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Outline

This morning

• Control of spatially-invariant systems and some extensions
• Inspiration from Robust Control methods
• Symmetries could reduce number of variables and make

conditions tractable

Now

• Extend the framework to general interconnections
• Tractability and scalability remain key!



Beyond spatial invariance

There is a need for more general interconnection topologies/
relations e.g.,



Model

[Elia, Petersen &
Savkin]...

• Each vertex is a LTI
subsystem in I/O form

disturbance: di
performance output: zi

coupling signals: vij , wij

• Interconnection relation (along
each edge)

vij = ∆ijwji

• Control Goals: Stability and maintaining
∑L

i=1 ‖zi‖2
2 small,

in spite of bounded disturbances di (H∞–norm
minimization).



Analysis

For scalability, need to relate our knowledge of the part to the
properties of the whole (just like the basic building block gave
information about the whole spatially invariant system).

Dissipativity is such a modular notion

System G1 is called dissipative w.r.t supply rate s1(d1, z1, t) if
there exists a function V1(x1, t) such that

V1(x1, t) > 0 and
dV1(x1(t), t)

dt
< s1(d1(t), z1(t), t).

V1 is called a storage function.



Analysis –II

If both subsystems are dissipative with

storage function V1(x1, t), supply rate s1(d1, z1, t) + s(v , w , t)
" V2(x2, t), " s2(d2, z2, t) + s′(w , v , t)

and s(v , w , t) = −s′(w , v , t)

then interconnection is also dissipative and ‘hence’ stable



General Case

If i th subsystem is dissipative w.r.t. supply rate

si(wi , vi , t) :=
∑

j∈N (i)

sij(wij , vij , t) ∀i

with sij(wij , vij , t) = −sji(vji , wji , t) ∀i , j t ≥ 0

then the whole system is stable.



General Case– II

For LTI subsystems with quadratic supply rates and storages,
checking dissipativity amounts to solving Linear Matrix
Inequalities (LMIs):

Li(X i
T, {Xij}j∈N (i)) ≤ 0 ; X i

T > 0 ∀i

with

Xji = −
[

0 Inij

Inij 0

]
Xij

[
0 Inij

Inij 0

]
.



Relation with literature

From the analysis viewpoint, these conditions are just particular
cases of/ similar to

• General dissipativity theory [Willems]
• Small gain approach [Vidyasagar, Mageirou & Ho]

• Analysis via IQCs [Megretski & Rantzer]

• Full block S-procedure [Scherer]



Relation with literature

From the analysis viewpoint, these conditions are just particular
cases of/ similar to

• General dissipativity theory [Willems]
• Small gain approach [Vidyasagar, Mageirou & Ho]

• Analysis via IQCs [Megretski & Rantzer]

• Full block S-procedure [Scherer]

This last two viewpoints allow us to
• tackle non-ideal interconnection (∆ij �= I)
• motivate the choice of simple supply rates
• consider control synthesis



Relation with spatially invariant case

Previous LMI conditions are equivalent to
subsystem being dissipative w.r.t supply
rate: [

w+

v−

]∗
XS

[
w+

v−

]

−
[

w−

v+

]∗
XS

[
w−

v+

]

Up to relabeling, this is also what the
general conditions reduce to.



Control Synthesis

As before, we are interested in designing a distributed
controller, with the same topology as the plant.

Why?

Centralized Decentralized Distributed

computing units single multiple

topology NOT respected respected

control design tractable (in theory) NON tractable tractable (in practise?)

(NON convex)



Control Synthesis – c’ed

Applying the analysis results to a closed-loop system, we
obtain BMIs:[

I
V ∗

i ΘiUi + Ri

]∗
Mi

[
I

V ∗
i ΘiUi + Ri

]
< 0, ∀i

where⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ri , Ui , Vi : contain plant’s subsystem’s data

Θi : contains controller’s subsystem’s data

Mi : contains storage function matrix (Xi
T)C

and supply rates matrices (Xij)C in closed-loop.



Control Synthesis – c’ed

Elimination Lemma [Scherer ’01]
Let M be a symmetric matrix with inertia

in(M) = (m
+

, 0, n−). (1)

There exists a full matrix Θ such that[
Im

V ∗ΘUi + R

]∗
M

[
Im

V ∗ΘU + R

]
< 0,

if and only if

U∗
⊥

[
I
R

]∗
M

[
I
R

]
U⊥ < 0

V ∗
⊥

[ −R∗

I

]∗
M−1

[ −R∗

I

]
V⊥ > 0



Distributed Control

When using a distributed architecture,

(X i
T)C =

[
(X i

T)G ?
? ?

]
,

(Xij)C =

[
(Xij)G ?

? ?

]
,

which leaves enough free variables to eliminate the non-convex
constraint relating Mi and M−1

i , when taking nK
ij = 3nij

Synthesis of dynamic output feedback distributed controllers
over an arbitrary graph is a convex problem!

Not the case for decentralized controllers...



Intuitively
Why does it work?



Extensions to non-ideal interconnections

• Neutrality condition (Xij)C = −
[

0 I
I 0

]
(Xji)

C

[
0 I
I 0

]
is

key in enabling the use of the Elimination Lemma.
• Can convexify synthesis as soon as the IQCs describing

interconnection relations
– is equivalent to a set of constraints on each vertex

supply rate(wi , vi) =
∑

channel (i,j)

[
wij
vij

]∗
Xij

[
wij
vij

]

– guarantees that (1) holds
• Note: Such interconnection relations come up naturally when

studying the conservatism of LMIs...



Some examples

Contractive channels:
delays, low-pass transmission...

∆ij = δij I ; ‖δij‖∞ ≤ 1

Xij =

[
X 11

ij 0
0 X 22

ij

]
; X 11

ij < 0, X 22
ij > 0

‘Perfect erasure channels’:
δij = δ, a random variable taking value 1 with probability p, 0
otherwise

Xji = −
[

0 1√
p I√

pI 0

]∗
Xij

[
0 1√

p I√
pI 0

]



Some examples

‘Perfect erasure channels’:
δij = δ, a random variable taking value 1 with probability p, 0
otherwise

Xji = −
[

0 1√
p I√

pI 0

]∗
Xij

[
0 1√

p I√
pI 0

]

Channel with arbitrary failures:
δij(t) switches, with values in {0, 1}.

Xij =

[
X 11

ij X 12
ij

X 12
ij

∗ X 22
ij

]
; X 11

ij < 0



Tractability and conservatism
“The price of decentralization”



Tractability and conservatism
Reduction

For both ideal and Markovian failing channels, necessary and
sufficient LMI conditions for stabilization (and guaranteed H∞
performance in closed-loop) exist. [Seiler & Sengupta,
’05]. But, they

• yield centralized controllers
• involve more variables, even though theoretically tractable.



Tractability and conservatism
Reduction

For both ideal and Markovian failing channels, necessary and
sufficient LMI conditions for stabilization (and guaranteed H∞
performance in closed-loop) exist. [Seiler & Sengupta,
’05]. But, they

• yield centralized controllers
• involve more variables, even though theoretically tractable.

For large-scale systems with L subsystems of order O(n) ; E
interconnections where signals of dimension O(s) are shared

Centralized Distributed
ideal O(n2L2) O(Ln2 + Es2)

failing O(n2(L2 + 2E)) "

Typically s << n, E << L2.



Towards distributed algorithms

• At this point, we have convex tools for the control of
interconnected systems.

• We have accepted some degradation in performance in
favor of reduction in problem’s variables’ size and
complexity.

• This exploitation of problem’s structure can be taken
further, at the algorithmic level

L1 (X1, X12, X13) < 0
L2 (X2, X12) < 0
L3 (X13,X3) < 0

after making constraints explicit.
Amenable to distributed computation



Decomposition and subgradient methods
An example

• Start by replacing analysis or synthesis LMI feasibility
problem by the convex, non-smooth, minimization problem

min
{ti},{Yi},{Xij}

∑
i

ti

s.t . Li(Yi , {Xij}j∈Ni ) ≤ ti I, ∀i
Yi > 0 ; ti ≥ −1, ∀i

with Xji = −Xij , ∀i , j .
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Decomposition and subgradient methods
An example

• Start by replacing analysis or synthesis LMI feasibility
problem by the convex, non-smooth, minimization problem

min
{ti},{Yi},{Xij}

∑
i

ti

s.t . Li(Yi , {Xij}j∈Ni ) ≤ ti I, ∀i
Yi > 0 ; ti ≥ −1, ∀i

with Xji = −Xij , ∀i , j .
• Could solve with usual interior point method but

subgradient algorithm allows to exploit structure.
• By convexity, we must compute min

{Xij}
Φ :=

∑
i φi where

φi({Xij}j∈Ni ) := min
ti ,Yi

ti

s.t . Li(Yi , {Xij}j∈Ni ) ≤ ti I
Xi > 0 ; ti ≥ −1



Decomposition and subgradient methods

• This minimization can be computed via a subgradient
algorithm

X k+1
ij = X k

ij − αk

(
gij({X k

ij }) − gji({X k
ji })

)
Φk+1

best = min
(
Φk

best , Φ({X k+1
ij })

)
where

lim
k→∞

αk = 0,
∞∑

k=1

αk = ∞ ; gij(Xij) ∈ ∂jφi(Xij) ∀i , j

• Subgradients are given by the optimal dual variable
corresponding to problem φi and can be computed
independently by each subsystem



Properties of the algorithm

• Communication only takes place between neighbors on the
graph

subsystems don’t need to know ‘who’ their neighbors are
(i.e., their model), only restricted information

Delocalization through price-like variables
• Work in an asynchronous framework:

subgradients can be used as they become available, as
long as their are all incorporated with the same long term
frequency [Nedić, Bertsekas & Borkar, 2001]

A step towards online control design
BUT

• Convergence is slow
• Feasibility of original LMIs attained only asymptotically...



An example

• Cannot perform a single centralized Newton-step with
centralized algorithm!

• Our algorithm converges in 6 minutes with a parallel
implementation...



Extensions & Perspectives
More distributed Algorithms

• Could develop other, similar algorithm e.g., using active
sets.

• In this case, less subgradient computations at each step
BUT

• Must determine active set in distributed fashion.
• Better suited for online design/ reconfiguration?...

[B. Rangarajan & C.L., forthcoming]



Extensions & Perspectives
Formation flight example revisited

• Using the same dissipativity ideas,
can derive scalable stability tests for
piece-wise linear interconnected
systems.

• Both storage functions and supply
rates are piece-wise quadratic and
there is an exponential number of
neutrality conditions.

• Can be used to check the previous control laws for
formation flight on more accurate models.

[Fowler & D’Andrea, forthcoming]
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