A State-Space Approach to Control of Interconnected Systems Part I: Spatially Invariant Systems

Cédric Langbort¹ Raffaello D'Andrea²

¹Center for the Mathematics of Information CALIFORNIA INSTITUTE OF TECHNOLOGY

²Department of Mechanical & Aerospace Engineering CORNELL UNIVERSITY

with contributions from: Ramu Chandra, Jeff Fowler, Ben Recht

Workshop on "Control, estimation, and optimization of interconnected systems: from theory to industrial applications" CDC-ECC '05, Sevilla, Spain

What are spatially invariant systems?

- Systems whose states depend not only on time but also a spatial variable: s belonging to a group S.
- Invariance: Equations are invariant under $s \rightarrow s + 1$

Why are they useful?

Provide good abstractions to study

• Systems with actuation/dynamics operating on short length-scales ($\mathbb{S} = \mathbb{Z}$).

MEMS arrays...

• Periodic systems ($\mathbb{S} = \mathbb{Z}_p$).

circular extrusion machines...

First approximation for finite length, homogeneous systems:

Deformable mirror

Automated higway

Models

Basic Building Block

$$\begin{bmatrix} \dot{x} \\ w_{+} \\ w_{-} \\ w_{-} \\ w_{-} \\ w_{-} \\ v_{-} \\ z \end{bmatrix} (t,s) = \begin{bmatrix} A_{TT} & A_{TS_{+}} & A_{TS_{-}} & B_{T} \\ A_{ST_{+}} & A_{SS_{+,+}} & A_{SS_{+,-}} & B_{S_{+}} \\ A_{ST_{-}} & A_{SS_{-,+}} & A_{SS_{-,-}} & B_{S_{-}} \\ C_{T} & C_{S_{+}} & C_{S_{-}} & D \end{bmatrix} \begin{bmatrix} x \\ v^{+} \\ v^{-} \\ d \end{bmatrix}$$

Interconnection Relation

$$v^+(t,s+1) = w^+(t,s)\;;\; v^-(t,s-1) = w^-(t,s)$$
for all $s \in \mathbb{Z}.$

< ロ > < 団 > < 巨 > < 巨 > < 巨 < つ < つ < つ < つ < つ

Models

We obtain a spatially-invariant (continuous-time) system over $\ensuremath{\mathbb{Z}}$

Similar to Roesser Systems

Other spatially-interconnected systems are constructed using different interconnection relations

More later.

We want to ensure

- Well-posedness: interconnection signals v[±], w[±] have finite norms.
- Stability: $|x(t)| \le e^{-\alpha t} |x(0)|$ for $\alpha > 0$.
- Performance: ||z|| < ||d||.

where

$$|x(t)| = \sum_{s=-\infty}^{\infty} x(t,s)^* x(t,s); \ ||z|| = \int_0^{\infty} |z(t)|dt$$

Treat spatially-invariant systems as interconnection in the Robust Control/ LFT framework.

A is Schur stable and $\bar{\sigma}(D + C(I - zA)^{-1}zB) < 1$ for all |z| = 1 if and only if the following interconnection is well-connected

$$\mathbb{D} = \{ \Delta = \delta I \mid \delta \in \mathbb{C}, \ |\delta| = \mathbf{1} \}$$

Inspiration

Proving discrete-time KYP via μ -analysis methods

• This is equivalent to

$$\mu_{\mathbb{D}}\left(\left[\begin{array}{cc} A & B \\ C & D \end{array}\right]\right) < 1.$$
 (1)

 Note that D is a µ-simple structure, i.e. there is equality in the inequality

$$\mu_{\mathbb{D}}\left(\left[\begin{array}{cc}A & B\\ C & D\end{array}\right]\right) \leq \inf_{\mathcal{X}\in Com^{+}(\mathbb{D})}\overline{\sigma}\left(\mathcal{X}^{\frac{1}{2}}\left[\begin{array}{cc}A & B\\ C & D\end{array}\right]\mathcal{X}^{-\frac{1}{2}}\right).$$

 Hence, using the structure of the commutant, (1) is equivalent to

$$\exists X > 0, \left[\begin{array}{cc} A & B \\ C & D \end{array} \right]^* \left[\begin{array}{cc} X & 0 \\ 0 & I \end{array} \right] \left[\begin{array}{cc} A & B \\ C & D \end{array} \right] - \left[\begin{array}{cc} X & 0 \\ 0 & I \end{array} \right] < 0.$$

From the Fourier-type results of B. Bamieh's lecture, stability and well-posedness of a discrete-time spatially-invariant system on \mathbb{Z} is equivalent to the following interconnection being well-connected

An other special μ -analysis problem.

Stability of spatially invariant systems

Question reduces to:
"When is

$$\begin{pmatrix} I - \begin{bmatrix} sI & 0 & 0 \\ 0 & \lambda I & 0 \\ 0 & 0 & \lambda^{-1}I \end{bmatrix} \begin{bmatrix} A_{TT} & A_{TS_{+}} & A_{TS_{-}} \\ A_{ST_{+}} & A_{SS_{+,+}} & A_{SS_{+,-}} \\ A_{ST_{-}} & A_{SS_{-,+}} & A_{SS_{-,-}} \end{bmatrix} \end{pmatrix}$$

invertible for all |s| < 1, $|\lambda| = 1$? "

• Ultimately: "When is $\left(I - \begin{bmatrix} \lambda I & 0 \\ 0 & \frac{1}{\lambda}I \end{bmatrix} \begin{bmatrix} A_{SS_{+,+}} & A_{SS_{+,-}} \\ A_{SS_{-,+}} & A_{SS_{-,-}} \end{bmatrix} \right)$ invertible for all $|\lambda| = 1$?"

Stability of spatially invariant systems

Previous matrix is invertible for all $|\lambda| = 1$ if there exists a symmetric matrix X_s such that

$$\begin{bmatrix} A_{\mathrm{SS}_{+,+}} & A_{\mathrm{SS}_{+,-}} \\ 0 & I \end{bmatrix}^* X_{\mathrm{S}} \begin{bmatrix} A_{\mathrm{SS}_{+,+}} & A_{\mathrm{SS}_{+,-}} \\ 0 & I \end{bmatrix}$$
$$-\begin{bmatrix} I & 0 \\ A_{\mathrm{SS}_{-,+}} & A_{\mathrm{SS}_{-,-}} \end{bmatrix}^* X_{\mathrm{S}} \begin{bmatrix} I & 0 \\ A_{\mathrm{SS}_{-,+}} & A_{\mathrm{SS}_{-,-}} \end{bmatrix} < 0$$

Previous matrix is invertible for all $|\lambda| = 1$ if there exists a symmetric matrix X_s such that

$$\begin{bmatrix} A_{\mathrm{SS}_{+,+}} & A_{\mathrm{SS}_{+,-}} \\ 0 & I \end{bmatrix}^* X_{\mathrm{S}} \begin{bmatrix} A_{\mathrm{SS}_{+,+}} & A_{\mathrm{SS}_{+,-}} \\ 0 & I \end{bmatrix}$$
$$-\begin{bmatrix} I & 0 \\ A_{\mathrm{SS}_{-,+}} & A_{\mathrm{SS}_{-,-}} \end{bmatrix}^* X_{\mathrm{S}} \begin{bmatrix} I & 0 \\ A_{\mathrm{SS}_{-,+}} & A_{\mathrm{SS}_{-,-}} \end{bmatrix} < 0$$

- X_s plays the role of an element of *Com*. It is *not* sign-definite! (no causality)
- conditions are only sufficient here, as opposed to KYP.

Stability of spatially invariant systems An example

Theorem

A continuous-time spatially-invariant system on \mathbb{Z} is stable if there exist a symmetric matrix X_s and $X_T > 0$ such that

$$\begin{bmatrix} I & 0 & 0 \\ A_{SS}_{-,-} & B_{S}_{-} \\ 0 & 0 & I \end{bmatrix}^{*} \begin{bmatrix} A_{TT}^{*}X_{T} + X_{T}A_{TT} & X_{T}A_{TS_{+}} & X_{T}B_{T} \\ (A_{TS_{+}})^{*}X_{T} & -X_{S} & 0 \\ B_{T}^{*}X_{T} & 0 & -I \end{bmatrix} \begin{bmatrix} I & 0 & 0 \\ A_{SS}_{-,-} & B_{S_{-}} \\ 0 & 0 & I \end{bmatrix} \\ + \begin{bmatrix} I & 0 & 0 \\ A_{SS_{+,+}} & B_{S_{+}} \\ C_{T} & C_{S} & D \end{bmatrix}^{*} \begin{bmatrix} 0 & X_{T}A_{TS_{-}} & 0 \\ (A_{TS_{-}})^{*}X_{T} & X_{S} & 0 \\ 0 & 0 & I \end{bmatrix} \begin{bmatrix} I & 0 & 0 \\ A_{SS_{+,+}} & B_{S_{+}} \\ C_{T} & C_{S} & D \end{bmatrix}^{*} \begin{bmatrix} 0 & X_{T}A_{TS_{-}} & 0 \\ (A_{TS_{-}})^{*}X_{T} & X_{S} & 0 \\ 0 & 0 & I \end{bmatrix} \begin{bmatrix} I & 0 & 0 \\ A_{SS_{+,+}} & B_{S_{+}} \\ C_{T} & C_{S} & D \end{bmatrix} < 0$$

Control Synthesis

Looking for a controller with the same structure as the plant that guarantees stability and contractiveness in closed-loop.

The closed-loop system is itself a spatially invariant system

For the continuous-time spatially-invariant system on $\ensuremath{\mathbb{Z}}$

 Apply analysis LMIs to the closed-loop system: obtain BMIs For the continuous-time spatially-invariant system on $\ensuremath{\mathbb{Z}}$

- Apply analysis LMIs to the closed-loop system: obtain BMIs
- 2. Apply a Bilinear Algebraic Transformation ($\beta = \frac{1-\lambda}{1+\lambda}$) to the closed-loop system: BMIs have the same form as in the usual continuous-time synthesis problem.

Several steps

For the continuous-time spatially-invariant system on $\ensuremath{\mathbb{Z}}$

- Apply analysis LMIs to the closed-loop system: obtain BMIs
- 2. Apply a Bilinear Algebraic Transformation ($\beta = \frac{1-\lambda}{1+\lambda}$) to the closed-loop system: BMIs have the same form as in the usual continuous-time synthesis problem.
- 3. Convexify using classical projection lemmas (modulo the absence of sign-definiteness in the scales) [Gahinet & Apkarian, Packard]: BMIs are equivalent to LMIs. A transformed controller \bar{K} is obtained

Several steps

For the continuous-time spatially-invariant system on $\ensuremath{\mathbb{Z}}$

- Apply analysis LMIs to the closed-loop system: obtain BMIs
- 2. Apply a Bilinear Algebraic Transformation ($\beta = \frac{1-\lambda}{1+\lambda}$) to the closed-loop system: BMIs have the same form as in the usual continuous-time synthesis problem.
- 3. Convexify using classical projection lemmas (modulo the absence of sign-definiteness in the scales) [Gahinet & Apkarian, Packard]: BMIs are equivalent to LMIs. A transformed controller \bar{K} is obtained
- 4. To reconstruct controller, apply the "inverse" of the BAT to \bar{K} , making sure to obtain an implementable controller

Summary

We have obtained convex controller synthesis conditions for spatially-invariant systems (over \mathbb{Z})

- A single LMI to solve, involving only the basic building block, even though problem is infinite-dimensional (compare the necessary and sufficient Riccati equations in B. Bamieh's talk)
- Controller has the same structure as the plant
- No conservatism added at the controller synthesis level

Generalizations

- Straightforward extension to system over \mathbb{Z}^N , N > 1.
- Same results hold for:

Periodic systems, independently of number of subsystems

Systems over (non-commutative) Cayley graphs

• In the latter case, can reduce conservatism by first grouping subsystems according to central subgroups.

Generalizations-II

Some boundary conditions

- Spatially-invariant models may be inadequate because of the effect of boundary conditions (cf. G. Stewart & G. Dumont's talk).
- Additional symmetries of the system can sometimes help account for them in a simple way.

Example/inspiration: Method of Images in PDEs Heat Equation: $\frac{\partial T}{\partial t} = \frac{\partial^2 T}{\partial x^2} + Q$, $\frac{\partial T}{\partial x}(t,0) = \frac{\partial T}{\partial x}(t,1) = 0$

Reversible Systems

Definition

A finite extent system is called (spatially) reversible if there exist involution matrices P, Q, R and U such that

$$\begin{bmatrix} P & 0 & 0 \\ 0 & Q & 0 \\ 0 & 0 & R \end{bmatrix} \begin{bmatrix} A_{TT} & A_{TS} & B_{T} \\ A_{ST} & A_{SS} & B_{S} \\ C_{T} & C_{S} & D \end{bmatrix} = \begin{bmatrix} A_{TT} & A_{TS} & B_{T} \\ C_{T} & C_{S} & D \end{bmatrix} \begin{bmatrix} P & 0 & 0 \\ 0 & Q & 0 \\ 0 & Q & 0 \\ 0 & 0 & U \end{bmatrix}$$

Equivariance under the action of \mathbb{Z}_2

A reversible system behaves as if being a part of a periodic system

Analysis

If the periodic extension is stable and contractive, then so is the corresponding reversible finite extent system.

Synthesis

From a periodic controller such that the analysis LMIs are satisifed in closed-loop, one can construct a reversible finite-extent controller, with boundary condition matrix $(M^*)^{-1}$, such that the finite extent closed-loop is stable and contractive.

Application example

Close formation flight

- Each aircraft's wake influences its immediate follower, (hopefully) diminishing its drag.
- System can be modeled as a chained spatially-interconnected system, to which preceding results are applicable (approximating propagation delays)

<ロ><四><日><日><日><日><日><日><日><日<<10</p>

Application example

Close formation flight

- Each aircraft's wake influences its immediate follower, (hopefully) diminishing its drag.
- System can be modeled as a chained spatially-interconnected system, to which preceding results are applicable (approximating propagation delays)

Experimental results for a formation of 10 identical wings, applying a disturbance at each wing. z(t, s) is yaw at s.

Controller	RMS Gain	Gain at rear pair
distributed	0.37	0.35
decentralized	3.15	3.13

Synthesizing the best (centralized) controller is too computationally intensive

- Heterogenous subsystems on arbitrary graphs
- Conservatism/ non-ideal interconnection relations
- Numerical Methods...

Some references I

R. D'Andrea & G. Dullerud

Distributed Control Design for Spatially Interconnected Systems *IEEE Transactions on Automatic Control*, vol. 48, no. 9,

September 2003.

C.L. & R. D'Andrea

Distributed Control of Spatially Reversible Interconnected Systems with Boundary Conditions *SIAM Journal on Control and Optimization*, vol. 44, no. 1,

pp. 1-28, 2005.