >0

- 3 o) (o). )

=1

d(w) = op(w) up(w)

o1(w): the largest amplification at any frequency

25



Worst case amplification

e H., norm: an induced L, gain (of a system)

output energy

G = ||H|?, = max - = max o,

> input energy

w

2

(H(w))
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Robustness interpretation

d Nominal é
i Linearized Dynamics |
S A e 5

modeling uncertainty
(can be nonlinear or time-varying)

e Closely related to pseudospectra of linear operators

Y(t) = (A+ BT O)y(t)

LARGE —

worst case amplification stability margins

27



Back to a toy example

W ] [ -A1 0 ] [ Py 1
: d
[ (05 ko —Ag o o
2 k2
G = max|H(iw)|© =
x| () =
ROBUSTNESS
d 1 1 1 (0 "
— . . -, stabilit
! S 4+ A g s + )\2 ! y
: : !
|_ ______________ | ‘e J
T v < Mok

s 0 —A
det([o 3] —[ kl _12]> = 5% + ()\1+>\2)S—|—£)\1>\2V— ’Ykl

>0




Response to stochastic forcing

e White-in-time forcing

E(d(t1)d*(t2)) = Id(t1 — t2)

x Hilbert-Schmidt norm

* Hs norm

power spectral density:

|H (w)lfhs = trace (H(w) H*(w)) = Z o} (w)

variance amplification:

1 o0 oo
1B = 5= [ IH@)Rsdw = [ 1)t

29
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Computation of H; and H_,, horms

$(t) = Ay(t) + Bd(1)
o(t) = Co(t)

e Hs norm
*= Lyapunov equation
|H||3 = trace(C P C*)

g(d(tl)d*(tQ)) = W5(t1 — tg) = { AP + PA* — — BWEB*

e H,, norm

*x E-value decomposition of Hamiltonian in conjunction with bisection

A 1B B*
Y

>
HHHOO A I —%C*C —A*

has at least one imaginary e-value




BACK TO FLUIDS
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Frequency response: channel flow

harmonic forcing:

d(.flf, Y, <, t) — a(kﬂf

v(z,y,z,t) = V(ks

Y, kz, UJ) ei(kxx + kzz + wt)
lsteady-state response

Y, k’z, w) ei(kxw + kzz + wt)

e Frequency response: operator in y
(Ai(kx,y,kz,w) V(kz,y, k., w)
g H(kxaksz) g
* componentwise amplification
] [ Hy, Hys Hys || di ]
() = Hvl HUQ H’U3 d2
W | Hy1 Hye Hys | | ds

Jovanovi¢ & Bamieh, J. Fluid Mech. ‘05
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do — u p—
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Amplification mechanism in flows with high Re

e HIGHEST AMPLIFICATION: (ds,d3) — u

‘glorified . vortex viscous |
forcing | . velocity
{1(s] — ATIA?) T e Re Aoy —{  (s] — A)7! 4

e LINEARIZED DYNAMICS OF NORMAL VORTICITY 7

n = An + ReApv  Agp = —(ik:) U'(y)

f. ',-"
.J f‘
w
&z
v
= ""-—-,.,\

gatRe Wity  ( backeroumd)

source W shea;‘ |



i AMPLIFICATION MECHANISM: vortex tilting or lift-up

low high low

speed  speed  speed
streak  streak  streak

wall-normal direction

spanwise direction

35
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Linear analyses: Input-output vs. Stability

AMPLIFICATION: STABILITY:
singular values of H e-values of A

Y
z
4 i

typical structures cross-sectional dynamics 2D models




FLOW CONTROL

e Objective

x controlling the onset of turbulence

e Transition initiated by

= high flow sensitivity

e Control strategy

*= reduce flow sensitivity

37



Sensor-free flow control
e GEOMETRY MODIFICATIONS

* riblets
* surface roughness
* super-hydrophobic surfaces

e BODY FORCES

* temporally/spatially oscillatory forces
* traveling waves

e WALL OSCILLATIONS

* transverse wall oscillations

38

common theme: PDEs with spatially or temporally periodic coefficients




Blowing and suction along the walls

pressure
gradient

—
downstream

Y

p

<

NORMAL VELOCITY: V(y = £1)

= Facos (w(x — ct))

e TRAVELING WAVE PARAMETERS:
spatial frequency: w,

speed: c {
amplitude: Q

c >0 downstream
c <0 upstream

e INVESTIGATE THE EFFECTS OF ¢, w,, & ON:

* base flow
* cost of control
* onset of turbulence

39



Min, Kang, Speyer, Kim, J. Fluid Mech. "06

| = SUSTAINED SUB-LAMINAR DRAG

upstream
or
st ,
Mean drag of uncontrolled flow

4 a=10.1

o)

©

3

o
. Mean drag of laminar flow
1 a=0.25

! ! ! ! | ! ! ! ! | ! ! ! ! | ! ! ! !

0 250 500 750 1000

time

CHALLENGE: selection of wave parameters

e THIS TALK:

* cost of control
* onset of turbulence

40



Effects of blowing and suction?

e DESIRED EFFECTS OF CONTROL:

* bulk flux ~
% net efficiency ~
x fluctuations’ energy \,

TRAVELING WAVE

x induces a bulk flux (pumping)

PUMPING DIRECTION

= opposite to a traveling wave direction

<{mum Emm——p>

upstream wave pumping direction

41
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Nominal velocity

ly —

Viy = +1) =

u = (U(z,y), V(z,y), 0)
= steady in a traveling wave frame
periodic in

Fa cos (wz(x — ct))
Fa cos (w, T)

e SMALL AMPLITUDE BLOWING/SUCTION
weakly-nonlinear analysis

parabola mean drift

oscillatory: no mean drift

=T e 1l —ilwyT iwe T\
Uz,y) = Uoly) + o Usoly) + a(Ui-1(y)e ™" + Uri(y)e™™)

+ O(a?)




Best-case scenario for net efficiency

0
XX
2> -250
. -
no control: laminar .©
ASSUME: _ _ &E
with control: laminar 5 50l
~+
D)
=
7% 002 004 006  0.08 0.1
wave amplitude
s
XX 50}
g
8 25
no control: turbulent @
ASSUME: , _ 5:5‘) 0l
with control: laminar 5 J
w -25!
= benefit
-50

0.02 004 006 008 0.1
wave amplitude

o
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Velocity fluctuations: DNS preview

downstream
4

upstream

0
0 ) 4 6
4 b
! 10" 107
0 500 1000 0 500 1000 0 500 1000
time time time

Lieu, Moarref, Jovanovic, J. Fluid Mech. '10



Ensemble average energy density: controlled flow

le —

11 v.d,
—— =
:"- w,d_;‘L»’Uudl
~x

EVOLUTION MODEL: linearization around (U(z,y), V(Z,y), 0)
x periodic coefficientsinz = =z — ¢t

Ay + Bd
C

Y,

A%

v = (u, v, w) ~» velocity fluctuations

} d = d(z,y,2,t) ~» stochastic body forcing

Y = (v, n) ~+ normal velocity/vorticity

45
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e Simulation-free approach to determining energy density
Moarref & Jovanovic, J. Fluid Mech. '10

effect of small wave amplitude:

energy density = energy density + _o° E»(0,k.; Re; wy,c) + O(a?)

l l small

with control w/o control

(0, k.) ~» spatial wavenumbers
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Energy amplification: controlled flow with Re = 2000

explicit formula:

energy density with control
energy density w/o control

~ 1 + &292(97kz; wx,C)

e (/ =0, k£, = 1.78): most energy w/o control

g2, downstream: g2, Upstream:

wave frequency
=

0.1 1 10 100 -100 -10 -1 -0.1

wave speed wave speed



Recap

facts revealed by perturbation analysis:

48

Blowing/Suction Type

Nominal flow analysis

Energy amplification analysis

Downstream
Upstream

reduce bulk flux
Increase bulk flux v

reduce amplification v/
promote amplification

Moarref & Jovanovic, J. Fluid Mech. '10



DNS results: avoidance/promotion of turbulence

small initial energy
(flow with no control stays laminar)

DOWNSTREAM: NO TURBULENCE UPSTREAM: PROMOTES TURBULENCE

5
x 10
2.5 ! ' ! ' 0.1_

no control
0.06¢

.1 a = 0.05

0 200 400 600 800 1000 O 200 400 600 800 1000
time time



DOWNSTREAM
moderate initial energy

50
NO TURBULENCE:

i no control

P

?.P a = 0.035
O

10 ¢

)
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10° ' ' Q&
0 200 400 600 800 1000
time
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TURBULENCE:

UPSTREAM
moderate initial energy

energy

—_
o

bO

drag coefficient

0 200 400 600 800 1000

D

time
x 10° | | | |
no control 5:\1 50" M -
Z=0.015 s =D
D
a=005 | 5 . a=0.05"
laminar E
_/ ; . % = 0.125
Jf /] «a=0125. jl a =0
| | « | | o q;'{) -150¢ | | | | 1
200 400 600 800 1000 0 200 400 600 800 1000

time time



OPTIMAL CONTROL AND ESTIMATION

52
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Linear Quadratic Regulator (LQR)

e Minimize quadratic objective subject to linear dynamic constraint

1 1

minimize J(v.,0) = 5 | ((0(r),Qu(r)) + (u(r), Ru(r)) dr + 3 (W(T).Qr v(T))

subjectto  A(t) + Bu(t) — (t) = 0
¥(0) = o, t € |0, T]

*= optimization variable is a function

u: [0, T] — H,

= state and control weights

Q, Qr  self-adjoint, non-negative
R self-adjoint, positive

* infinite number of constraints



e Introduce Lagrangian
T .
L(p,u,N) = J(,u) + / (A7), Ag(r) + Bu(r) = (7)) dr
*= form variations wrt ¢, u, A

LY, u+u,\) — L(Y,u,\) = /0 (Ru(t) + B*X(7),u(r))dr =

l

u(t) = —R™I1B*\(t), t € [0, T]

necessary conditions for optimality:

0

wrt A = ¥(t) = Ay(t) + Bul(t), ¥(0) = o

wrt ¥ = A1) = —Qu(t) — A*A(), AT) = Qry(T)
wrt u = wu(t) = —R71B*\(t), t € [0,T]

54



Solution to finite horizon LQR

two-point boundary value problem:

|- 14 3)]

_A*

¥ (0)
A(0)

" A —BR-B ] [W)]

()

| - |

0 0
Qr —1I

|15

(T)
(T)

|

u(t) = —R™'B*\(t)

e Differential Riccati Equation

can show: \(t) = X(t)y(t)

~X(t)
X(T)

Qr

= A*X(t) + X(t)A + Q — X(t) BR™'B*X(t)

= optimal controller: determined by state-feedback

= —K(t)(t)
= R !B*X(t)

55



Infinite horizon LQR

minimize J = %/OOO(<¢(T),Q¢(T)> -+ <u(T),Ru(7')>)dT

subjectto  (t) = AY(t) + Bu(t)

. u(t) = —K (i)
e Optimal controller:
K = R™B*X
* X = X* — non-negative solution to Algebraic Riccati Equation (ARE)

A*X + XA+ Q - XBR'B*'X =0

56

(A, B) stabilizable

(A,Q) detectable } = stability of ¥(t) = (A — BK)y(1)



Scalar example

Vo= ap + u
1

J = §/OOO(Q¢2(7_) + ru’(r)) dr

e Optimal controller

Kl = a + a,2+g = (1) :exp(— a? +
r

4,
;

tradeoff:
large ¢/ | small ¢/r
convergence rate | fast v slow
control effort large low v

) w0

57



State-feedback FH, controller

minimize tli)mooc‘)(W(t)yQTP(t» + (u(t), Ru(t)))

subjectto  v(t) = Aw(t) + Bad(t) + By ul(t)

E(d(ty)d™(t2)) = Wad(t1 — t2)

¢ Minimum variance controller
state-feedback controller:

ut) = —K(t)
K = R'B: X
0= A*X + XA+ Q — XB,R'B:X

58



State estimation

state equation: )(t) = Aw(t) + Bgd(t) + B, u(t)
measured output: ¢(t) = Cy(t) + n(t)

d(t) — process disturbance; n(t) — measurement noise

o Estimator (observer)

~ copy of the system -+ linear injection term
t) = A¢(t) + 0-d(t) + Buu(t) + L(e(t) — (1))
t) = CU(t) + 0-n(t)

(A,C): detectable = can design L to provide stability of the error dynamics

59



Kalman filter

(t) = Ap(t) + Bad(t) + Byult)
e(t) = CY(t) + n(t)

g(d(tl) d*(tg)) — Wdé(tl — tg); E(n(tl) n*(tg)) — Wn (5(t1 — tg)

e Kalman filter: optimal estimator

A

+ minimizes steady-state variance of ¥(t) = ¥(t) — ¥(t)

Kalman gain:

L =YC*w !

60



Output-feedback H, controller

minimize tli)mooc‘)(W(t)yQTP(t» + (u(t), Ru(t)))

subjectto  v(t) = Aw(t) + Bad(t) + By ul(t)
p(t) = CY(t) + n(t)

g(d(tl) d*(tg)) = Wdé(tl — tg); 5(7%(751) n*(tg)) = Wn (5(751 — tg)

e Minimum variance controller
observer-based controller:

A

O(t) = (A — LCO)G(t) + Buu(t) + Lo(t)
~K (1)

£
~~

<~
~—

|

K LQR gain
* feedback and observer gains:
L Kalman gain



H_. controller

e BLENDS CLASSICAL WITH OPTIMAL CONTROL

finite
energy
inputs

Modeling
Uncertainty

control
inputs

Y Y Y

Nominal Plant

62

performance
outputs

>
>

Controller

A

measured
outputs



Boundary actuation

e Example: heat equation

gbt(y?t) — §byy(yat) + d(y7t)
¢(=1,1) = u(l)
o(+1,t) = 0

e Problem: control doesn’t enter additively into the equation
e Coordinate transformation
v(y,t) = o(y,t) — f(y)u(t)

x Choose f(y) to obtain ¥ (+1,7) = 0

= Many possible choices

Conditions for selection of f:

simple option

{f(=1) =1, f(1) = 0}

63



e In new coordinates:

(Y, t) = Pyyly,t) + d(y,t)
o(—1,t) = wu(l)
d(+1,t) = 0

lqb(y,t) = YP(y,t) + f(y) u(t)

Vi(y,t) + f(y) ) = Yyy(y,t) + f(y)u@) + d(y,t)
W(£1,t) = 0

Ao = ——= with Dirichlet BCs
dy?

64
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Blowing and suction along the walls

v(x, £1, 2, 1) / / /Kix—g,y, —Qw(&,y, ¢ t)dydede +

/_o; /_Z/_lKi (x — &y, 2 — O n(E,y, ¢, 1) dy dé d¢

e Optimal controller: exponentially decaying convolution kernels
Kv_(o _£7y70 _ C)

Hbgberg, Bewley, Henningson, J. Fluid Mech. ‘03
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Optimal localized control
e Blowing and suction along the discrete lattice

* DNS verification

Moarref, Lieu, Jovanovic, CTR Summer Program 2010



Sparsity-promoting optimal control

e Strike balance between quadratic performance and sparsity of i

minimize J(K) + v card (K)
variance sparsity-promoting
amplification penalty function

e card (K) — number of non-zero elements of K

51 —-23 0 1.5
K = 0 32 1.6 0 = card(K) = 8
0 —43 18 5.2 |

e v > 0 — quadratic performance vs. sparsity tradeoff

67

Lin, Fardad, Jovanovic, IEEE TAC '11 (conditionally accepted; arXiv:1111.6188v1)


http://arxiv.org/abs/1111.6188

SUMMARY AND OUTLOOK

68
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Summary: transition
e INPUT-OUTPUT ANALYSIS

* quantifies flow sensitivity

* reveals distinct mechanisms for subcritical transition
streamwise streaks, obligue waves, TS-waves

* exemplifies the importance of streamwise elongated flow structures
Jovanovi¢ & Bamieh, J. Fluid Mech. ‘05

e LATER STAGES OF TRANSITION
*= challenge: relative roles of flow sensitivity and nonlinearity

Streaks
O(1)
advection of instability of / velocity
mean she U(y,z) disturbances | streamwise-varying linearized | fluctuations
dynamics around streaks
Streamwise Streak wave
Rolls mode(3D)
O(1/R) \/ O(1/R) streak quadratic
nonlinear evolution interactions
self-interaction
Waleffe, Phys. Fluids ‘97 Farrell & loannou, CTR Summer Program ’12




Summary: sensor-free flow control

e CONTROLLING THE ONSET OF TURBULENCE

facts revealed by perturbation analysis:

70

Blowing/Suction Type

Nominal flow analysis

Energy amplification analysis

Downstream
Upstream

reduce bulk flux
Increase bulk flux v/

reduce amplification v/
promote amplification

e POWERFUL SIMULATION-FREE APPROACH TO PREDICTING FULL-SCALE RESULTS

* DNS verification

Moarref & Jovanovic, J. Fluid Mech. '10
Lieu, Moarref, Jovanovic, J. Fluid Mech. 10



Outlook: model-based sensor-free flow control

71

GEOMETRY MODIFICATIONS WALL OSCILLATIONS

BODY FORCES

riblets

super-hydrophobic surfaces

transverse oscillations

oscillatory forces
traveling waves

e USE DEVELOPED THEORY TO DESIGN GEOMETRIES AND WAVEFORMS FOR

* control of transition/skin-friction drag reduction

e CHALLENGES

= control-oriented modeling of turbulent flows

= optimal design of periodic waveforms

Flow disturbances

| Spatially Invariant PDE

>

Fluctuations’ energy

_|_

Cost of control

Spatially Periodic

Multiplication
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e CONTROL OF TURBULENT FLOWS

control-oriented modeling

turbulent stochastic
drag forcing
turbulent ‘ second-order
mean velocity linearized statistics
> flow dynamics
turbulent
viscosity k>
VT = —
€
model-based control design flow structures

i
0.9¢
0.8F
0.7

0.6},

0.5

0.4~ ) : : 0
40 100 160 220 280 -120 -60 0 60 120

T+ 2T

Moarref & Jovanovié, J. Fluid Mech. '12 (in press; arXiv:1206.0101)


http://arxiv.org/abs/1206.0101
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