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Overview

• Motivation: Optimal Constrained Control

• Linear Time-Invariant

• Quadratic invariance

• Optimal Control over Networks

• Summation

• Nonlinear Time-Varying

• Iteration

• New condition
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Block Diagrams
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Standard Formulation
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minimize ‖P11 + P12K(I − GK)−1P21‖
subject to K stabilizes P
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Communicating Controllers
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Control design problem is to find K which is block tri-diagonal.
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General Formulation
The set of K with a given decentralization
constraint is a subspace S, called the
information constraint.

We would like to solve

minimize ‖P11 + P12K(I − GK)−1P21‖
subject to K stabilizes P

K ∈ S

• For general P and S, there is no known tractable solution.
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Change of Variables - Stable Plant

minimize ‖P11 + P12K(I − GK)−1P21‖
subject to K stabilizes P

Using the change of variables

R = K(I − GK)−1

we obtain the following equivalent problem

minimize ‖P11 + P12RP21‖
subject to R stable

This is a convex optimization problem.



8 M. Rotkowitz, KTH

Change of Variables - Stable Plant
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Using the change of variables

R = K(I − GK)−1

we obtain the following equivalent problem
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This is a convex optimization problem.
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Breakdown of Convexity - Stable Plant

minimize ‖P11 + P12K(I − GK)−1P21‖
subject to K stabilizes P

K ∈ S

Using the change of variables

R = K(I − GK)−1

we obtain the following equivalent problem

minimize ‖P11 + P12RP21‖
subject to R stable

R(I + GR)−1 ∈ S
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Breakdown of Convexity - Stable Plant
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Using the change of variables

R = K(I − GK)−1

we obtain the following equivalent problem

minimize ‖P11 + P12RP21‖
subject to R stable

R(I + GR)−1 ∈ S
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Quadratic Invariance
The set S is called quadratically invariant with respect to G if

KGK ∈ S for all K ∈ S



12 M. Rotkowitz, KTH

Quadratic Invariance
The set S is called quadratically invariant with respect to G if

KGK ∈ S for all K ∈ S

Main Result
S is quadratically invariant with respect to G if and only if

K ∈ S ⇐⇒ K(I − GK)−1 ∈ S
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Quadratic Invariance
The set S is called quadratically invariant with respect to G if

KGK ∈ S for all K ∈ S

Main Result
S is quadratically invariant with respect to G if and only if

K ∈ S ⇐⇒ K(I − GK)−1 ∈ S

Parameterization

{K | K stabilizes P, K ∈ S} =

{

R(I + GR)−1 | R stable, R ∈ S

}
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Optimal Stabilizing Controller
Suppose G ∈ Rsp and S ⊆ Rp.

We would like to solve

minimize ‖P11 + P12K(I − GK)−1P21‖
subject to K stabilizes P

K ∈ S
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Optimal Stabilizing Controller
Suppose G ∈ Rsp and S ⊆ Rp.

We would like to solve

minimize ‖P11 + P12K(I − GK)−1P21‖
subject to K stabilizes P

K ∈ S

If S is quadratically invariant with respect to G, we may solve

minimize ‖P11 + P12RP21‖
subject to R stable

R ∈ S

which is convex.
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Arbitrary Networks

i j
tij

pij

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Assuming transmission delays satisfy the triangle inequality
(i.e. transmissions take the quickest path)

S is quadratically invariant with respect to G if

tij ≤ pij for all i, j
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Distributed Control with Delays
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• K3 sees information from G3 immediately
G2, G4 after a delay of t

G1, G5 after a delay of 2t

• G3 is affected by inputs from K3 immediately
K2, K4 after a delay of p

K1, K5 after a delay of 2p
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Distributed Control with Delays

Dt Dt Dt Dt
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S is quadratically invariant with respect to G if

t ≤ p
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Distributed Control with Delays

Dc DcDc Dc Dc
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Dc Dc Dc Dc Dc

• K3 sees information from G3 after a delay of c

G2, G4 after a delay of c + t

G1, G5 after a delay of c + 2t

• G3 is affected by inputs from K3 immediately
K2, K4 after a delay of p

K1, K5 after a delay of 2p
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Distributed Control with Delays

Dc DcDc Dc Dc
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Dc Dc Dc Dc Dc

Without computational delay,
S is quadratically invariant with respect to G if

t ≤ p
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Distributed Control with Delays

Dc DcDc Dc Dc
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Dc Dc Dc Dc Dc

Without computational delay,
S is quadratically invariant with respect to G if

t ≤ p

If computational delay is also present, then

S is quadratically invariant with respect to G if

t ≤ p +
c

n − 1
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Two-Dimensional Lattice
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Assuming controllers communicate along edges
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Two-Dimensional Lattice

Dt Dt Dt

Dt

Dt Dt

Dt

Dt

Dt

Dt

Dt

DtK11 K12 K13

K23K22K21

K31 K32 K33

G11 G12 G13

G23G22G21

G31 G32 G33

Dp

Dp

Dp

Dp

Dp

Dp

Dp

Dp Dp

Dp Dp

Dp

Assuming controllers communicate along edges

Assuming dynamics propagate along edges



24 M. Rotkowitz, KTH

Two-Dimensional Lattice
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Two-Dimensional Lattice
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Two-Dimensional Lattice
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Assuming controllers communicate along edges

Assuming dynamics propagate outward
so that delay is proportional to geometric distance
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Two-Dimensional Lattice
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Sparsity Example
Suppose
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Hence S is quadratically invariant with respect to G.
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Same Structure Synthesis
Suppose
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Small Gain

If |a| < 1 then

(1 − a)−1 = 1 + a + a2 + a3 + . . .

for example

(

1 − 1

2

)−1

= 1 +
1

2
+

1

4
+

1

8
+ . . .

more generally, if ‖A‖ < 1 then

(1 − A)−1 = I + A + A2 + A3 + . . .
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Not So Small Gain

Let

Q = I + A + A2 + A3 + . . .

then

AQ = A + A2 + A3 + . . .

subtracting we get

(I − A)Q = I

and so

Q = (I − A)−1
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Convergence to Unstable Operator
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• Let W (s) = 2
s+1

• Plot shows impulse response of
∑N

k=0 W k for N = 1, . . . , 7

• Converges to that of I
I−W = s+1

s−1

• In what topology do the associated operators converge?
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Conditions for Convergence: Inert

• Very broad, reasonable class of plants and controllers

• Basically, impulse response must be finite at any time T

• Arbitrarily large

• Includes the case G ∈ Rsp, K ∈ Rp
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Proof Sketch

K

G
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KGK ∈ S for all K ∈ S

Suppose K ∈ S. Then

K(I − GK)−1 = K + KGK + K(GK)2 + . . . ∈ S
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Consider Nonlinear

Let

Q = I + A + A2 + A3 + . . .

then

AQ = A + A2 + A3 + . . .

subtracting we get

(I − A)Q = I

and so

Q = (I − A)−1
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Block Diagram Algebra

K

G

r y u

For a given r, we seek y, u such that

y = r + Gu

u = Ky

and then define Y, R such that

y = Y r = (I − GK)−1r

u = Rr = K(I − GK)−1r
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Iteration of Signals

K
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We can define the following iteration, commensurate with the diagram

y(0) = r

u(n) = Ky(n)

y(n+1) = r + Gu(n)



38 M. Rotkowitz, KTH

Iteration of Signals and Operators

K
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r y u

We can define the following iterations, commensurate with the diagram

y(0) = r Y (0) = I

u(n) = Ky(n) R(n) = KY (n)

y(n+1) = r + Gu(n) Y (n+1) = I + GR(n)
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Iteration of Signals

K
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We then get the following recursions

y(0) = r u(0) = Kr

y(n+1) = r + GKy(n) u(n+1) = K(r + Gu(n))
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Iteration of Signals

K

G

r y u

We then get the following recursions

y(0) = r u(0) = Kr

y(n+1) = r + GKy(n) u(n+1) = K(r + Gu(n))
... ...

y = lim
n→∞ y(n) u = lim

n→∞ u(n)
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Iteration of Operators

K

G

r y u

We then get the following recursions

Y (0) = I R(0) = K

Y (n+1) = I + GKY (n) R(n+1) = K(I + GR(n))
... ...

Y = lim
n→∞Y (n) R = lim

n→∞R(n)



42 M. Rotkowitz, KTH

Conditions for Convergence

• Very broad, reasonable class of plants and controllers

• Arbitrarily large

• Includes the case G strictly causal, K causal

• Includes the case G ∈ Rsp, K ∈ Rp
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Parameterization - Nonlinear

{K | K stabilizes G} =

{

R(I + GR)−1 | R stable

}

• C.A. Desoer and R.W. Liu (1982)

• V. Anantharam and C.A. Desoer (1984)
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New Invariance Condition

K1(I ± GK2) ∈ S for all K1, K2 ∈ S
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New Invariance Condition

K1(I ± GK2) ∈ S for all K1, K2 ∈ S

Invariance under Feedback
If this condition is satisfied, then

K ∈ S ⇐⇒ K(I − GK)−1 ∈ S
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New Invariance Condition

K1(I ± GK2) ∈ S for all K1, K2 ∈ S

Invariance under Feedback
If this condition is satisfied, then

K ∈ S ⇐⇒ K(I − GK)−1 ∈ S

Parameterization

{K | K stabilizes G, K ∈ S} =

{

R(I + GR)−1 | R stable, R ∈ S

}
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Proof Sketch

K1(I ± GK2) ∈ S ∀ K1, K2 ∈ S

Suppose that K ∈ S.

Then R(0) = K ∈ S.

If we assume that R(n) ∈ S, then

R(n+1) = K(I + GR(n)) ∈ S

Thus R(n) ∈ S for all n ∈ Z+.

R = lim
n→∞R(n) ∈ S
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Conclusions

• Quadratic invariance allows parameterization of all (LTI) stablizing
decentralized controllers.

• Similar condition allows parameterization of all (NLTV) stabilizing de-
centralized controllers

• These condition are satisfied when communications are faster than the
propagation of dynamics.
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Quadratic Invariance
The set S is called quadratically invariant with respect to G if

KGK ∈ S for all K ∈ S

?????????

K1(I ± GK2) ∈ S for all K1, K2 ∈ S
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Open Questions / Future Work

• Unstable plant

• Is there a weaker condition which achieves the same results? Perhaps

K(I ± GK) ∈ S ∀ K ∈ S ?

• When is the optimal (possibly nonlinear) controller linear?

• When (else) does it hold?

• What should we call it?


