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Large Arrayed Systems of Sensors and Actuators

• New (and old) technologies

- Micro-Electro-Mechanical-Systems (MEMS) −→ Large Arrays
- Vehicular Platoons
- Cross Directional (CD) control in pulp and paper processes

• Modeling and control issues

- Complexity (Control-Oriented Modeling)
- Overall System Design (vs. individual device design)
- Controller architecture

• Distributed Systems Theory

- Infinite-dimensional systems with special structure
- Controller architecture
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Arrays of Micro-Electro-Mechanical-Systems (MEMS)

: Control Unit

: Actuator/Sensor

CURRENTLY FEASIBLE : Very large arrays of MEMS with integrated control circuitry

Issues:

• Tightly coupled dynamics −→
Spatio-temporal
instabilities
(e.g. string instability)

Current designs avoid this with large spacing

• Controller architecture

– Layout of sensors/actuators
– Communication between actuators/sensors

how to decentralizeor localize
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Example: Massively Parallel Data Storage (IBM Millpede project)

may generate applications of VLSI–Nano(Micro)
ElectroMechanical Systems [VLSI–N(M)EMS] not
conceived of today.

2. The Millipede concept
The 2D AFM cantilever array storage technique [8, 9]
called “Millipede” is illustrated in Figure 1. It is based on
a mechanical parallel x/y scanning of either the entire
cantilever array chip or the storage medium. In addition, a
feedback-controlled z-approaching and -leveling scheme
brings the entire cantilever array chip into contact
with the storage medium. This tip–medium contact is
maintained and controlled while x/y scanning is performed
for write/read. It is important to note that the Millipede
approach is not based on individual z-feedback for each
cantilever; rather, it uses a feedback control for the entire
chip, which greatly simplifies the system. However, this
requires stringent control and uniformity of tip height and
cantilever bending. Chip approach and leveling make use
of four integrated approaching cantilever sensors in the
corners of the array chip to control the approach of the
chip to the storage medium. Signals from three sensors
(the fourth being a spare) provide feedback signals
to adjust three magnetic z-actuators until the three

approaching sensors are in contact with the medium. The
three sensors with the individual feedback loop maintain
the chip leveled and in contact with the surface while
x/y scanning is performed for write/read operations.
The system is thus leveled in a manner similar to an
antivibration air table. This basic concept of the entire
chip approach/leveling has been tested and demonstrated
for the first time by parallel imaging with a 5 3 5 array
chip [10]. These parallel imaging results have shown that
all 25 cantilever tips have approached the substrate within
less than 1 mm of z-activation. This promising result has
led us to believe that chips with a tip-apex height
control of less than 500 nm are feasible. This stringent
requirement for tip-apex uniformity over the entire chip is
a consequence of the uniform force needed to minimize
or eliminate tip and medium wear due to large force
variations resulting from large tip-height nonuniformities
[4].

During the storage operation, the chip is raster-scanned
over an area called the storage field by a magnetic x/y
scanner. The scanning distance is equivalent to the
cantilever x/y pitch, which is currently 92 mm. Each
cantilever/tip of the array writes and reads data only in
its own storage field. This eliminates the need for lateral
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•

Atomic level resolution using Atomic Force
Microscopy (AFM) and Scanning Tunneling
Microscopy (STM) techniques

100 ∼ 1000 Tb/in2 density possible!

• Problem: slow scans = low throughput
Solution: go massively parallel
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Design and Control Issues in MEMS Arrays

• More tightly packed arrays −→ more dynamical coupling

– Micro-cantilever arrays
– Micro-mirror arrays

• Current fixes:

– Large spacings
– Complex design to isolate elements

• Experimental effort at UCSB:
design deliberately coupled arrays

• Demonstrate “electronic” decoupling
using feedback
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Micro-cantilever Array Control

Capacitively actuated micro-cantilevers: Combined actuator and sensor
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Important Considerations:

• Higher throughput, faster “access time” −→ Tightly packed cantilevers

• For tightly packed cantilevers, significant dynamical coupling due to

– Mechanical coupling
– Fringe fields

(Napoli & Bamieh, ’01)

p

+ + + + + + +                   + + + + + + +
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• Large arrays ≈ 10,000 devices
⇒ must use localized control
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Distributed Systems with Special Structure

• General Infinite-dimensional Systems Theory

– Well posedness issues (semi-group theory)
– Constructive (convergent) approximation techniques

THEME: Make infinite-dimensional problems look like finite-dimensional ones

• Special Structure

– Distributed control and measurement (now more feasible)
– Regular (lattice) arrangement of devices

Together =⇒ Spatial Invariance

– Control of “Vehicular Strings”, (Melzer & Kuo, 71)
– Discretized PDEs, (Brockett, Willems, Krishnaprasd, El-Sayed, ’74, ’81)
– “Systems over rings”, (Kamen, Khargonekar, Sontag, Tannenbaum, ...)
– Systems with “Dynamical Symmetry”, (Fagniani & Willems)

More recently:

– Controller architecture and localization, (Bamieh, Paganini, Dahleh)
– LMI techniques, localization, (D’Andrea, Dullerud, Lall)
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Example: Distributed Control of the Heat Equation

6 6 6 6

? ? ? ? ?

uo u1 u2u−1u−2
y−1 yo y1 y2

ui: input to heating elements. yi: signal from temperature sensor.
Dynamics are given by:

...
y−1

yo

y1
...

 =


... ...

. . . H−1,0 . . .
H0,−1 H0,0 H0,1

. . . H1,0 . . .
... ...




...
u−1

uo

u1
...


Each Hi,j is an infinite-dimensional SISO system.

Fact: Dynamics are spatially invariant ⇒ H is Toeplitz

The input-output relation can be written as a convolution over the actuator/sensor
index:

yi =
∞∑

j=−∞
H̄(i−j) uj,
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The limit of large actuator sensor array:

∂ψ

∂t
(x, t) = c

∂2ψ

∂x2
(x, t) + u(x, t) ψx =

∫ ∞
−∞

Hx−ζ uζdζ,
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Vehicular Platoons

m m m m m m m m
� - � - � -

- - - -

. . .
L L L

x−1 xo x1 x2

. . .

w−1 w1 w2wo

Objective: Design a controller for each vehicle to:

• Maintain constant small slot length L.

• Reject the effect of disturbances {wi} (wind gusts, road conditions, etc...)

Warning: Designs based on two vehicle models may lack “string stability”,
i.e. disturbances get amplified as they propagate through the platoon.

Problem Structure:

• Actuators: each vehicle’s throttle input.

• Sensors: position and velocity of each vehicle.
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Vehicular Platoons Set-up

xi: i’th vehicle’s position.

i i i i i i i i
� - � - � -

- - - -

. . .
L L L

x−1 xo x1 x2

. . .

w−1 w1 w2wo

x̃i := xi − xi−1 − L− C

x̃1,i := x̃i

x̃2,i := ˙̃xi

Structure of generalized plant:

H =
[
H11 H12

H21 H22

]
=


× ×

×

. . . 0

. . . ho

h1
. . .

0 . . .



The generalized plant has a Toeplitz structure!

H

C

��

-

�

wz

uy

z = F(H,C) w
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Optimal Controller for Vehicular Platoon

Example: Centralized H2 optimal controller gains for a 50 vehicle platoon
(From: Shu and Bamieh ’96)
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Figure 1: Position error feedback gains for a 50 vehicle platoon
Remarks:

• For large platoons, optimal controller is approximately Toeplitz

• Optimal centralized controller has some inherent decentralization (“localization”)
Controller gains decay away from the diagonal

Q: Do the above 2 results occur in all “such” problems?
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Spatial Invariance of Dynamics

Indexing of actuator and sensor signals:

ui(t) := u(i1,...,in)(t), yi(t) := y(i1,...,in)(t).

i := (i1, . . . , in) a spatial multi-index, i ∈ G := G1 × . . .× Gn.

Linear input-output relations: A general linear system from u to y:

yi =
X
j∈G

Hi,j uj, ⇔ y(i1,...,in) =
X

j1∈G1

. . .
X

jn∈Gn

H(i1,...,in),(j1,...,jn) u(j1,...,jn),

Spatial Invariance:

Assumption 1: Set of spatial indices = commutative group

G := G1 × . . .× Gn, each Gi a commutative group.

Remark: “spatial shifting” of signals

(Sσu)i := ui−σ Compare with: Time shift by τ (Sτu)(t) := u(t− τ)

Assumption 2: Spatial invariance ←→ Commute with spatial shifts

∀σ ∈ G, H Sσ = Sσ H ⇔ S
−1
σ HSσ = H

12



Examples of Spatial Invariance

Generally: Spatial invariance easily ascertained from basic physical symmetry!

• Vehicular platoons: signals index over Z.

• Channel flow: Signals indexed over {0, 1} × Z :

y(l,i) =
∞∑

j=−∞
H(l−0,i−j) u(0,j) +

∞∑
j=−∞

H(l−1,i−j) u(1,j), l = 0, 1.

? ? ? ? ? ? ? ? ?

6 6 6 6 6 6 6 6 6

-
-
-
-
-

-
-

-
-
-
-

-
-

6 6 6 6 6 6 6 6 6

? ? ? ? ? ? ? ? ?

Remark: The input-output mapping of a spatially invariant system can be rewritten:

yi =
∑
j∈G

Ḡi−j uj, ⇔ y(i1,...,in) =
∑

j1∈G1

. . .
∑

jn∈Gn

Ḡ(i1−j1,...,in−jn) u(j1,...,jn).

A spatial convolution
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Symmetry in Dynamical Systems and Control Design

• Many-body systems always have some inherent dynamical symmetries:
e.g. equations of motion are invariant to certain coordinate transformations

• Question: Given an unstable dynamical system with a certain symmetry,
is it possible to stabilize it with a controller that has the same symmetry?
(i.e. without “breaking the symmetry”)

• Answer: Yes! (Fagnani & Willems ’93)

Remark: Spatial invariance is a dynamical symmetry
This answer applies to optimal design as well

i.e.
For best achievable performance, need only consider spatially-invariant controllers
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The Standard Problem of Optimal and Robust Control

H

C

��

-

�

wz

uy

z = F(H,C) w

The standard problem:

Signal norms:

‖w‖p
p :=

∑
i∈G

∫
R
|wi(t)|pdt =

∑
i∈G

‖w‖p
p

Induced system norms:

‖F(G,C)‖p−i := sup
w∈LP

‖z‖p

‖w‖p
.

The H2 norm:

‖F(G,C)‖2H2 = ‖z‖22 =
∑
i∈G

‖zi‖2L2,

with impulsive disturbance input wi(t) = δ(i)δ(t).

Note: In the platoon problem: finite system norm ⇒ string stability.
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Spatially-Invariant vs. Spatially-Varying Controllers

Question: Are spatially-varying controllers better than spatially-invariant ones?

Answer: If plant is spatially invariant, no!

LSI := The class of Linear Spatially-Invariant systems.

LSV := The class of Linear Spatially-Varying systems.

Compare the two problems:

γsi := inf ‖F(G,C)‖p−i

stabilizing C

C ∈ LSI

γsv := inf ‖F(G,C)‖p−i

stabilizing C

C ∈ LSV

The best achievable performance
with spatially-invariant controllers

The best achievable performance
with spatially-varying controllers

Theorem 1. If the plant and performance objectives are spatially invariant, i.e. if
the generalized plant G is spatially invariant, then the best achievable performance
can be approached with a spatially invariant controller. More precisely

γsi = γsv.
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Spatially-Invariant vs. Spatially-Varying Controllers (Cont.)

Related Problem: Time-Varying vs. Time-Invariant Controllers

Fact: For time-invariant plants, time-varying controllers offer no advantage over time-
invariant ones! for norm minimization problems

Proofs based on use of YJBK parameterization. Convert to

γti := inf ‖T1 − T2QT3‖
stable Q
Q ∈ LTI

γtv := inf ‖T1 − T2QT3‖
stable Q
Q ∈ LTV

,

T1, T2, T3 determined by plant, therefore time invariant.



Spatially-Invariant vs. Spatially-Varying Controllers (Cont.)

Related Problem: Time-Varying vs. Time-Invariant Controllers

Fact: For time-invariant plants, time-varying controllers offer no advantage over time-
invariant ones! for norm minimization problems

Proofs based on use of YJBK parameterization. Convert to

γti := inf ‖T1 − T2QT3‖
stable Q
Q ∈ LTI

γtv := inf ‖T1 − T2QT3‖
stable Q
Q ∈ LTV

,

T1, T2, T3 determined by plant, therefore time invariant.

• The H∞ case: (Feintuch & Francis, ’85), (Khargonekar, Poolla, & Tannenbaum,
’85). A consequence of Nehari’s theorem

• The `1 case: (Shamma & Dahleh, ’91). Using an averaging technique

• Any induced `p norm: (Chapellat & Dahleh, ’92). Generalization of the averaging
technique

17



Spatially-Invariant vs. Spatially-Varying Controllers (Cont.)

Idea of proof: After YJBK parameterization:

γsi := inf ‖T1 − T2QT3‖
stable Q
Q ∈ LSI

≥ γsv := inf ‖T1 − T2QT3‖
stable Q
Q ∈ LSV

,

Let Q̄ achieve a performance level γ̄ = ‖T1 − T2Q̄T3‖.
Averaging Q̄:

• If G is finite: define

Qav :=
1
|G|

∑
σ∈G

σ−1Q̄σ. → Qav is spatially invariant, i.e. ∀σ ∈ G, σ−1Qav σ = Qav

Then

‖T1 − T2QavT3‖ = ‖T1 − T2

 
1

|G|
X
σ∈G

σ
−1

Q̄σ

!
T3‖ =

‚‚‚‚‚ 1

|G|
X
σ∈G

σ
−1 `

T1 − T2Q̄T3

´
σ

‚‚‚‚‚
≤

1

|G|
X
σ∈G

‚‚‚σ
−1 `

T1 − T2Q̄T3

´
σ
‚‚‚ = ‖T1 − T2Q̄T3‖
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• If G is infinite, take a sequence of finite subsetsM1 ⊂M2 ⊂ · · · , with
⋃
n

Mn = G
,

Then define: Qn :=
1

|Mn|
∑

σ∈Mn

σ−1Q̄σ.

Qn converges weak ∗ to a spatially-invariant Qav with the required norm bound.

19



Implications of the Structure of Spatial Invariance

Poiseuille flow stabilization:

����?

?

?

-

C1 Co

C−1

C−2. . . . . .

?

6

?

6

?

6

?

6

Channel

y−1
uo

yo
u−1 u1 u2

y1 y2

ui =
∑

j

Ci−j yj
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Implications of the Structure of Spatial Invariance

Poiseuille flow stabilization:

����?

?

?

-

C1 Co

C−1

C−2. . . . . .

?

6

?

6

?

6

?

6

Channel

y−1
uo

yo
u−1 u1 u2

y1 y2

ui =
∑

j

Ci−j yj
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Implications of the Structure of Spatial Invariance (Cont.)

Uneven distribution of sensors and actuators

Consider the following geometry of sensors and actuators:

• Sensor

Actuator

What kind of spatial invariance do optimal controllers have?
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Implications of the Structure of Spatial Invariance (Cont.)

Uneven distribution of sensors and actuators (Cont.)

Consider the following geometry of sensors and actuators:

• Sensor

Actuator

Each “cell” is a 1-input, 2-output system. underlying group is Z× Z
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Transform Methods

Consider the following PDE with distributed control:
∂ψ

∂t
(x1, . . . , xn, t) = A

(
∂

∂x1
,..., ∂

∂xn

)
ψ(x1, . . . , xn, t) + B

(
∂

∂x1
,..., ∂

∂xn

)
u(x1, . . . , xn, t)

y(x1, . . . , xn, t) = C
(

∂
∂x1

,..., ∂
∂xn

)
ψ(x1, . . . , xn, t),

where A,B, C are matrices of polynomials in ∂
∂xi

.

Consider also combined PDE difference equations such as:
∂ψ

∂t
(x1, . . . , xm, k1, . . . , kn, t) = A

(
∂

∂x1
,..., ∂

∂xn
, z−1

1 , . . . , z−1
n

)
ψ(x1, . . . , xn, k1, . . . , kn, t)

+ B
(

∂
∂x1

,..., ∂
∂xn
, z−1

1 , . . . , z−1
n

)
u(x1, . . . , xn, k1, . . . , kn, t)

We only require that the spatial variables x, k, belong to a commutative group

Taking the Fourier transform:

ψ̂(λ, t) :=
∫

G
e−j<λ,x>ψ(x, t) dx,

24



The above system equations become:

dψ̂

dt
(λ, t) = A (λ) ψ̂(λ, t) + B (λ) û(λ, t)

ŷ(λ, t) = C (λ) ψ̂(λ, t),

where λ ∈ Ĝ, the dual group to G.

Remark: This can be thought of as a parameterized family of finite-dimensional
systems.
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BLOCK DIAGONALIZATION BY FOURIER TRANSFORMS

The Fourier transform converts:

spatially-invariant operators on L2(G) −→ multiplication operators on L2(Ĝ)

In general:

group: G dual group: Ĝ Transform
R R Fourier Transform
Z ∂D Z-Transform
∂D Z Fourier Series
Zn Zn Discrete Fourier Transform

and the transforms preserve L2 norms:

‖f‖22 =

∫
G
|f (x)|2dx =

∫
Ĝ
|f̂ (λ)|2dλ = ‖f̂‖22

The system operation is then spatially decoupled or “block diagonalized”:

∂
∂tψ(x, t) = A ψ(x, t) +B u(x, t)

y(x, t) = C ψ(x, t) +D u(x, t)

A distributed,
spatially-invariant system

−→

d
dtψ̂(λ, t) = Â(λ)ψ̂(λ, t) + B̂(λ)û(λ, t)

ŷ(λ, t) = Ĉ(λ)ψ̂(λ, t) + D̂(λ)û(λ, t)

A parameterized family
of finite-dimensional systems

11



TRANSFORM METHODS

In physical space

d

dt
ψn = An ? ψn + Bn ? un

yn = Cn ? ψn

After spatial Fourier trans. (FT)

d

dt
ψ̂(θ) = Â(θ) ψ̂(θ) + B̂(θ) û(θ)

ŷ(θ) = Ĉ(θ) ψ̂(θ)

IMPLICATIONS

• Dynamics are decoupled by FT (The A, B, C operators are “diagonalized” )

• Quadratic forms preserved by FT =⇒ Quadratically optimal control
problems are equivalent for FT

• Yields a parametrized family of mutually independent problems

TRANSFER FUNCTIONS

operator-valued transfer function spatio-temporal transfer function

H(s) = C (sI −A)−1B H(s, θ) = Ĉ(θ)
(
sI − Â(θ)

)−1

B̂(θ)

A multi-dimensional system with temporal, but not spatial causality

12



Simple Example; Distributed LQR Control of Heat Equation

∂

∂t
ψ(x, t) = c

∂2

∂x2
ψ(x, t) + u(x, t) −→ d

dt
ψ̂(λ, t) = −cλ2ψ̂(λ, t) + û(λ, t)

Solve the LQR problem with Q = qI, R = I. The corresponding ARE family:

−2cλ2 p̂(λ)− p̂(λ)2 + q = 0,

and the positive solution is:

p̂(λ) = −cλ2 +
√
c2λ4 + q.

Remark: In general P̂ (λ) an irrational function of λ, even if Â(λ), B̂(λ) are rational.

i.e. PDE systems have optimal feedbacks which are not PDE operators.

Let {k(x)} be the inverse Fourier transform of the function {−p̂(λ)}.

26



Then optimal (temporally static) feedback

u(x, t) =
∫

R
k(x− ξ) ψ(ξ, t) dξ

-k(x)

x

Remark: The “spread” of {k(x)} indicates information required from distant sensors.
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Distributed LQR Control of Heat Equation (Cont.)

Important Observation: {k(x)} is “localized”. It decays exponentially!!

k̂(λ) = cλ2 −
√
c2λ4 + q.

-

6

�
�

�
�

��

@
@

@
@@

�
�

�
�

@
@

@
@@

(
q
c2

)1
4

This can be analytically extended by:

k̂e(s) = cs2 −
√
c2s4 + q,

which is analytic in the strip{
s ∈ C ; Im{s} <

√
2

2

( q
c2

)1
4

}
.

Therefore: ∃M such that

|k(x)| ≤ Me−α|x|, for any α <

√
2

2

( q
c2

)1
4
.

This results is true in general: under mild conditions
Solutions of AREs always inverse transform to exponentially decaying convolution
kernels
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Parameterized ARE solutions yield “localized” operators!
Consider unbounded domains, i.e. G = R (or Z).

Theorem 2. Consider the parameterized family of Riccati equations:

A∗(λ)P (λ) + P (λ)A(λ) − P (λ)B(λ)R(λ)B∗(λ)P (λ) + Q(λ) = 0, λ ∈ Ĝ.

Under mild conditions:
there exists an analytic continuation P (s) of P (λ) in a region

{|Im(s)| < α}, α > 0.

Convolution kernel resulting from Parameterized ARE has exponential decay.
That is, they have some degree of inherent decentralization (“localization”)!

Comparison:

• Modal truncation: In the transform domain, ARE solutions decay algebraically.

• Spatial truncation: In the spatial domain, convolution kernel of ARE solution
decays exponentially.

Therefore: Use transform domain to design ∀λ. Approximate in the spatial domain!
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DISTRIBUTED ARCHITECTURE OF QUADRATICALLY OPTIMAL CONTROLLERS

?

6

?

6

?

6

?

6

?

? ? ? ? ? ? ? ? ?

-

yo uou−1
y−1 y1 u1

y2 u2u−2

Observer based controller has the following structure:

Plant

d

dt
ψn = An ? ψn + Bn ? un

yn = Cn ? ψn

Controller

ui = Ki ? ψ̂i
d

dt
ψ̂n = An ? ψ̂n + Bn ? un

+ Ln ? (yn − ŷn)

REMARKS:

• Optimal Controller is “locally” finite dimensional.

• The gains {Ki}, {Li} are localized (exponentially decaying)→ “spatial truncation”

• After truncation, local controller need only receive information from neighboring
subsystems.

• Quadratically optimal controllers are inherently distributed and semi-decentralized
(localized)

8



The many remaining issues

• Various heterogeneities

– Spatial variance
– Irregular arrangements of sensors and actuators

• How to specify “localization” apriori

• The complexities of “high order”

– The phenomenology of linear infinite dimensional systems can be arbitrarily
complex

30



Outline

• Background

– Distributed control and sensing
– Useful idealizations, e.g. spatial invariance

• Structured problems

– Constrained information passing structures
Decentralized, Localized, etc..

– Information passing structures which lead to convex problems

• Issues of large scale

– Performance as a function of system size
– Ex: Fundamental limitations in controlling Vehicular Platoons

4



Controller Architecture

Centralized vs. Decentralized control : An old and difficult problem

5



CENTRALIZED:

-
G0

-
G1

-
G2

-
����

K

6

?

6

?

6

?

BEST PERFORMANCE

EXCESSIVE COMMUNICATION

FULLY DECENTRALIZED:

-
G0

-
G1

-
G2

-
����

K0 K1 K2

6

?

6

?

6

?

WORST PERFORMANCE

NO COMMUNICATION

LOCALIZED:

-
G0

-
G1

-
G2

-
����

-
K0

-
K1

-
K2

-
����

6

?

6

?

6

?

MANY POSSIBLE ARCHITECTURES
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System Representations

All signals are spatio-temporal, e.g. u(x, t), ψ(x, t), y(x, t), etc.
Spatially distributed inputs, states, and outputs

• State space description

d
dtψ(x, t) = A ψ(x, t) + B u(x, t)
y(x, t) = C ψ(x, t) + D u(x, t)

A,B, C,D translation invariant operators
−→ spatially invariant system

• Spatio-temporal impulse response h(x, t)

y(x, t) =
∫ ∫

h(x− ξ, t− τ) u(ξ, τ) dτ dξ,

• Transfer function description

Y (κ, ω) = H(κ, ω) U(κ, ω)

2



Spatio-temporal Impulse Response

Spatio-temporal impulse response h(x, t)

y(x, t) =
∫ ∫

h(x− ξ, t− τ) u(ξ, τ) dτ dξ,

Interpretation
h(x, t): effect of input on output a distance x away and time t later

Example: Constant maximum speed of effects

7



Funnel Causality

Def: A system is funnel-causal if impulse response h(., .) satisfies

h(x, t) = 0 for t < f(x),
where
f(.) is (1) non-negative

(2) f(0) = 0
(3) {f(x), x ≥ 0} and {f(x), x ≤ 0} are concave

i.e. supp (h) is a “funnel shaped” region

8



Funnel Causality (Cont.)

Properties of funnel causal systems

Let Sf be a funnel shaped set

• supp (h1) ⊂ Sf & supp (h2) ⊂ Sf ⇒ supp (h1 + h2) ⊂ Sf

• supp (h1) ⊂ Sf & supp (h2) ⊂ Sf ⇒ supp (h1 ∗ h2) ⊂ Sf

• (I+h1)−1 exists & supp (h1) ⊂ Sf ⇒ supp
(
(I + h1)−1

)
⊂ Sf

i.e.
The class of funnel-causal systems is closed under
Parallel, Serial, & Feedback
interconnections

9



A Class of Convex Problems

• Given a plant G with supp (G22) ⊂ Sfg

• Let Sfk
be a set such that Sfg ⊂ Sfk

i.e. controller signals travel at least as fast as the plant’s

x

t

f

fg

k

Solve

inf
K stabilizing

supp (K) ⊂ Sfk

‖F(G;K)‖, G

K

��

-

�

wz

uy
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YJBK Parameterization and the Model Matching Problem

Lf := class of linear systems w/ impulse response supported in Sf

• Let G22 ∈ Lfg

G22 = NM−1 and XM − Y N = I with N,M,X, Y ∈ Lfg and stable

• Let Sfg ⊂ Sfk

• Then all stabilizing controllers K such that K ∈ Lfk
are given by

K = (Y +MQ)(X +NQ)−1,

where Q is a stable system in Lfk
.

• The problem becomes

inf
Q stable
Q ∈ Lfk

‖H − UQV ‖, A convex problem!

11



Coprime Factorizations

Bezout identity: Find K and L such that A+ LC and A+BK stable

[
X −Y

]
:=

[
A+ LC −B L

K I 0

]
,

[
M

N

]
:=

 A+BK B

K I

C 0

 ,
then G = NM−1 and XM − Y N = I,

If
{
• etAB, CetA and CetAB are funnel causal
• K and L are funnel causal (Easy!)

then all elements of Bezout identity are funnel-causal

��
��

K �

�

⎡
⎢⎣

A B

C 0
I 0

⎤
⎥⎦

� � �

�

 A+BK B

C 0
K 0


12



Example: Wave Equations with Input

1-d wave equation, x ∈ R: ∂2
t ψ(x, t) = c2 ∂2

x ψ(x, t) + u(x, t)

State space
representation

:
∂t

[
ψ1

ψ2

]
=

[
0 I

c2∂2
x 0

] [
ψ1

ψ2

]
+

[
0
I

]
u

ψ =
[
I 0

] [
ψ1

ψ2

]
.

The semigroup

etA =
1
2

[
Tct + T−ct

1
cRct

c∂2
x Rct Tct + T−ct

]
.

Rct := spatial convolution with rec( 1
ctx)

Tct := translation by ct

all components are funnel causal

e.g. the impulse response h(x, t) = 1
2c rec

(
1
ctx

)
.

t 

x 

x=ct 

x=−ct 

G(x,t) 
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Example: Wave Equations with Input (cont.)

κ := spatial Fourier transform variable (“wave number”)

A+BK =
[

0 1
−c2κ2 0

]
+

[
0
1

] [
k1 k2

]
=

[
0 1

−c2κ2 + k1 k2

]
.

Set k1 = 0, then

σ(A+BK) =
⋃
κ∈R

(
k2 ±

1
2

√
k2
2 − 4c2κ2

)
=

[
3
2
k2,

1
2
k2

] ⋃
(k2+jR)

Similarly for A+ LC. Therefore, choose e.g.

K =
[

0 −1
]
, L =

[
−1
0

]
.
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Elements of the Bezout Identity are thus:

[
X −Y

]
=

 −1 1 0 −1
−c2κ2 0 −1 0

0 −1 1 0

 ,
[
M

N

]
=


0 1 0

−c2κ2 −1 1
0 −1 1
1 0 0

 .
Equivalently

M = s2 + c2κ2

s2 + s + c2κ2,

N = 1
s2 + s + c2κ2,

X = s2 + 2s + c2κ2+1
s2 + s + c2κ2 ,

−Y = −c2κ2

s2 + s + c2κ2.
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How easily solvable are the resulting convex problems?

• In general, these convex problems are infinite dimensional
i.e. worse than standard half-plane causality

• In certain cases, problem similar in complexity to half-plane causality
e.g. H2 with the causality structure below

(Voulgaris, Bianchini, Bamieh, SCL ’03)
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Generalizations

• Quick generalizations:

– Several spatial dimensions
– Spatially-varying systems

funnel causality ↔ non-decreasing speed with distance
– Use relative degree in place of time delay

• Arbitrary graphs

• How to solve the resulting convex problems

Related recent work:

• Rotkowitz & Lall

• Anders Rantzer
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