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Dynamic Mode Decomposition

• Represent field of interest as a linear combination of DMD modes ut
ut
ut

 ≈ r∑
i=1

 ut
φi
ut

 ai λti

Mezić, Rowley, Schmid
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Optimal Amplitudes

• Least-squares problem for optimal amplitudes Da := diag {a}

minimize
a

J(a) := ‖G − L DaR ‖2F

optimal approximation of

the matrix of snapshots

Chen, Tu, Rowley, J. Nonlinear Sci. ’12
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• AN EXAMPLE

? unstructured LES of a screeching supersonic jet
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• CHALLENGE

? desirable tradeoff between

{
quality of approximation

number of DMD modes
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Outline

¶ SPARSITY-PROMOTING DMD

? Performance vs sparsity

? Tools from optimization and compressive sensing

· ALGORITHM

? Alternating direction method of multipliers

¸ AN EXAMPLE

? Screeching supersonic jet

¹ SUMMARY
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Sparsity-promoting DMD

minimize J(a) + γ card (a)

←
−

←
−

least-squares

approximation

sparsity-promoting

penalty function

? card (a) – number of non-zero elements

a :=
[
1.4 0 0 −8.1 0

]T ⇒ card (a) = 2

? γ > 0 – performance vs sparsity tradeoff
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Convex Relaxation of card (a)

`1 norm:
∑
i

|ai|
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Convex Optimization Problem

• Step 1: structure-identification

minimize J(a) + γ

r∑
i=1

|ai|

←
−

←
−

least-squares

approximation

proxy for

cardinality minimization

• Step 2: polishing

minimize J(a)

subject to E a = 0
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• Outcome: parameterized family of optimal amplitudes
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An example: Screeching Supersonic JetLow-rank and sparse DMD 9

Figure 1. Temperature contours on a centerplane cross-section taken from a snapshot of the the
screeching jet. Time histories of pressure were recorded at probe locations indicated by circles
1 and 2.

expanded at the nozzle exit, and consist of repeated reflections of shocks and expansion
fans off the jet shear layers. At sufficiently high Reynolds numbers, the unsteady, tur-
bulent jet shear layers interact with the shocks to create sound. While this process is
generally broadbanded, screech is a special case of shock-noise that arises when a feed-
back loop is created between the upstream-propagating part of the acoustic field and the
generation of new disturbances at the nozzle lip that then are convected downstream.
Because screech is a self-sustaining feedback loop, it occurs at a specific fundamental
frequency, leading to extremely loud tones. Although screech is an extremely powerful
noise generation mechanism, from an engineering perspective, it is easily mitigated by
changing the receptivity of shear layer perturbations to acoustic forcing at the nozzle
lip, through small geometric alterations, for instance. Nevertheless, the screeching jet is
an excellent test case for the low-rank and sparse DMD methods because it contains a
tonal process embedded in an otherwise broadbanded turbulent flow. The objective of
both methods is to extract the entire coherent screech feedback loop from the turbulent
data and to describe the screech mechanism with as few modes as possible.
The supersonic jet used in this example was produced by a convergent rectangular noz-

zle of aspect ratio 4, precisely matching the geometry of an experimental nozzle “(Frate
& Bridges 2011). The entire flow inside, outside, and downstream of the nozzle was sim-
ulated using the low-dissipation low-dispersion LES solver charles on an unstructured
mesh containing ≈ 45 million control volumes. This simulation was one of a sequence
involving different mesh resolutions, and was validated against the experimental mea-
surements (Nichols et al. 2011).
The stagnation pressure and temperature inside the nozzle were set so that the jet

Mach number Mj = 1.4 and the fully-expanded jet tempertaure matched the ambient
temperature. Because the nozzle is purely convergent, however, the jet emerges from the
nozzle in an underexpanded state, leading to a train of diamond-shaped shock cells as
shown in figure 1. The figure shows contours of temperature on a centrplane cross section
taken through the narrow dimension of the nozzle. From an animation of the jet (not
shown), the first two shock cells are rather stationary, but the third and fourth shock
cells begin to flap up and down along the narrow dimension of the jet, which explains
their relative positions in the figure. The transverse oscillation of the shock cells occurs

• UNSTRUCTURED LES OF A RECTANGULAR JET

? Aspect ratio 4:1; Mach 1.4

? 45M control volumes (CharLES)
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• PRESSURE AT TWO LOCATIONS
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10 M. R. Jovanović, P. J. Schmid, & J. W. Nichols

Figure 2. a) Spectra corresponding to locations 1 (X symbols) and 2 (o symbols) of Figure 1.
b) Pressure signal from location 1. c) Pressure signal from location 2.

precisely at the screech frequency of the jet, and is connected to a strong upstream-
oriented acoustic tone.

Figure 2 shows the time histories and spectra of the pressure recorded at the locations
indicated by the circles in Figure 1. Location 1 coincided with the center of an upstream-
directed acoustic beam associated with the screech tone. While the pressure signal at
location 1 in the near acoustic field of the jet was narrowbanded, the pressure signal
at location 2 conatined a range of frequencies corresponding to the turbulence of the
jet shear layers. Both of the spectra show a strong peak at a Strouhal number of St =
fDe/uj = 0.3, which is the screech tone frequency predicted for a Mach 1.4 jet from a
4:1 aspect ratio rectangular nozzle. Because the sample window included 4 periods of the
screech tone, this peak coincided with the fourth Fourier coefficient in each case.

The database used for the DMD analysis consisted of 257 snapshots of the full three-
dimensional pressure and velocity fields associated with the jet. The snapshots were
equispaced in time with an interval of ∆t = 0.0528De/uj , where De is the nozzle equiv-
alent diameter (the diameter of the circle of same area as the nozzle exit) and uj is the
fully-expanded jet velocity. Although the computational domain for the LES extended
≈ 32De downstream of the nozzle exit, DMD was applied a subdomain extending to
10De focusing on the shock cells within the jet’s potential core and the surrounding
acoustic field. This restriction reduced the number of cells from 45 million to 8 million.
Even so, each snapshot required 256Mb of storage in double precision format. To handle
such large matrices, the dynamic mode decomposition was implemented in a MapReduce
framework so that the matrix could be stored and processed across several storage discs.
In particular, the algorithm relied upon a MapReduce QR-factorization of tall-and-skinny
matrices developed by Constantine & Gleich (2011).

Figure 3(a) illustrates the dependence of the absolute value of the amplitudes of the
DMD modes (obtained by solving optimization problem (2.8)) on the frequency of the
corresponding eigenvalues. This type of plot is analogous to the power-spectral density
plot using Fourier analysis.

It is not trivial to identify by mere inspection a subset of DMD modes that has the
strongest influence on the quality of the least-squares approximation. As shown in fig-
ure 3(b,c), the largest amplitudes appear to originate from the eigenvalues that are rather
strongly damped. In what follows, we demonstrate that keeping only a subset of modes
with largest amplitudes can lead to poor quality of approximation of numerically gener-
ated snapshots.

The sparsity level card (α) and the Frobenius norm of the difference between ΨN−1
0 and

Strouhal number
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Performance vs Sparsity

least-squares approximation: number of non-zero amplitudes:

sparsity-promoting parameter sparsity-promoting parameter
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• SPECTRUM
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• AMPLITUDE VS FREQUENCY
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• AMPLITUDE VS FREQUENCY

? Nz = 5
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• AMPLITUDE VS FREQUENCY

? Nz = 3
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Algorithm: Alternating Direction Method of Multipliers

minimize J(a) + γ g(a)

• Step 1: introduce additional variable/constraint

minimize J(a) + γ g(b)

subject to a − b = 0

benefit: decouples J and g

• Step 2: introduce augmented Lagrangian

Lρ(a, b, λ) := J(a) + γ g(b) + 〈λ, a − b〉 +
ρ

2
‖a − b‖22
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• Step 3: use ADMM for augmented Lagrangian minimization

Lρ(a, b, λ) = J(a) + γ g(b) + 〈λ, a − b〉 +
ρ

2
‖a − b‖22

ADMM:

ak+1 := argmin
a

Lρ(a, bk, λk)

bk+1 := argmin
b

Lρ(ak+1, b, λk)

λk+1 := λk + ρ (ak+1 − bk+1)

• Step 4: Polishing – structured optimal design

? ADMM: tool for identifying sparsity patterns
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