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Overview

e Motivation: Optimal Constrained Control
e Linear Time-Invariant

e Quadratic invariance
e Optimal Control over Networks

e Summation
e Nonlinear Time-Varying

e [teration

e New condition
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Block Diagrams
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Standard Formulation
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Communicating Controllers
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General Formulation

The set of K with a given decentralization
constraint is a subspace 9, called the 2« Py P« w

information constraint. Py G
K

We would like to solve

minimize  ||Py] + PpoK(I — GK) ™' Py ||
subject to K stabilizes P
KebS

e For general P and S, there is no known tractable solution.
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Change of Variables - Stable Plant

minimize || P} + PoK(I — GK) ™' Py
subject to K stabilizes P

Using the change of variables
R=K(—-GK)™!
we obtain the following equivalent problem

minimize | P11 + PoRPo||
subject to R stable

This is a convex optimization problem.
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Change of Variables - Stable Plant

VAR ()= Pll w

.......................... R
P12‘ “ K e P21

Using the change of variables
R=K(—-GK)™!

we obtain the following equivalent problem

z O Py w

|—P12‘ R Py~

This is a convex optimization problem.
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Breakdown of Convexity - Stable Plant

minimize || P} + PoK(I — GK) ™' Py
subject to K stabilizes P
KelS

Using the change of variables
R=K(I—-GK)™!
we obtain the following equivalent problem

minimize | P11 + ProRP>||
subject to R stable
R(I+GR) 'eS
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Breakdown of Convexity - Stable Plant

VAR ()= Pll w

.......................... R
P12‘ < K (e P21

...............................

Using the change of variables
R=K(—-GK)™!
we obtain the following equivalent problem
minimize ||P11 + PlZRP21H

subject to R stable
RI+GR)tes
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Quadratic Invariance

The set S is called quadratically invariant with respect to G if

KGK € S forall K € S
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Quadratic Invariance

The set S is called quadratically invariant with respect to G if

KGK € S forall K € S

Main Result

S is quadratically invariant with respect to & if and only if

KesS — K(I-GK)les

M. Rotkowitz, KTH
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Quadratic Invariance

The set S is called quadratically invariant with respect to G if

KGK € S forall K € S

Main Result

S is quadratically invariant with respect to & if and only if

KesS — K(I-GK)les

Parameterization

{K | K stabilizes P, K € S} = {R([+GR)_1 | R stable, R € S}
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Optimal Stabilizing Controller

Suppose G € Rsp and S C 'Ry,

We would like to solve

minimize || Py + PoK(I — GK) ™' Py
subject to K stabilizes P
KelS
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Optimal Stabilizing Controller
Suppose G € Rsp and S C 'Ry,

We would like to solve

minimize | P11+ PraK (I — GK)_nglH
subject to K stabilizes P
KelS

If S is quadratically invariant with respect to G, we may solve

minimize | P11 + PioRPo ||
subject to R stable
RelS

which is convex.



Arbitrary Networks

Assuming transmission delays satisfy the triangle inequality
(i.e. transmissions take the quickest path)

S is quadratically invariant with respect to G if

ti; < Dij for all 2, 5

M. Rotkowitz, KTH



Distributed Control with Delays
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(3 D = G4 =Dy - Gr
L L

K3 Ky K

e K3 sees information from (G3 immediately

GGo, G4 after a delay of ¢
(G1, G5 after a delay of 2t

e (33 is affected by inputs from K3 immediately

K9, K, after a delay of p
K1, K5 after a delay of 2p
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Distributed Control with Delays

Gl Dy GQ Dy Gg Dzﬂki/i G4 Dy - (55
IR L e

K4 K5 Kg Ky K5

S is quadratically invariant with respect to GG if

t<p
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Distributed Control with Delays

Gl Dy GQ Dy Gg Dzﬂ% Gy Dy Gy

e K3 sees information from (53 after a delay of ¢
(Go, G4 after a delay of c + ¢
(G1, Gy after a delay of ¢ + 2t

e (53 is affected by inputs from K35 immediately
Ko, K, after a delay of p
K1, K5 after a delay of 2p
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Distributed Control with Delays

G D GQ Dy Gg Dzﬂki/i Gy Do - Gy

Without computational delay,
S is quadratically invariant with respect to G if

t<p
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Distributed Control with Delays

Gl Dp G2 DP G3

bJ 1G4 = =G

Without computational delay,
S is quadratically invariant with respect to G if

t<p

If computational delay is also present, then

S is quadratically invariant with respect to GG if

t<p+
n—1
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Two-Dimensional Lattice
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Assuming controllers communicate along edges

K3
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Two-Dimensional Lattice
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Assuming controllers communicate along edges

Assuming dynamics propagate along edges
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Two-Dimensional Lattice
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Two-Dimensional Lattice

K K12 Kis
Ko Koo Kos
K31 K3 K33

Assuming controllers communicate along edges
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Two-Dimensional Lattice

Gi

GIZ

G'21

Gis

Assuming controllers communicate along edges

Assuming dynamics propagate outward

so that delay is proportional to geometric distance
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Two-Dimensional Lattice

G} G/ Gis
Go ! G2 Gas|)
Ga1 G3o G3
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Sparsity Example

Suppose
0000 ( 0000 0]
00 O O ® 00O
G~ 0 © S:{K‘Kwo oo ol p
0 e
i i \ i S Y
For arbitrary K € S ) )
0 0O0O0oO0
O ®0O0oO0
KGK ~ |o e oo o
o 0
0

Hence S is quadratically invariant with respect to G.
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Same Structure Synthesis
Suppose

O O O O O O

G~ 0 © Sz{K}Kw o ©

- - \ - -

Then

o O O

KGK ~ |o oo

so S is not quadratically invariant with respect to G.

In fact, i i
© O O

K(I-GK) '~ |eoo
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Small Gain

M. Rotkowitz, KTH

If |a| < 1 then
l1—a)! = 1+a+a®+a’+...

for example

A IR
2 2 4R

more generally, if || A|| < 1 then

1—A)7 = T+ A+ A2+ A+ .
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Not So Small Gain

Let
Q = T+A+ A2+ A%+ ...
then
AQ = A+ AP+ AR+
subtracting we get
1-A)Q =1

and so
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Convergence to Unstable Operator

Impulse Response

25

20

15

Amplitude

10

0 0.5 1 1.5 2 2.5
Time (sec)

o Let W(s) =2

e Plot shows impulse response of Z]kvzo Wk for N = 1,...,7

e Converges to that of ﬁ — gi_%

e |n what topology do the associated operators converge?
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Conditions for Convergence: Inert

e Very broad, reasonable class of plants and controllers
e Basically, impulse response must be finite at any time T
e Arbitrarily large

o Includes the case G € Rsp, K € Ry
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Proof Sketch

G .

KGK € S forall K € S

Suppose K € S. Then

K(I-GK)™' = K+ KGK+K(GK)?>+... € S
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Consider Nonlinear

Let
Q = T+A+ A2+ A%+ ...
then
AQ = A+ AP+ AR+
subtracting we get
1-A)Q =1

and so
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Block Diagram Algebra

G .

For a given r, we seek vy, u such that

y = r+ Gu
u = Ky

and then define Y, R such that

y =Yr = (I-GK)™'r
u = Rr = K(]—GK)_lr
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Iteration of Signals

r o~ Y U
O >

G

We can define the following iteration, commensurate with the diagram

g0 —
w =y
ym ) = 1 G
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Iteration of Signals and Operators

r o~ Y U
O >

G .

We can define the following iterations, commensurate with the diagram
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Iteration of Signals

r o~ Y U
O >

G .

We then get the following recursions

?J(O) =T u<0) = Kr
y "t = o Gy W) = K(T+Gu<”>)
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Iteration of Signals

r o~ Y U
O >

G .

We then get the following recursions

?J(O) =T u<0) = Kr
y" ) = g Gy W = K (r + Gu™)
y = lim y(n) w = lim u™

n—oo n—oo



41 M. Rotkowitz, KTH

Iteration of Operators

r o~ Y U
O >

G .

We then get the following recursions

vy = g pO _ g
yt) = 14+ gry™ R — K(I+GR™)
Y = lim Y R = lim R™

n—aoo n—oeo
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Conditions for Convergence

e Very broad, reasonable class of plants and controllers
e Arbitrarily large
e Includes the case (G strictly causal, K causal

o Includes the case G € Rsp, K € Ry
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Parameterization - Nonlinear
{K | K stabilizes G} = {R(I+ GR)™'| R stable}

e C.A. Desoer and R.W. Liu (1982)
e V. Anantharam and C.A. Desoer (1984)
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New Invariance Condition

Kl([ mm GK2> cS forall K1, Ko € S
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New Invariance Condition

Kl([ mm GK2> cS forall K1, Ko € S

Invariance under Feedback

If this condition is satisfied, then

Kes — K(I-GK)les
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New Invariance Condition
Kl([ m GK2> cS forall K1, Ko € S

Invariance under Feedback

If this condition is satisfied, then

Kes — K(I-GK)les

Parameterization

{K | K stabilizes G, K € S} = {R(IJrGR)_l | R stable, R € S}
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Proof Sketch

K1<]:|: GK2> cS VK ,Kye§

Suppose that K € S.
Then RO = K € S

If we assume that R(™) ¢ S then
R — K(I+GRM) € §
Thus R € S for all n € Z.

R = lim RWegs

n—oo
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Conclusions

e Quadratic invariance allows parameterization of all (LTI) stablizing
decentralized controllers.

e Similar condition allows parameterization of all (NLTV) stabilizing de-
centralized controllers

e [ hese condition are satisfied when communications are faster than the
propagation of dynamics.
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Quadratic Invariance

The set S is called quadratically invariant with respect to G if

KGK € S forall K € S

PP??°°°?°°7?

Kl([ m GK2> cS forall K1, Ko € S
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Open Questions / Future Work

e Unstable plant

e |s there a weaker condition which achieves the same results? Perhaps

KI+GK)eS VKeS§7

e When is the optimal (possibly nonlinear) controller linear?

e When (else) does it hold?

e What should we call it?



