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What are spatially invariant systems?

e Systems whose states depend not only on time but also a
spatial variable: s belonging to a group S.

e Invariance: Equations are invariant under s — s + 1




Why are they useful?

Provide good abstractions to study

e Systems with actuation/dynamics operating on short
length-scales (S = 7Z).

MEMS arrays...
o Periodic systems (S = Zp).

circular extrusion machines...

First approximation for finite length, homogeneous
systems:
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Models

Basic Building Block
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Interconnection Relation

vi(t,s+1)=w"(t,s); v (t,s—1)=w (L, 9)

for all s € Z.
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Models

We obtain a spatially-invariant (continuous-time) system over Z

Similar to Roesser Systems

Other spatially-interconnected systems are constructed using
different interconnection relations

More later...



Control goals

We want to ensure

o Well-posedness: interconnection signals v*, w* have
finite norms.

o Stability: |x(t)| < e~ ?¥|x(0)| for a > 0.
e Performance: ||z|| < ||d||.
where
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Inspiration

Main Idea

Treat spatially-invariant systems as interconnection in the
Robust Control/ LFT framework.



Inspiration

Proving discrete-time KYP via p-analysis methods

Ais Schur stable and (D + C(I — zA)~'zB) < 1 for all |z| = 1 if
and only if the following interconnection is well-connected
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Inspiration

Proving discrete-time KYP via p-analysis methods

e This is equivalent to

w( g o)<t (1)

e Note that D is a u-simple structure, i.e. there is equality in
the inequality

A B . _ 1| A B _1
(48] ([ 2 1)

e Hence, using the structure of the commutant, (1) is
equivalent to

A Bl [ X 0 A B X 0
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Extension to spatially invariant systems

From the Fourier-type results of B. Bamieh’s lecture, stability

and well-posedness of a discrete-time spatially-invariant
system on Z is equivalent to the following interconnection being

well-connected
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An other special 1.-analysis problem.



Stability of spatially invariant systems

e Question reduces to:

“When is

(,

invertible for all |s| < 1,

o Ultimately:
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Stability of spatially invariant systems

A lemma

Previous matrix is invertible for all |\| = 1 if there exists a
symmetric matrix Xs such that

ASS_|_,+ ASS_|_,_ ) X. ASS_|_,+ ASS_|_,_
0 / | 0 /

/ 0 : / 0
— X <0
[ Ass_,+ Ass_,_ ] > [ Ass_,+ ASS_,_ ]



Stability of spatially invariant systems

A lemma

Previous matrix is invertible for all |\| = 1 if there exists a
symmetric matrix Xs such that

ASS_|_,+ ASS_|_,_ ) X. ASS_|_,+ ASS_|_,_
0 / | 0 /

/ 0 : / 0
— X <0
[ Ass_,+ Ass_,_ ] > [ Ass_,+ ASS_,_ ]

e Xs plays the role of an element of Com. It is not
sign-definite! (no causality)

e conditions are only sufficient here, as opposed to KYP.



Stability of spatially invariant systems

An example

Theorem
A continuous-time spatially-invariant system on Z is stable if
there exist a symmetric matrix Xs and X7 > 0 such that
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Control Synthesis

Looking for a controller with the same structure as the plant that
guarantees stability and contractiveness in closed-loop.

X | CAS AN B | [ x ]
wl=|as as B || v
u | LG G5 D]y,

The closed-loop system is
itself a spatially invariant
system




Control Synthesis

Several steps

For the continuous-time spatially-invariant system on Z

1. Apply analysis LMIs to the closed-loop system: obtain
BMls
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2. Apply a Bilinear Algebraic Transformation (3 = ]ﬁ) to the

closed-loop system: BMIs have the same form as in the
usual continuous-time synthesis problem.



Control Synthesis

Several steps

For the continuous-time spatially-invariant system on Z

1. Apply analysis LMIs to the closed-loop system: obtain
BMls
_ 1=A

2. Apply a Bilinear Algebraic Transformation (8 = {=%) to the
closed-loop system: BMIs have the same form as in the
usual continuous-time synthesis problem.

3. Convexify using classical projection lemmas (modulo the
absence of sign-definiteness in the scales) [Gahinet &
Apkarian, Packard]: BMIs are equivalent to LMIs. A

transformed controller K is obtained



Control Synthesis

Several steps

For the continuous-time spatially-invariant system on Z

1.

2.

Apply analysis LMIs to the closed-loop system: obtain
BMls
_ 1=2

Apply a Bilinear Algebraic Transformation (8 = {=%) to the
closed-loop system: BMIs have the same form as in the
usual continuous-time synthesis problem.

Convexify using classical projection lemmas (modulo the
absence of sign-definiteness in the scales) [Gahinet &
Apkarian, Packard]: BMIs are equivalent to LMIs. A

transformed controller K is obtained
To reconstruct controller, apply the “inverse” of the BAT to

K, making sure to obtain an implementable controller



Summary

We have obtained convex controller synthesis conditions for
spatially-invariant systems (over Z)

e A single LMI to solve, involving only the basic building
block, even though problem is infinite-dimensional

(compare the necessary and sufficient Riccati equations in
B. Bamieh's talk)

e Controller has the same structure as the plant
e No conservatism added at the controller synthesis level




Generalizations

e Straightforward extension to system over ZN, N > 1.
e Same results hold for:

Periodic systems, Systems over
independently of number of (non-commutative) Cayley
subsystems graphs

e In the latter case, can reduce conservatism by first
grouping subsystems according to central subgroups.



Generalizations-lI

Some boundary conditions

e Spatially-invariant models may be
iInadequate because of the effect of
boundary conditions (cf. G. Stewart & G.
Dumont’s talk).

e Additional symmetries of the system can
sometimes help account for them in a
simple way.

Example/inspiration: Method of Images in PDEs
Heat Equation: ‘9T = iz + Q, 8x(t 0) = %I(t, 1)=0
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Reversible Systems

Definition

A finite extent system is called (spatially) reversible if there exist

involution matrices P, Q, R and U such that

P 0 07 [ A As B’
0 Q 0 || Asr Ass Bs
0 0 R|| C G D
A A Br [P 0O 0
Ast Ass Bs || 0 Q 0
'C C D||0 0 U

Equivariance under the action of Z.o

A reversible system behaves as if being a part of a
periodic system



Reversible systems

Results

Analysis

If the periodic extension is stable and contractive, then so is the
corresponding reversible finite extent system.

Synthesis

From a periodic controller such that the
analysis LMIs are satisifed in
closed-loop, one can construct a
reversible finite-extent controller, with
boundary condition matrix (M*)~', such
that the finite extent closed-loop is stable
and contractive.




Application example

Close formation flight

e Each aircraft’s wake influences its
iImmediate follower, (hopefully)
diminishing its drag.

e System can be modeled as a
chained spatially-interconnected
system, to which preceding results
are applicable (approximating
propagation delays)




Application example

Close formation flight

e Each aircraft’s wake influences its
iImmediate follower, (hopefully)
diminishing its drag.

e System can be modeled as a
chained spatially-interconnected
system, to which preceding results
are applicable (approximating
propagation delays)

Experimental results for a formation of 10 identical wings,

applying a disturbance at each wing. z(t, s) is yaw at s.

Controller RMS Gain | Gain at rear pair

distributed 0.37 0.35
decentralized 3.15 3.13

Synthesizing the best (centralized) controller is too
computationally intensive




Afternoon talk

e Heterogenous subsystems on arbitrary graphs
e Conservatism/ non-ideal interconnection relations
e Numerical Methods...
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