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Large Arrayed Systems of Sensors and Actuators

e New (and old) technologies

- Micro-Electro-Mechanical-Systems (MEMS) — Large Arrays
- Vehicular Platoons
- Cross Directional (CD) control in pulp and paper processes

e Modeling and control issues

- Complexity (Control-Oriented Modeling)
- Overall System Design (vs. individual device design)
- Controller architecture

e Distributed Systems Theory

- Infinite-dimensional systems with special structure
- Controller architecture



Arrays of Micro-Electro-Mechanical-Systems (MEMS)
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CURRENTLY FEASIBLE : Very large arrays of MEMS with integrated control circuitry

Issues:

Spatio-temporal
e Tightly coupled dynamics — Instabilities
(e.g. string instability)
Current designs avoid this with large spacing

e Controller architecture

— Layout of sensors/actuators
— Communication between actuators/sensors
how to decentralizeor localize



Example: Massively Parallel Data Storage (IBM Millpede project)

Multiplex driver

21
. %
1 storage media
on x/y/z scanner

Atomic level resolution using Atomic Force

Microscopy (AFM) and Scanning Tunneling
e Microscopy (STM) techniques

100 ~ 1000 T'b/in* density possible!

Cantilever

atomically sharp

e Problem: slow scans = low throughput
Solution: go massively parallel



Design and Control Issues in MEMS Arrays

More tightly packed arrays — more dynamical coupling
— Micro-cantilever arrays

— Micro-mirror arrays

Current fixes:

— Large spacings
— Complex design to isolate elements

Experimental effort at UCSB:
design deliberately coupled arrays

Demonstrate “electronic” decoupling
using feedback




Micro-cantilever Array Control

Capacitively actuated micro-cantilevers: Combined actuator and sensor

Important Considerations:

e Higher throughput, faster “access time” — Tightly packed cantilevers

e For tightly packed cantilevers, significant dynamical coupling due to

— Mechanical coupling
— Fringe fields
(Napoli & Bamieh, '01)

e Large arrays ~ 10,000 devices
= must use localized control



Distributed Systems with Special Structure

e General Infinite-dimensional Systems Theory

— Well posedness issues (semi-group theory)
— Constructive (convergent) approximation techniques

THEME: Make infinite-dimensional problems look like finite-dimensional ones

e Special Structure

— Distributed control and measurement (now more feasible)
— Regular (lattice) arrangement of devices

Together — Spatial Invariance

— Control of “Vehicular Strings”, (Melzer & Kuo, 71)

— Discretized PDEs, (Brockett, Willems, Krishnaprasd, El-Sayed, '74, '81)
— “Systems over rings”, (Kamen, Khargonekar, Sontag, Tannenbaum, ...)
— Systems with “Dynamical Symmetry”, (Fagniani & Willems)

More recently:

— Controller architecture and localization, (Bamieh, Paganini, Dahleh)
— LMI techniques, localization, (D’Andrea, Dullerud, Lall)



Example: Distributed Control of the Heat Equation

Y-1 Yo Y1 Y2
o Yt Y Y
] ] ] ] ]
u;. Input to heating elements. y;. signal from temperature sensor.
Dynamics are given by:
Y1 H_19 U_1
Yo = Ho 1 Hoo Hoa Ui
Y1 Hq Uy

Each H; ; is an infinite-dimensional SISO system.

Fact: Dynamics are spatially invariant = H is Toeplitz

The input-output relation can be written as a convolution over the actuator/sensor
Index:

Yi = 'E: Eﬂpq)uﬁ

j=—00




The limit of large actuator sensor array.
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Vehicular Platoons
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Objective: Design a controller for each vehicle to:

¢ Maintain constant small slot length L.
e Reject the effect of disturbances {w;} (wind gusts, road conditions, etc...)

Warning: Designs based on two vehicle models may lack “string stability”,
l.e. disturbances get amplified as they propagate through the platoon.

Problem Structure:

e Actuators: each vehicle’s throttle input.

e Sensors: position and velocity of each vehicle.



Vehicular Platoons Set-up

x;. 1'th vehicle’s position.
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Structure of generalized plant:
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The generalized plant has a Toeplitz structure!




Optimal Controller for Vehicular Platoon
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for a 50 vehicle platoon
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Shu and Bamieh '96)

Example:
(From:

for a 50 vehicle platoon

INS

ition error feedback ga
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Figure 1

Remarks

IS approximately Toeplitz

e For large platoons, optimal controller

e Optimal centralized controller has some inherent decentralization (“localization”)

Controller gains decay away from the diagonal

?

Do the above 2 results occur in all “such” problems

Q
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Spatial Invariance of Dynamics

Indexing of actuator and sensor signals:

Uz(t) = U(iq,..., in)(t)a yz(t) = Y(iq,..., in)(t)-
¢ := (41,...,1,) aspatial multi-index, 1 €G = Gy X ... X Gy
Linear input-output relations: A general linear system from w to y:
y’L — Z Hz’-] Uj, <:> y(zl ----- 'LTL) — Z e Z H(zl ----- Z?’L)7(jl ----- .77’7«) u(]l ----- Jn)’
Jj€G J1€Gq In€Gn

Spatial Invariance:

Assumption 1: Set of spatial indices = commutative group

G = Gy x ... X Gy, each G; a commutative group.
Remark: “spatial shifting” of signals

(Sou); = u; o Compare with: Time shift by 7 (S,u)(t) := u(t — 7)
Assumption 2: Spatial invariance +«— Commute with spatial shifts

Vo € G, HS,=S,H < S 'HS,=H
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Examples of Spatial Invariance

Generally: Spatial invariance easily ascertained from basic physical symmetry!

e \Vehicular platoons: signals index over Z.

e Channel flow: Signals indexed over {0,1} x Z :

yon = O Hu—oi—j oy + > Hu—vi—j) ta, [ = 0,1

j=—00 j=—00

Yi = Zéi—j Ujy = Ylig,ensin) = Z Z G(@i—jl in—3n) Y(j1,eesdn)-

jEG jleGl anGn

A spatial convolution
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Symmetry in Dynamical Systems and Control Design

e Many-body systems always have some inherent dynamical symmetries:
e.g. equations of motion are invariant to certain coordinate transformations

e Question: Given an unstable dynamical system with a certain symmetry,
IS It possible to stabilize it with a controller that has the same symmetry?
(.e. without “breaking the symmetry”)

e Answer: Yes! (Fagnani & Willems ’93)

Remark: Spatial invariance is a dynamical symmetry
This answer applies to optimal design as well

l.e.
For best achievable performance, need only consider spatially-invariant controllers

14



The Standard Problem of Optimal and Robust Control

The standard problem:
Signal norms:

lwlz = 3 / wi@Pdt = 3 [lw?

i€G i€G
Induced system norms:

|G, Ollps = sup 12l

weLP Hpr

The H? norm:

7GO3z = N2l = D ll=il7e,
1€G

with impulsive disturbance input w;(t) = §(¢)d(%).
Note: In the platoon problem: finite system norm

2 w
H
| o]
C
z = F(H,C)w

string stability.
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Spatially-Invariant vs. Spatially-Varying Controllers

Question: Are spatially-varying controllers better than spatially-invariant ones?
Answer: If plant is spatially invariant, no!

LS := The class of Linear Spatially-Invariant systems.
LSV .= The class of Linear Spatially-Varying systems.
Compare the two problems:

Vsi = inf IF(G, C)lp—i Vsv = inf IF(G, C)lp—i
stabilizing C stabilizing C
C e LSI C € LSV
The best achievable performance The best achievable performance
with spatially-invariant controllers with spatially-varying controllers

Theorem 1. If the plant and performance objectives are spatially invariant, i.e. if
the generalized plant GG is spatially invariant, then the best achievable performance
can be approached with a spatially invariant controller. More precisely

Vsi = Vsv-

16



Spatially-Invariant vs. Spatially-Varying Controllers (Cont.)

Related Problem: Time-Varying vs. Time-Invariant Controllers

Fact: For time-invariant plants, time-varying controllers offer no advantage over time-
Invariant ones! for norm minimization problems

Proofs based on use of YJBK parameterization. Convert to

Yti = mf HTl — TQQT3H Ytv = mf HTl — TQQT:;H .
stable @) stable @)
Qe LTI QeLTV

11,15, T3 determined by plant, therefore time invariant.



Spatially-Invariant vs. Spatially-Varying Controllers (Cont.)

Related Problem: Time-Varying vs. Time-Invariant Controllers

Fact: For time-invariant plants, time-varying controllers offer no advantage over time-
Invariant ones! for norm minimization problems

Proofs based on use of YJBK parameterization. Convert to

Yti = mf HTl — TQQT3H Ytv = mf HTl — TQQT:;H ;
stable @) stable @)
Qe LTI QeLTV

11,15, T3 determined by plant, therefore time invariant.

e The H* case: (Feintuch & Francis, '85), (Khargonekar, Poolla, & Tannenbaum,
'85). A consequence of Nehari’s theorem

e The ¢! case: (Shamma & Dahleh, '91). Using an averaging technique
e Any induced /P norm: (Chapellat & Dahleh, '92). Generalization of the averaging

technique
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Spatially-Invariant vs. Spatially-Varying Controllers (Cont.)

|dea of proof: After YIBK parameterization:
Ysi = inf HTl — T2QT3|| Z Ysv = inf ||T1 — TQQT;;H
stable () stable ()
Qe LSI Q<€ LSV

Let Q achieve a performance level ¥ = || T} — TQT3||.
Averaging Q:

o If G Is finite: define

Quv = Z 0 'Qo. — Q,, is spatially invariant, i.e. Vo € G, 0 'Quy 0 = Qus
|G| oecG
Then
[Ty — ToQaTs]| = [|Th — ( > o QU) T5|| = H — T2QT3) o
JGG JEG

IA

(T} — T2QT3) UH = ||Th — T>QT3||

18



e If G is infinite, take a sequence of finite subsets M; C M, C - - -, with U M, =G

Then define: Q,, := > o7'Qo.

1
n| oceMy

| M.

(., converges weak x to a spatially-invariant ),, with the required norm bound.

19



Implications of the Structure of Spatial Invariance

Poiseuille flow stabilization:

C_»o

C_1q

Y-1 Yo U1 Y2

Uy

Channel

ui = Y Ci_jy;
J



Implications of the Structure of Spatial Invariance

Poiseuille flow stabilization:

C_»

Ci + GCo

Yo Y1 Y2

U1

Channel

u = Y Ci_jy
J



Implications of the Structure of Spatial Invariance (Cont.)

Uneven distribution of sensors and actuators

Consider the following geometry of sensors and actuators:

e Sensor
s Actuator
° °
° ] ° ° | °
| ° ® [ ] °® )
) | ‘_o —--O) [ °
] o o | ] o o
° [ ° ° ] °
° o

What kind of spatial invariance do optimal controllers have?
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Implications of the Structure of Spatial Invariance (Cont.)

Uneven distribution of sensors and actuators (Cont.)
Consider the following geometry of sensors and actuators:

e Sensor

s Actuator

Each “cell” is a 1-input, 2-output system. underlying group is Z x Z

23



Transform Methods

Consider the following PDE with distributed control:

0
a—f(azl,...,xn,t) — A(ail,...,afc’n) Y(xy, ..., Tp,t) + B(%,...,%) u(xy, ..., Ty, t)

Y(x1, ..., Ty, t) = C(321,---,@2n)¢($1,--.,$n,t),

where A, B, C are matrices of polynomials in -2-.

Consider also combined PDE difference equations such as:

ol _ _ |
@ Tk ke t) = A (821,...,82n,21 Lo ,zn1> D(T1, - Ty KLy Fos

—1 ~1
+ 5(821,...,82n,21 sy 2 )u(xl,...,ajn,kl,...,kn,t)

We only require that the spatial variables z, k, belong to a commutative group
Taking the Fourier transform:

@@()\,t) = /e_j<>"x>¢(x,t) dzx,
G
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The above system equations become:
dal R
Py = AN + BO ()
gt = C)PA),
where \ € G, the dual group to G.

Remark: This can be thought of as a parameterized family of finite-dimensional
systems.

25



BLOCK DIAGONALIZATION BY FOURIER TRANSFORMS

The Fourier transform converts:

A

spatially-invariant operators on £y(G) — multiplication operators on £L,(G)
In general:
group: G | dual group: G | Transform
R R Fourier Transform
7. oD Z-Transform
oD 7. Fourier Series
2, 2, Discrete Fourier Transform

and the transforms preserve £, horms:

112 = /@ f(2)de = /G FOVPAA = 1]

The system operation is then spatially decoupled or “block diagonalized”:

9y(a,t) = Au(z,t) + B u(z, 1) L0 t) = AN 1) +BVa( b)
y(x,t) = CY(x,t)+ D u(x,t) g\ t) = CAY(A L)+ DANu(A,t)
A distributed, A parameterized family

spatially-invariant system of finite-dimensional systems

11



TRANSFORM METHODS

In physical space After spatial Fourier trans. (FT)
d d - A A N
o = Auktn + Baxun —0(0) = A(0) 9(6) + B(6) a()
yn = Cox Uy §(0) = C(0) (0)
IMPLICATIONS
e Dynamics are decoupled by FT (The A, B, C operators are “diagonalized”)
e Quadratic forms preserved by FT — Quadratically optimal - control

problems are equivalent for FT
¢ Yields a parametrized family of mutually independent problems

TRANSFER FUNCTIONS

operator-valued transfer function spatio-temporal transfer function

H(s) = C(sI — A)"'B H(s,8) = C(6) (51—21(@) B(6)

A multi-dimensional system with temporal, but not spatial causality

12



Simple Example; Distributed LQR Control of Heat Equation

2

s, 9, d - R
aw(x,t) = ¢35 (x,t) + u(x,t) — %w()\,t) = —cA*P(\ 1) + (A 1)

Solve the LQR problem with () = ¢I, R = I. The corresponding ARE family:
—2cX? p(X) — p(A)* + ¢ = 0,

and the positive solution is:

PN) = —eA? 4+ /2 + g

Remark: In general P()) an irrational function of \, even if A()\), B()) are rational.
l.e. PDE systems have optimal feedbacks which are not PDE operators.

Let {k(x)} be the inverse Fourier transform of the function {—p(\)}.

26



Then optimal (temporally static) feedback

u(z,t) = / k(e — €) B(E, ) de

-k(x)

/.

Remark: The “spread” of {k(x)} indicates information required from distant sensors.

27



Distributed LOR Control of Heat Equation (Cont.)

Important Observation: {k(x)} is “localized”. It decays exponentially!!

A

EON) = ed? — /e2\ +¢.

This can be analytically extended by: \

AN

AN

ke(s) = cs® — \/0234 + q, (

i g

U
N—"
IS

which is analytic in the strip

{sE(C; Im{s}<£(i)

/

AN

2 \c2

Therefore: 3M such that

V2 g1
< —alz| M )
k(x)] < Me , forany a < ; (62)

This results is true in general: under mild conditions
Solutions of AREs always inverse transform to exponentially decaying convolution

kernels
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Parameterized ARE solutions yield “localized” operators!
Consider unbounded domains, i.e. G = R (or Z).

Theorem 2. Consider the parameterized family of Riccati equations:

A

A* VP + POVA() — PO)BARMNB* (VP + Q) = 0, Ae G

Under mild conditions:
there exists an analytic continuation P(s) of P(\) in a region

{[Im(s)] < a}, a>0.

Convolution kernel resulting from Parameterized ARE has exponential decay.
That is, they have some degree of inherent decentralization (“localization”)!

Comparison:

e Modal truncation: In the transform domain, ARE solutions decay algebraically.

e Spatial truncation: In the spatial domain, convolution kernel of ARE solution
decays exponentially.

Therefore: Use transform domain to design V. Approximate in the spatial domain!
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DISTRIBUTED ARCHITECTURE OF QUADRATICALLY OPTIMAL CONTROLLERS

—

Y

U_s Y-1 Uy Yo Uy n uy Y2 Up

N I U N O B

Observer based controller has the following structure:

Controller
Plant
d u = Ki*;
-V ¥Yn — An n Bn n d - o
dtw *Yn F xu —, = A, xY, + B, *xu,
Yn = Cn* ¢n dt

+ Ln * (yn o gn)
REMARKS:
e Optimal Controller is “locally” finite dimensional.

e The gains { K}, {L;} are localized (exponentially decaying) — “spatial truncation”

e After truncation, local controller need only receive information from neighboring
subsystems.

e Quadratically optimal controllers are inherently distributed and semi-decentralized
(localized)



The many remaining issues

e Various heterogeneities

— Spatial variance
— lrregular arrangements of sensors and actuators

e How to specify “localization” apriori

e The complexities of “high order”

— The phenomenology of linear infinite dimensional systems can be arbitrarily
complex
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Outline

e Background

— Distributed control and sensing

— Useful idealizations, e.g. spatial invariance
e Structured problems

— Constrained information passing structures
Decentralized, Localized, etc..
— Information passing structures which lead to convex problems

e |ssues of large scale

— Performance as a function of system size
— Ex: Fundamental limitations in controlling Vehicular Platoons



Controller Architecture

Centralized vs. Decentralized control : An old and difficult problem



CENTRALIZED:

.1 Go G1 Go |~

FULLY DECENTRALIZED:

) - Go Gq Go [~
Ky K; Ko
LOCALIZED.

. 1 Go G1 Go [~

BEST PERFORMANCE
EXCESSIVE COMMUNICATION

WORST PERFORMANCE
NO COMMUNICATION

MANY POSSIBLE ARCHITECTURES



System Representations

All signals are spatio-temporal, e.g. u(z,t), ¥(x,t), y(x,t), etc.
Spatially distributed inputs, states, and outputs

e State space description

%w(x,t) = Ay(x,t) + B u(x,t)
y(x,t) = Cy(x,t) + D u(x,t)

A, B, C, D translation invariant operators
—  spatially invariant system

e Spatio-temporal impulse response h(z,t)
yat) = [ [ ha-gt-r)uter) drde

e Transfer function description

Y(k,w) = H(k,w) U(k,w)



Spatio-temporal Impulse Response

Spatio-temporal impulse response h(x,t)
sat) = [ [ —ge—r)ulr) dr de

Interpretation
h(x,t). effect of input on output a distance x away and time ¢ later

Example: Constant maximum speed of effects

/T = vyx
/

\ t
—
|
7
|
|
|




Funnel Causality

Def: A system is funnel-causal if impulse response £ (., .) satisfies

h(x,t) =0
where

f()

for t< f(x),
IS (1) non-negative
(2) (0) =0
(3) {f(x), z >0} and {f(x), x <0} are concave
t t
N T / AN T
< | Jt =z - —
h | / | _——
RN : 7 \ =t = f(z)
3 _ |
| L | T
(a) Cone causality (b) Funnel causality

i.e. supp (h) is a “funnel shaped” region



Funnel Causality (Cont.)

Properties of funnel causal systems

Let S, be a funnel shaped set

e supp (h1) C Sy & supp (he) C Sy = supp (h1 + he) C Sy
e supp (h1) C Sy & supp (he) C Sy = supp (hy * hy) C Sy

o (I+hy) texists & supp (k1) C Sy = supp((+hi)"') C S

.e.

The class of funnel-causal systems is closed under
Parallel, Serial, & Feedback

Interconnections



A Class of Convex Problems

e Given a plant G with supp (G22) C Sy,

o Let Sy, be asetsuchthat Sy C Sy,
l.e. controller signals travel at least as fast as the plant’s

Solve

. tirgfl_ | |F(G; K)|, G
stabilizing ”
supp (K) C Sy, QE K j

10



YJBK Parameterization and the Model Matching Problem
L, := class of linear systems w/ impulse response supported in S;

o Let Goy € Lfg
Goo = NM~'and XM — YN =T with N,M, XY € Ly, and stable

o Let ng C ka
e Then all stabilizing controllers K such that K ¢ L;_are given by

K= (Y +MQ)(X+NQ ™,

where () Is a stable system in Ly, .
e The problem becomes

inf ||H-UQV|, A convex problem!
() stable

Q€ Ly,

11



Coprime Factorizations

Bezout identity: Find A" and L such that A + LC and A + BK stable
Xy = _A}LC}]B g" H\ﬂ - A+KBK 1;
] | C 0
then G = NM~!' and XM —-YN = I,
v { o B, Cet4 and Ce!4 B are funnel causal
e K and L are funnel causal (Easy!)
then all elements of Bezout identity are funnel-causal
A+BK|B : A|B| —o—

C 0 C|0
K |0 K 110

12



Example: Wave Equations with Input

1-d wave equation, = € R: 02 Y(x,t) = c? 0% Y(x,t) + u(x,t)
o N R (031 0
State space % [ we | — |02 o | T
representation :
- P2
The semigroup
G(x,t)
A L T +T Rt
2 cﬁg Rct Tct -+ T—ct .

R. := spatial convolution with rec(-x)
T.; := translation by ct
all components are funnel causal Xict

e.g. the impulse response h(z,t) = 5 rec(x).

13



Example: Wave Equations with Input (cont.)

r := spatial Fourier transform variable (“wave number”)
0 1 0
A+ BK = 2 0]+[1] ki ko |

B 0 1
I —C?K? + k1 ko |

Set k; = 0, then

1
c(A+BK) = U (kg j:§\/k§ — 402/-4;2) =

~kER

Similarly for A + LC'. Therefore, choose e.g.

K=[0 -1], L:[_Ol].

|

3

2

1
k27 §k2

] | (k2+4R)
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Elements of the Bezout Identity are thus:

—1 1 0 -1
X -Y| = | —* 0|-1 0 |,
0 -1 1 0
0 10
M B —c?k? —1]1
N | 0 —-1]1
1 0 (0
Equivalently
2 2,.2 32 S 02/12
M = 328+—:Jcr’22/<;2’ A = 8—21_42—8++ 021432+1
N = 1 YV = —c?k?

82—|—S—|—62K,27

15



How easily solvable are the resulting convex problems?

¢ In general, these convex problems are infinite dimensional
l.e. worse than standard half-plane causality

e |n certain cases, problem similar in complexity to half-plane causality
e.g. H? with the causality structure below
(Voulgaris, Bianchini, Bamieh, SCL '03)

o000
ONON N N N
ONON N N N
ONON N N N
O M N N N
O M N N N
ONON N N N
ONON N N N
ONON N N N

®
®
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Generalizations

e Quick generalizations:

— Several spatial dimensions
— Spatially-varying systems
funnel causality <~ non-decreasing speed with distance
— Use relative degree in place of time delay
e Arbitrary graphs

e How to solve the resulting convex problems

Related recent work:

e Rotkowitz & Lall

e Anders Rantzer
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