
Parameterization of Stabilizing
Controllers for Interconnected Systems

Michael Rotkowitz

Dt Dt Dt Dt

Dp Dp Dp DpG1 G2 G3 G4 G5

K5K4K3K2K1

Contributors: Sanjay Lall, Randy Cogill

Department of Signals, Sensors, and Systems
Royal Institute of Technology (KTH)

Control, Estimation, and Optimization of Interconnected Systems:
From Theory to Industrial Applications
CDC-ECC’05 Workshop, 11 December 2005



2 M. Rotkowitz, KTH

Overview

• Motivation: Optimal Constrained Control

• Linear Time-Invariant

• Quadratic invariance

• Optimal Control over Networks

• Summation

• Nonlinear Time-Varying

• Iteration

• New condition
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Block Diagrams
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Standard Formulation
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minimize ‖P11 + P12K(I − GK)−1P21‖
subject to K stabilizes P
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Communicating Controllers

D DD D

D DD D

K5

G5G4

K4

G1 G2 G3

K3K2K1

Control design problem is to find K which is block tri-diagonal.
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General Formulation
The set of K with a given decentralization
constraint is a subspace S, called the
information constraint.

We would like to solve

minimize ‖P11 + P12K(I − GK)−1P21‖
subject to K stabilizes P

K ∈ S

• For general P and S, there is no known tractable solution.
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Change of Variables - Stable Plant

minimize ‖P11 + P12K(I − GK)−1P21‖
subject to K stabilizes P

Using the change of variables

R = K(I − GK)−1

we obtain the following equivalent problem

minimize ‖P11 + P12RP21‖
subject to R stable

This is a convex optimization problem.
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Change of Variables - Stable Plant
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Using the change of variables

R = K(I − GK)−1

we obtain the following equivalent problem

P11

P21
P12

wz

R

This is a convex optimization problem.
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Breakdown of Convexity - Stable Plant

minimize ‖P11 + P12K(I − GK)−1P21‖
subject to K stabilizes P

K ∈ S

Using the change of variables

R = K(I − GK)−1

we obtain the following equivalent problem

minimize ‖P11 + P12RP21‖
subject to R stable

R(I + GR)−1 ∈ S



10 M. Rotkowitz, KTH

Breakdown of Convexity - Stable Plant
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Using the change of variables

R = K(I − GK)−1

we obtain the following equivalent problem

minimize ‖P11 + P12RP21‖
subject to R stable

R(I + GR)−1 ∈ S
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Quadratic Invariance
The set S is called quadratically invariant with respect to G if

KGK ∈ S for all K ∈ S
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Quadratic Invariance
The set S is called quadratically invariant with respect to G if

KGK ∈ S for all K ∈ S

Main Result
S is quadratically invariant with respect to G if and only if

K ∈ S ⇐⇒ K(I − GK)−1 ∈ S
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Quadratic Invariance
The set S is called quadratically invariant with respect to G if

KGK ∈ S for all K ∈ S

Main Result
S is quadratically invariant with respect to G if and only if

K ∈ S ⇐⇒ K(I − GK)−1 ∈ S

Parameterization

{K | K stabilizes P, K ∈ S} =

{

R(I + GR)−1 | R stable, R ∈ S

}
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Optimal Stabilizing Controller
Suppose G ∈ Rsp and S ⊆ Rp.

We would like to solve

minimize ‖P11 + P12K(I − GK)−1P21‖
subject to K stabilizes P

K ∈ S



15 M. Rotkowitz, KTH

Optimal Stabilizing Controller
Suppose G ∈ Rsp and S ⊆ Rp.

We would like to solve

minimize ‖P11 + P12K(I − GK)−1P21‖
subject to K stabilizes P

K ∈ S

If S is quadratically invariant with respect to G, we may solve

minimize ‖P11 + P12RP21‖
subject to R stable

R ∈ S

which is convex.
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Arbitrary Networks
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Assuming transmission delays satisfy the triangle inequality
(i.e. transmissions take the quickest path)

S is quadratically invariant with respect to G if

tij ≤ pij for all i, j
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Distributed Control with Delays
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• K3 sees information from G3 immediately
G2, G4 after a delay of t

G1, G5 after a delay of 2t

• G3 is affected by inputs from K3 immediately
K2, K4 after a delay of p

K1, K5 after a delay of 2p
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Distributed Control with Delays
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S is quadratically invariant with respect to G if

t ≤ p
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Distributed Control with Delays

Dc DcDc Dc Dc
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Dc Dc Dc Dc Dc

• K3 sees information from G3 after a delay of c

G2, G4 after a delay of c + t

G1, G5 after a delay of c + 2t

• G3 is affected by inputs from K3 immediately
K2, K4 after a delay of p

K1, K5 after a delay of 2p
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Distributed Control with Delays
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Dc Dc Dc Dc Dc

Without computational delay,
S is quadratically invariant with respect to G if

t ≤ p
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Distributed Control with Delays

Dc DcDc Dc Dc
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K5K4K3K2K1

Dc Dc Dc Dc Dc

Without computational delay,
S is quadratically invariant with respect to G if

t ≤ p

If computational delay is also present, then

S is quadratically invariant with respect to G if

t ≤ p +
c

n − 1
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Two-Dimensional Lattice
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Assuming controllers communicate along edges
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Two-Dimensional Lattice
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Two-Dimensional Lattice
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Two-Dimensional Lattice
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Two-Dimensional Lattice
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Assuming controllers communicate along edges

Assuming dynamics propagate outward
so that delay is proportional to geometric distance
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Two-Dimensional Lattice
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Sparsity Example
Suppose

G ∼













• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • •
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◦ • ◦ ◦ ◦
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For arbitrary K ∈ S

KGK ∼













◦ ◦ ◦ ◦ ◦
◦ • ◦ ◦ ◦
◦ • ◦ ◦ ◦
• • • ◦ ◦
• • • ◦ •













Hence S is quadratically invariant with respect to G.
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Same Structure Synthesis
Suppose

G ∼





◦ ◦ ◦
• ◦ ◦
◦ • •



 S =







K
∣

∣ K ∼





◦ ◦ ◦
• ◦ ◦
◦ • •











Then

KGK ∼





◦ ◦ ◦
◦ ◦ ◦
• • •





so S is not quadratically invariant with respect to G.

In fact,

K(I − GK)−1 ∼





◦ ◦ ◦
• ◦ ◦
• • •
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Small Gain

If |a| < 1 then

(1 − a)−1 = 1 + a + a2 + a3 + . . .

for example

(

1 − 1

2

)−1

= 1 +
1

2
+

1

4
+

1

8
+ . . .

more generally, if ‖A‖ < 1 then

(1 − A)−1 = I + A + A2 + A3 + . . .
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Not So Small Gain

Let

Q = I + A + A2 + A3 + . . .

then

AQ = A + A2 + A3 + . . .

subtracting we get

(I − A)Q = I

and so

Q = (I − A)−1



32 M. Rotkowitz, KTH

Convergence to Unstable Operator
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• Let W (s) = 2
s+1

• Plot shows impulse response of
∑N

k=0 W k for N = 1, . . . , 7

• Converges to that of I
I−W = s+1

s−1

• In what topology do the associated operators converge?
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Conditions for Convergence: Inert

• Very broad, reasonable class of plants and controllers

• Basically, impulse response must be finite at any time T

• Arbitrarily large

• Includes the case G ∈ Rsp, K ∈ Rp
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Proof Sketch

K
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KGK ∈ S for all K ∈ S

Suppose K ∈ S. Then

K(I − GK)−1 = K + KGK + K(GK)2 + . . . ∈ S
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Consider Nonlinear

Let

Q = I + A + A2 + A3 + . . .

then

AQ = A + A2 + A3 + . . .

subtracting we get

(I − A)Q = I

and so

Q = (I − A)−1
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Block Diagram Algebra

K

G

r y u

For a given r, we seek y, u such that

y = r + Gu

u = Ky

and then define Y, R such that

y = Y r = (I − GK)−1r

u = Rr = K(I − GK)−1r
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Iteration of Signals

K
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We can define the following iteration, commensurate with the diagram

y(0) = r

u(n) = Ky(n)

y(n+1) = r + Gu(n)
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Iteration of Signals and Operators

K

G

r y u

We can define the following iterations, commensurate with the diagram

y(0) = r Y (0) = I

u(n) = Ky(n) R(n) = KY (n)

y(n+1) = r + Gu(n) Y (n+1) = I + GR(n)
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Iteration of Signals

K
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We then get the following recursions

y(0) = r u(0) = Kr

y(n+1) = r + GKy(n) u(n+1) = K(r + Gu(n))
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Iteration of Signals

K

G

r y u

We then get the following recursions

y(0) = r u(0) = Kr

y(n+1) = r + GKy(n) u(n+1) = K(r + Gu(n))
... ...

y = lim
n→∞ y(n) u = lim

n→∞ u(n)
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Iteration of Operators

K

G

r y u

We then get the following recursions

Y (0) = I R(0) = K

Y (n+1) = I + GKY (n) R(n+1) = K(I + GR(n))
... ...

Y = lim
n→∞Y (n) R = lim

n→∞R(n)
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Conditions for Convergence

• Very broad, reasonable class of plants and controllers

• Arbitrarily large

• Includes the case G strictly causal, K causal

• Includes the case G ∈ Rsp, K ∈ Rp



43 M. Rotkowitz, KTH

Parameterization - Nonlinear

{K | K stabilizes G} =

{

R(I + GR)−1 | R stable

}

• C.A. Desoer and R.W. Liu (1982)

• V. Anantharam and C.A. Desoer (1984)
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New Invariance Condition

K1(I ± GK2) ∈ S for all K1, K2 ∈ S
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New Invariance Condition

K1(I ± GK2) ∈ S for all K1, K2 ∈ S

Invariance under Feedback
If this condition is satisfied, then

K ∈ S ⇐⇒ K(I − GK)−1 ∈ S
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New Invariance Condition

K1(I ± GK2) ∈ S for all K1, K2 ∈ S

Invariance under Feedback
If this condition is satisfied, then

K ∈ S ⇐⇒ K(I − GK)−1 ∈ S

Parameterization

{K | K stabilizes G, K ∈ S} =

{

R(I + GR)−1 | R stable, R ∈ S

}
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Proof Sketch

K1(I ± GK2) ∈ S ∀ K1, K2 ∈ S

Suppose that K ∈ S.

Then R(0) = K ∈ S.

If we assume that R(n) ∈ S, then

R(n+1) = K(I + GR(n)) ∈ S

Thus R(n) ∈ S for all n ∈ Z+.

R = lim
n→∞R(n) ∈ S
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Conclusions

• Quadratic invariance allows parameterization of all (LTI) stablizing
decentralized controllers.

• Similar condition allows parameterization of all (NLTV) stabilizing de-
centralized controllers

• These condition are satisfied when communications are faster than the
propagation of dynamics.
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Quadratic Invariance
The set S is called quadratically invariant with respect to G if

KGK ∈ S for all K ∈ S

?????????

K1(I ± GK2) ∈ S for all K1, K2 ∈ S
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Open Questions / Future Work

• Unstable plant

• Is there a weaker condition which achieves the same results? Perhaps

K(I ± GK) ∈ S ∀ K ∈ S ?

• When is the optimal (possibly nonlinear) controller linear?

• When (else) does it hold?

• What should we call it?


