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What are spatially invariant systems?

• Systems whose states depend not only on time but also a
spatial variable: s belonging to a group S.

• Invariance: Equations are invariant under s → s + 1



Why are they useful?

Provide good abstractions to study

• Systems with actuation/dynamics operating on short
length-scales (S = Z).

MEMS arrays...

• Periodic systems (S = Zp).

circular extrusion machines...

First approximation for finite length, homogeneous
systems:

Deformable mirror Automated higway



Models

Basic Building Block
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Interconnection Relation

v+(t , s + 1) = w+(t , s) ; v−(t , s − 1) = w−(t , s)

for all s ∈ Z.



Models

We obtain a spatially-invariant (continuous-time) system over Z

Similar to Roesser Systems

Other spatially-interconnected systems are constructed using
different interconnection relations

More later...



Control goals

We want to ensure
• Well-posedness: interconnection signals v±, w± have

finite norms.
• Stability: |x(t)| ≤ e−αt |x(0)| for α > 0.
• Performance: ‖z‖ < ‖d‖.

where

|x(t)| =
∞∑

s=−∞
x(t , s)∗x(t , s) ; ‖z‖ =

∫ ∞

0
|z(t)|dt



Inspiration
Main Idea

Treat spatially-invariant systems as interconnection in the
Robust Control/ LFT framework.



Inspiration
Proving discrete-time KYP via µ-analysis methods

A is Schur stable and σ̄(D + C(I − zA)−1zB) < 1 for all |z| = 1 if
and only if the following interconnection is well-connected

i.e.
(

I − ∆

[
A B
C D

])
is invertible for all

∆ ∈ D.

D = {∆ = δI | δ ∈ C, |δ| = 1}



Inspiration
Proving discrete-time KYP via µ-analysis methods

• This is equivalent to

µD

([
A B
C D

])
< 1. (1)

• Note that D is a µ-simple structure, i.e. there is equality in
the inequality

µD

([
A B
C D

])
≤ inf

X∈Com+(D)
σ̄

(
X 1

2

[
A B
C D

]
X− 1

2

)
.

• Hence, using the structure of the commutant, (1) is
equivalent to

∃X > 0,

[
A B
C D

]∗ [
X 0
0 I

] [
A B
C D

]
−

[
X 0
0 I

]
< 0.



Extension to spatially invariant systems

From the Fourier-type results of B. Bamieh’s lecture, stability
and well-posedness of a discrete-time spatially-invariant
system on Z is equivalent to the following interconnection being
well-connected

An other special µ-analysis problem.



Stability of spatially invariant systems

• Question reduces to:
“When is

⎛
⎝I −

⎡
⎣ sI 0 0

0 λI 0
0 0 λ−1I

⎤
⎦

⎡
⎣ ATT ATS+ ATS−

AST+ ASS+,+ ASS+,−
AST− ASS−,+ ASS−,−

⎤
⎦

⎞
⎠

invertible for all |s| < 1, |λ| = 1 ? ”

• Ultimately:

“When is
(

I −
[

λI 0
0 1

λ I

] [
ASS+,+ ASS+,−
ASS−,+ ASS−,−

])
invertible

for all |λ| = 1?”



Stability of spatially invariant systems
A lemma

Previous matrix is invertible for all |λ| = 1 if there exists a
symmetric matrix XS such that

[
ASS+,+ ASS+,−

0 I

]∗
XS

[
ASS+,+ ASS+,−

0 I

]

−
[

I 0
ASS−,+ ASS−,−

]∗
XS

[
I 0

ASS−,+ ASS−,−

]
< 0



Stability of spatially invariant systems
A lemma

Previous matrix is invertible for all |λ| = 1 if there exists a
symmetric matrix XS such that

[
ASS+,+ ASS+,−

0 I

]∗
XS

[
ASS+,+ ASS+,−

0 I

]

−
[

I 0
ASS−,+ ASS−,−

]∗
XS

[
I 0

ASS−,+ ASS−,−

]
< 0

• XS plays the role of an element of Com. It is not
sign-definite! (no causality)

• conditions are only sufficient here, as opposed to KYP.



Stability of spatially invariant systems
An example

Theorem
A continuous-time spatially-invariant system on Z is stable if
there exist a symmetric matrix XS and XT > 0 such that

[
I 0 0

ASS−,− BS−
0 0 I

]∗ [
A∗

TTXT + XTATT XTATS+ XTBT

(ATS+ )∗XT −XS 0
B∗

T XT 0 −I

] [
I 0 0

ASS−,− BS−
0 0 I

]

+

[
I 0 0

ASS+,+ BS+
CT CS D

]∗ [
0 XTATS− 0

(ATS− )∗XT XS 0
0 0 I

] [
I 0 0

ASS+,+ BS+
CT CS D

]
< 0



Control Synthesis

Looking for a controller with the same structure as the plant that
guarantees stability and contractiveness in closed-loop.

⎡
⎣ ẋ

w
u

⎤
⎦ =

⎡
⎣ AK

TT AK
TS BK

T

AK
ST AK

SS BK
S

CK
T CK

S DK

⎤
⎦

⎡
⎣ x

v
y

⎤
⎦

The closed-loop system is
itself a spatially invariant
system



Control Synthesis
Several steps

For the continuous-time spatially-invariant system on Z

1. Apply analysis LMIs to the closed-loop system: obtain
BMIs
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Control Synthesis
Several steps

For the continuous-time spatially-invariant system on Z

1. Apply analysis LMIs to the closed-loop system: obtain
BMIs

2. Apply a Bilinear Algebraic Transformation (β = 1−λ
1+λ ) to the

closed-loop system: BMIs have the same form as in the
usual continuous-time synthesis problem.

3. Convexify using classical projection lemmas (modulo the
absence of sign-definiteness in the scales) [Gahinet &
Apkarian, Packard]: BMIs are equivalent to LMIs. A
transformed controller K̄ is obtained

4. To reconstruct controller, apply the “inverse” of the BAT to
K̄ , making sure to obtain an implementable controller



Summary

We have obtained convex controller synthesis conditions for
spatially-invariant systems (over Z)

• A single LMI to solve, involving only the basic building
block, even though problem is infinite-dimensional
(compare the necessary and sufficient Riccati equations in
B. Bamieh’s talk)

• Controller has the same structure as the plant
• No conservatism added at the controller synthesis level



Generalizations

• Straightforward extension to system over Z
N , N > 1.

• Same results hold for:

Periodic systems,
independently of number of
subsystems

Systems over
(non-commutative) Cayley
graphs

• In the latter case, can reduce conservatism by first
grouping subsystems according to central subgroups.



Generalizations-II
Some boundary conditions

• Spatially-invariant models may be
inadequate because of the effect of
boundary conditions (cf. G. Stewart & G.
Dumont’s talk).

• Additional symmetries of the system can
sometimes help account for them in a
simple way.

Example/inspiration: Method of Images in PDEs

Heat Equation: ∂T
∂t = ∂2T

∂x2 + Q, ∂T
∂x (t , 0) = ∂T

∂x (t , 1) = 0



Reversible Systems

Definition
A finite extent system is called (spatially) reversible if there exist
involution matrices P, Q, R and U such that

⎡
⎣ P 0 0

0 Q 0
0 0 R

⎤
⎦

⎡
⎣ ATT ATS BT

AST ASS BS

CT CS D

⎤
⎦ =

⎡
⎣ ATT ATS BT

AST ASS BS

CT CS D

⎤
⎦

⎡
⎣ P 0 0

0 Q 0
0 0 U

⎤
⎦

Equivariance under the action of Z2

A reversible system behaves as if being a part of a
periodic system



Reversible systems
Results

Analysis

If the periodic extension is stable and contractive, then so is the
corresponding reversible finite extent system.

Synthesis

From a periodic controller such that the
analysis LMIs are satisifed in
closed-loop, one can construct a
reversible finite-extent controller, with
boundary condition matrix (M∗)−1, such
that the finite extent closed-loop is stable
and contractive.



Application example
Close formation flight

• Each aircraft’s wake influences its
immediate follower, (hopefully)
diminishing its drag.

• System can be modeled as a
chained spatially-interconnected
system, to which preceding results
are applicable (approximating
propagation delays)



Application example
Close formation flight

• Each aircraft’s wake influences its
immediate follower, (hopefully)
diminishing its drag.

• System can be modeled as a
chained spatially-interconnected
system, to which preceding results
are applicable (approximating
propagation delays)

Experimental results for a formation of 10 identical wings,
applying a disturbance at each wing. z(t , s) is yaw at s.

Controller RMS Gain Gain at rear pair
distributed 0.37 0.35

decentralized 3.15 3.13

Synthesizing the best (centralized) controller is too
computationally intensive



Afternoon talk

• Heterogenous subsystems on arbitrary graphs
• Conservatism/ non-ideal interconnection relations
• Numerical Methods...
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