Parameterization of Stabilizing Controllers for Interconnected Systems

Michael Rotkowitz

Contributors: Sanjay Lall, Randy Cogill

Department of Signals, Sensors, and Systems Royal Institute of Technology (KTH)

Control, Estimation, and Optimization of Interconnected Systems: From Theory to Industrial Applications CDC-ECC'05 Workshop, 11 December 2005

Overview

- Motivation: Optimal Constrained Control
- Linear Time-Invariant
 - Quadratic invariance
 - Optimal Control over Networks
 - Summation
- Nonlinear Time-Varying
 - Iteration
 - New condition

Block Diagrams

Two-Input Two-Output

Classical

Standard Formulation

minimize $||P_{11} + P_{12}K(I - GK)^{-1}P_{21}||$ subject to K stabilizes P

Communicating Controllers

Control design problem is to find K which is block tri-diagonal.

$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \end{bmatrix} = \begin{bmatrix} K_{11} & DK_{12} & 0 & 0 & 0 \\ DK_{21} & K_{22} & DK_{23} & 0 & 0 \\ 0 & DK_{32} & K_{33} & DK_{34} & 0 \\ 0 & 0 & DK_{43} & K_{44} & DK_{45} \\ 0 & 0 & 0 & DK_{54} & K_{55} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix}$$

General Formulation

The set of K with a given decentralization constraint is a subspace S, called the *information constraint*.

We would like to solve

minimize	$\ P_{11} + P_{12}K(I - GK)^{-1}P_{21}\ $
subject to	K stabilizes P
	$K \in S$

• For general P and S, there is no known tractable solution.

Change of Variables - Stable Plant

minimize
$$||P_{11} + P_{12}K(I - GK)^{-1}P_{21}||$$

subject to K stabilizes P

Using the change of variables

 $R = K(I - GK)^{-1}$

we obtain the following equivalent problem

 $\begin{array}{ll} \mbox{minimize} & \|P_{11}+P_{12}RP_{21}\| \\ \mbox{subject to} & R \mbox{ stable} \end{array}$

This is a *convex optimization* problem.

Change of Variables - Stable Plant

Using the change of variables

 $R = K(I - GK)^{-1}$

we obtain the following equivalent problem

This is a *convex optimization* problem.

Breakdown of Convexity - Stable Plant

$$\begin{array}{ll} \mbox{minimize} & \|P_{11}+P_{12}K(I-GK)^{-1}P_{21}\| \\ \mbox{subject to} & K \mbox{ stabilizes } P \\ & K \in S \end{array}$$

Using the change of variables

 $R = K(I - GK)^{-1}$

we obtain the following equivalent problem

minimize $\|P_{11} + P_{12}RP_{21}\|$ subject to R stable $R(I + GR)^{-1} \in S$

Breakdown of Convexity - Stable Plant

Using the change of variables

 $R = K(I - GK)^{-1}$

we obtain the following equivalent problem

minimize $||P_{11} + P_{12}RP_{21}||$ subject to R stable $R(I + GR)^{-1} \in S$

The set ${\cal S}$ is called quadratically invariant with respect to ${\cal G}$ if

 $KGK \in S$ for all $K \in S$

The set ${\cal S}$ is called quadratically invariant with respect to ${\cal G}$ if

 $KGK \in S$ for all $K \in S$

Main Result

 ${\cal S}$ is quadratically invariant with respect to ${\cal G}$ if and only if

 $K \in S \quad \iff \quad K(I - GK)^{-1} \in S$

The set ${\cal S}$ is called quadratically invariant with respect to ${\cal G}$ if

 $KGK \in S$ for all $K \in S$

Main Result

 ${\cal S}$ is quadratically invariant with respect to ${\cal G}$ if and only if

 $K \in S \quad \iff \quad K(I - GK)^{-1} \in S$

Parameterization

$$\{K \mid K \text{ stabilizes } P, \ K \in S\} = \left\{ R(I + GR)^{-1} \mid R \text{ stable}, \ R \in S \right\}$$

Optimal Stabilizing Controller

Suppose $G \in \mathcal{R}_{sp}$ and $S \subseteq \mathcal{R}_p$.

We would like to solve

minimize	$\ P_{11} + P_{12}K(I - GK)^{-1}P_{21}\ $
subject to	K stabilizes P
	$K \in S$

Optimal Stabilizing Controller

Suppose $G \in \mathcal{R}_{sp}$ and $S \subseteq \mathcal{R}_p$.

We would like to solve

minimize	$\ P_{11} + P_{12}K(I - GK)^{-1}P_{21}\ $
subject to	K stabilizes P
	$K \in S$

If S is quadratically invariant with respect to G, we may solve

 $\begin{array}{ll} \mbox{minimize} & \|P_{11}+P_{12}RP_{21}\| \\ \mbox{subject to} & R \mbox{ stable} \\ & R \in S \end{array}$

which is convex.

Arbitrary Networks

Assuming transmission delays satisfy the triangle inequality (i.e. transmissions take the quickest path)

 ${\cal S}$ is quadratically invariant with respect to ${\cal G}$ if

$$t_{ij} \leq p_{ij}$$
 for all i, j

- K_3 sees information from G_3 immediately G_2, G_4 after a delay of t G_1, G_5 after a delay of 2t
- G₃ is affected by inputs from K₃ immediately K₂, K₄ after a delay of p K₁, K₅ after a delay of 2p

 ${\boldsymbol{S}}$ is quadratically invariant with respect to ${\boldsymbol{G}}$ if

 $t \leq p$

- K_3 sees information from G_3 after a delay of c G_2, G_4 after a delay of c+t G_1, G_5 after a delay of c+2t
- G_3 is affected by inputs from K_3 immediately K_2, K_4 after a delay of p K_1, K_5 after a delay of 2p

Without computational delay,

 ${\cal S}$ is quadratically invariant with respect to ${\cal G}$ if

 $t \leq p$

Without computational delay, S is quadratically invariant with respect to G if

 $t \leq p$

If computational delay is also present, then S is quadratically invariant with respect to G if

$$t \le p + \frac{c}{n-1}$$

Assuming controllers communicate along edges

Assuming controllers communicate along edges

Assuming dynamics propagate along edges

 ${\cal S}$ is quadratically invariant with respect to ${\cal G}$ if

$$t \leq p$$

Assuming controllers communicate along edges

Assuming controllers communicate along edges

Assuming dynamics propagate outward so that delay is proportional to geometric distance

 ${\cal S}$ is quadratically invariant with respect to ${\cal G}$ if

$$t \leq \frac{p}{\sqrt{2}}$$

Sparsity Example

Suppose

For arbitrary $K \in S$

	0	0	0	0	0	
	0	•	0	0	0	
$KGK \sim$	0	•	0	0	0	
	•	•	•	0	0	
	•	•	•	0	•	

Hence S is quadratically invariant with respect to G.

Same Structure Synthesis

Suppose

$$G \sim \begin{bmatrix} \circ & \circ & \circ \\ \bullet & \circ & \circ \\ \circ & \bullet & \bullet \end{bmatrix} \qquad S = \left\{ \begin{array}{ccc} K \mid K \sim \begin{bmatrix} \circ & \circ & \circ \\ \bullet & \circ & \circ \\ \circ & \bullet & \bullet \end{bmatrix} \right\}$$
$$KGK \sim \begin{bmatrix} \circ & \circ & \circ \\ \circ & \circ & \circ \\ \bullet & \bullet & \bullet \end{bmatrix}$$

Then

so S is *not* quadratically invariant with respect to G. In fact,

$$K(I - GK)^{-1} \sim \begin{bmatrix} \circ & \circ & \circ \\ \bullet & \circ & \circ \\ \bullet & \bullet & \bullet \end{bmatrix}$$

Small Gain

If |a| < 1 then

$$(1-a)^{-1} = 1 + a + a^2 + a^3 + \dots$$

for example

$$\left(1-\frac{1}{2}\right)^{-1} = 1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\dots$$

more generally, if ||A|| < 1 then

$$(1-A)^{-1} = I + A + A^2 + A^3 + \dots$$

Not So Small Gain

Let

$$Q = I + A + A^2 + A^3 + \dots$$

then

$$AQ = A + A^2 + A^3 + \dots$$

subtracting we get

$$(I - A)Q = I$$

and so

$$Q = (I - A)^{-1}$$

Convergence to Unstable Operator

• Let
$$W(s) = \frac{2}{s+1}$$

• Plot shows impulse response of $\sum_{k=0}^{N} W^k$ for $N = 1, \ldots, 7$

• Converges to that of
$$\frac{I}{I-W} = \frac{s+1}{s-1}$$

• In what topology do the associated operators converge?

Conditions for Convergence: Inert

- Very broad, reasonable class of plants and controllers
- $\bullet\,$ Basically, impulse response must be finite at any time T
- Arbitrarily large
- Includes the case $G \in \mathcal{R}_{sp}, \ K \in \mathcal{R}_p$

Proof Sketch

 $KGK \in S$ for all $K \in S$

Suppose $K \in S$. Then

$$K(I - GK)^{-1} = K + KGK + K(GK)^2 + \dots \in S$$

Consider Nonlinear

Let

$$Q = I + A + A^2 + A^3 + \dots$$

then

$$AQ = A + A^2 + A^3 + \dots$$

subtracting we get

$$(I - A)Q = I$$

and so

$$Q = (I - A)^{-1}$$

Block Diagram Algebra

For a given r, we seek y, u such that

$$y = r + Gu$$
$$u = Ky$$

and then define Y, R such that

$$y = Yr = (I - GK)^{-1}r$$
$$u = Rr = K(I - GK)^{-1}r$$

Iteration of Signals

We can define the following iteration, commensurate with the diagram

$$y^{(0)} = r$$
$$u^{(n)} = Ky^{(n)}$$
$$y^{(n+1)} = r + Gu^{(n)}$$

Iteration of Signals and Operators

We can define the following iterations, commensurate with the diagram

$$y^{(0)} = r$$
 $Y^{(0)} = I$
 $u^{(n)} = Ky^{(n)}$ $R^{(n)} = KY^{(n)}$
 $y^{(n+1)} = r + Gu^{(n)}$ $Y^{(n+1)} = I + GR^{(n)}$

Iteration of Signals

We then get the following recursions

$$y^{(0)} = r$$
 $u^{(0)} = Kr$
 $y^{(n+1)} = r + GKy^{(n)}$ $u^{(n+1)} = K(r + Gu^{(n)})$

Iteration of Signals

We then get the following recursions

$$y^{(0)} = r \qquad u^{(0)} = Kr$$
$$y^{(n+1)} = r + GKy^{(n)} \qquad u^{(n+1)} = K(r + Gu^{(n)})$$
$$\vdots \qquad \vdots$$
$$y = \lim_{n \to \infty} y^{(n)} \qquad u = \lim_{n \to \infty} u^{(n)}$$

We then get the following recursions

$$Y^{(0)} = I \qquad R^{(0)} = K$$

$$Y^{(n+1)} = I + GKY^{(n)} \qquad R^{(n+1)} = K(I + GR^{(n)})$$

$$\vdots \qquad \vdots$$

$$Y = \lim_{n \to \infty} Y^{(n)} \qquad R = \lim_{n \to \infty} R^{(n)}$$

Conditions for Convergence

- Very broad, reasonable class of plants and controllers
- Arbitrarily large
- Includes the case G strictly causal, K causal
- Includes the case $G \in \mathcal{R}_{sp}, \ K \in \mathcal{R}_p$

Parameterization - Nonlinear

$$\{K \mid K \text{ stabilizes } G\} = \left\{ R(I + GR)^{-1} \mid R \text{ stable} \right\}$$

- C.A. Desoer and R.W. Liu (1982)
- V. Anantharam and C.A. Desoer (1984)

New Invariance Condition

 $K_1(I \pm GK_2) \in S$ for all $K_1, K_2 \in S$

New Invariance Condition

 $K_1(I \pm GK_2) \in S$ for all $K_1, K_2 \in S$

Invariance under Feedback

If this condition is satisfied, then

 $K \in S \quad \iff \quad K(I - GK)^{-1} \in S$

New Invariance Condition

 $K_1(I \pm GK_2) \in S$ for all $K_1, K_2 \in S$

Invariance under Feedback

If this condition is satisfied, then

 $K \in S \qquad \iff \qquad K(I - GK)^{-1} \in S$

Parameterization

$$\{K \mid K \text{ stabilizes } G, \ K \in S\} = \left\{ R(I + GR)^{-1} \mid R \text{ stable}, \ R \in S \right\}$$

Proof Sketch

 $K_1(I \pm GK_2) \in S \qquad \forall K_1, K_2 \in S$

Suppose that $K \in S$.

Then $R^{(0)} = K \in S$.

If we assume that $R^{(n)} \in S$, then

$$R^{(n+1)} = K(I + GR^{(n)}) \in S$$

Thus $R^{(n)} \in S$ for all $n \in \mathbb{Z}_+$.

$$R = \lim_{n \to \infty} R^{(n)} \in S$$

Conclusions

- Quadratic invariance allows parameterization of all (LTI) stablizing decentralized controllers.
- Similar condition allows parameterization of all (NLTV) stabilizing decentralized controllers
- These condition are satisfied when communications are faster than the propagation of dynamics.

The set S is called quadratically invariant with respect to G if

 $KGK \in S$ for all $K \in S$

 $K_1(I \pm GK_2) \in S$ for all $K_1, K_2 \in S$

Open Questions / Future Work

- Unstable plant
- Is there a weaker condition which achieves the same results? Perhaps

$$K(I \pm GK) \in S \quad \forall K \in S ?$$

- When is the optimal (possibly nonlinear) controller linear?
- When (else) does it hold?
- What should we call it?