Control of vehicular platoons: limitations and tradeoffs

www.umn.edu/~mihailo

ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF MINNESOTA

CDC-ECC'05 Workshop – December 11, 2005

Control of vehicular platoons

1

• Active research area for $\,\approx\,$ 40 years

(Levine & Athans, Melzer & Kuo, Chu, Ioannou, Varaiya, Hedrick, Swaroop, etc.)

• SPATIO-TEMPORAL SYSTEMS signals depend on time & discrete spatial variable *n*

arrays of micro-cantilevers arrays of micro-mirrors unmanned aerial vehicle formations satellite constellations

• INTERACTIONS CAUSE COMPLEX BEHAVIOR 'string instability' in vehicular platoons

• SPECIAL STRUCTURE every unit has sensors and actuators

Controller architectures: platoons

CENTRALIZED:

BEST PERFORMANCE EXCESSIVE COMMUNICATION

FULLY DECENTRALIZED:

NOT SAFE!

LOCALIZED:

MANY POSSIBLE ARCHITECTURES

Issues

CENTRALIZED:

PERFORMANCE VS. SIZE FUNDAMENTAL LIMITATIONS/TRADEOFFS

Outline

● ILL-POSEDNESS OF SEVERAL WIDELY CITED RESULTS

* small scale $\xrightarrow{\text{GAP}}$ large scale \approx infinite

FORMULATION OF WELL-POSED CONTROL PROBLEMS

 \star spatially invariant theory

PEAKING IN VEHICULAR PLATOONS

large platoons \Rightarrow large transient peaks uniform convergence rates

CONTROL IN THE PRESENCE OF SATURATION

 \star explicit constraints on feedback gains to avoid magnitude and rate saturation

Optimal control of vehicular platoons

• FINITE PLATOONS

Levine & Athans (LA), IEEE TAC'66 Melzer & Kuo (MK1), IEEE TAC'71

• INFINITE PLATOONS

Melzer & Kuo (MK2), Automatica'71

Control objective

DYNAMICS OF *n*-TH VEHICLE: $\ddot{x}_n = u_n$

CONTROL OBJECTIVE:	desired cruising velocity	v_d	:=	const.
	inter-vehicular distance	L	:=	const.

COUPLING ONLY THROUGH FEEDBACK CONTROLS

```
ABSOLUTE DESIRED TRAJECTORY
x_{nd}(t) := v_d t - nL
```

Control of finite platoons

absolute position error: $\psi_n(t) := x_n(t) - v_d t + nL$ absolute velocity error: $\phi_n(t) := \dot{x}_n(t) - v_d$ $\begin{cases} n \in \{1, \dots, M\} \end{cases}$

 \downarrow

MK1:
$$\begin{bmatrix} \dot{\Psi} \\ \dot{\Phi} \end{bmatrix} = \begin{bmatrix} 0 & I \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \Psi \\ \Phi \end{bmatrix} + \begin{bmatrix} 0 \\ I \end{bmatrix} U$$

relative position error: $\zeta_n(t) := x_n(t) - x_{n-1}(t) + L$ $= \psi_n(t) - \psi_{n-1}(t)$ \downarrow LA: $\begin{bmatrix} \dot{Z} \\ \dot{\Phi} \end{bmatrix} = \begin{bmatrix} 0 & \bar{A}_{12} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} Z \\ \Phi \end{bmatrix} + \begin{bmatrix} 0 \\ I \end{bmatrix} U$

M. JOVANOVIĆ, UMN

Optimal control of finite platoons

MK1:
$$\begin{bmatrix} \dot{\Psi} \\ \dot{\Phi} \end{bmatrix} = \begin{bmatrix} 0 & I \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \Psi \\ \Phi \end{bmatrix} + \begin{bmatrix} 0 \\ I \end{bmatrix} U$$
$$J := \frac{1}{2} \int_{0}^{\infty} \left(\sum_{n=1}^{M+1} (\psi_{n}(t) - \psi_{n-1}(t))^{2} + \sum_{n=1}^{M} (\phi_{n}^{2}(t) + u_{n}^{2}(t)) \right) dt$$

M. Jovanović, UMN

• Melzer & Kuo:

Optimal control of infinite platoons

INF GOOD APPROXIMATION OF LARGE-BUT-FINITE PLATOONS

MAIN IDEA: EXPLOIT SPATIAL INVARIANCE

$$\mathsf{LA:} \begin{bmatrix} \dot{\zeta}_n \\ \dot{\phi}_n \end{bmatrix} = \begin{bmatrix} 0 & 1 - T_{-1} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \zeta_n \\ \phi_n \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u_n, \quad n \in \mathbb{Z}$$
$$\bigcup \mathsf{SPATIAL} \mathcal{Z}_{\theta} \mathsf{-TRANSFORM}$$
$$\begin{bmatrix} \dot{\zeta}_{\theta} \\ \dot{\phi}_{\theta} \end{bmatrix} = \begin{bmatrix} 0 & 1 - e^{-j\theta} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \zeta_{\theta} \\ \phi_{\theta} \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u_{\theta}, \quad 0 \leq \theta < 2\pi$$

 ${}^{\tiny \hbox{\tiny I\!S\!S}}$ not stabilizable at $\theta~=~0$

MK2:

$$\begin{bmatrix} \dot{\psi}_n \\ \dot{\phi}_n \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \psi_n \\ \phi_n \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u_n, \quad n \in \mathbb{Z}$$

$$J := \frac{1}{2} \int_0^\infty \sum_{n \in \mathbb{Z}} \left((\psi_n(t) - \psi_{n-1}(t))^2 + \phi_n^2(t) + u_n^2(t) \right) dt$$

$$\int \text{SPATIAL } \mathcal{Z}_{\theta} \text{-TRANSFORM}$$

$$A_{\theta} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad Q_{\theta} = \begin{bmatrix} 2(1 - \cos \theta) & 0 \\ 0 & 1 \end{bmatrix}, \quad 0 \le \theta < 2\pi$$

 \bowtie PAIR (Q_{θ}, A_{θ}) NOT DETECTABLE AT $\theta = 0$

 ${}^{\tiny\hbox{\tiny I\!S\!S}}$ A FIX: penalize absolute position errors in J

$$J := \frac{1}{2} \int_0^\infty \sum_{n \in \mathbb{Z}} \left(q \psi_n^2(t) + (\psi_n(t) - \psi_{n-1}(t))^2 + \phi_n^2(t) + u_n^2(t) \right) dt$$

$$\begin{bmatrix} \dot{\psi}_n \\ \dot{\phi}_n \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \psi_n \\ \phi_n \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u_n, \quad n \in \mathbb{Z}$$
$$J := \frac{1}{2} \int_0^\infty \sum_{n \in \mathbb{Z}} \left(q \psi_n^2(t) + (\psi_n(t) - \psi_{n-1}(t))^2 + \phi_n^2(t) + u_n^2(t) \right) dt$$

CLOSED-LOOP SPECTRUM:

M. JOVANOVIĆ, UMN

'Problematic' initial conditions for LA & MK

• LA & MK FOR INFINITE PLATOONS:

non-zero mean initial conditions cannot be driven to zero!

MANY MODES HAVE VERY SLOW RATES OF CONVERGENCE

Remarks

• CONTROL OF VEHICULAR PLATOONS

Jovanović & Bamieh, IEEE TAC'05:

- * analytically showed ill-posedness of several widely cited results
- ★ formulated well-posed control problems

SMALL SCALE $\xrightarrow{CAREFUL}$ LARGE SCALE SMALL SCALE \neq LARGE SCALE \approx INFINITE DIMENSIONAL

large-but-finite systems⇒large scale computationsinfinite dimensional abstractions
with spatial invariance⇒almost analytical results

Outline

● ILL-POSEDNESS OF SEVERAL WIDELY CITED RESULTS

* small scale $\xrightarrow{\text{GAP}}$ large scale \approx infinite

FORMULATION OF WELL-POSED CONTROL PROBLEMS

 \star spatially invariant theory

PEAKING IN VEHICULAR PLATOONS

large platoons uniform convergence rates \Rightarrow large transient peaks

CONTROL IN THE PRESENCE OF SATURATION

 \star explicit constraints on feedback gains to avoid magnitude and rate saturation

LQR design

absolute position error: $\psi_n(t) := x_n(t) - v_d t + nL$ absolute velocity error: $\phi_n(t) := \dot{x}_n(t) - v_d$

$$n \in \{0, \dots, M-1\}$$

$$\begin{bmatrix} \dot{\psi}_n \\ \dot{\phi}_n \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \psi_n \\ \phi_n \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u_n$$

 \Downarrow

$$J := \frac{1}{2} \int_0^\infty \left(\sum_{n=1}^{M-1} (\psi_n(t) - \psi_{n-1}(t))^2 + \sum_{n=0}^{M-1} (\psi_n^2(t) + \phi_n^2(t) + u_n^2(t)) \right) dt$$

Example

■ PEAKING: CERTAIN INITIAL CONDITIONS CAN LEAD TO LARGE CONTROLS

LQR design for a platoon on a circle

SPATIALLY INVARIANT PERFORMANCE INDEX:

$$J := \frac{1}{2} \int_0^\infty \sum_{n=0}^{M-1} \sum_{m=0}^{M-1} \left(\boldsymbol{\xi}_n^*(t) Q_{n-m} \boldsymbol{\xi}_m(t) + u_n^*(t) R_{n-m} u_m(t) \right) \, \mathrm{d}t$$

MAIN IDEA: EXPLOIT SPATIAL INVARIANCE

LARGE SCALE PROBLEM:

$$\begin{bmatrix} \dot{\psi}_n \\ \dot{\phi}_n \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \psi_n \\ \phi_n \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u_n =: A_n \boldsymbol{\xi}_n + B_n u_n$$
$$J := \frac{1}{2} \int_0^\infty \sum_{n=0}^{M-1} \sum_{m=0}^{M-1} (\boldsymbol{\xi}_n^*(t) Q_{n-m} \boldsymbol{\xi}_m(t) + u_n^*(t) R_{n-m} u_m(t)) dt$$

SPATIAL DFT

BLOCK DIAGONAL PROBLEM:

$$\begin{bmatrix} \dot{\hat{\psi}}_k \\ \dot{\hat{\phi}}_k \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \hat{\psi}_k \\ \hat{\phi}_k \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \hat{u}_k =: \hat{A}_k \hat{\xi}_k + \hat{B}_k \hat{u}_k$$
$$J = \frac{\sqrt{M}}{2} \int_0^\infty \sum_{k=0}^{M-1} (\hat{\xi}_k^*(t) \hat{Q}_k \hat{\xi}_k(t) + \hat{u}_k^*(t) \hat{R}_k \hat{u}_k(t)) dt$$
$$\hat{R}_k > 0, \quad \hat{Q}_k := \begin{bmatrix} \hat{q}_{11k} & \hat{q}_{21k}^* \\ \hat{q}_{21k} & \hat{q}_{22k} \end{bmatrix} \ge 0, \quad k \in \{0, \dots, M-1\}$$

$$\{\psi_n(0) = -nS, 0 < S < L; \dot{x}_n(0) \equiv v_d\}$$

$$\downarrow \text{magnitude saturation unless}$$

$$u_{\max} \geq \frac{S^2}{6} (M-1)(2M-1) \inf_k \frac{\hat{q}_{11k}}{\hat{R}_k}$$

IMPORTANT:DETECTABILITY \Leftrightarrow \hat{q}_{11k} >0

Trajectory generation

$$\begin{aligned} \ddot{\bar{x}}_n &= \bar{u}_n \\ r_n(t) &:= \bar{x}_n(t) - v_d t + nL \end{aligned} \} \quad \Rightarrow \quad \ddot{r}_n = \bar{u}_n \end{aligned}$$

$$\bar{u}_{n} = -p_{n}^{2}r_{n} - 2p_{n}\dot{r}_{n} \implies \dot{r}_{n}(t) = (c_{n} + d_{n}t)e^{-p_{n}t}$$
$$\bar{u}_{n}(t) = (d_{n} - c_{n}p_{n} - d_{n}p_{n}t)e^{-p_{n}t}$$
$$\bar{u}_{n}(t) = (c_{n}p_{n}^{2} - 2d_{n}p_{n} + d_{n}p_{n}^{2}t)e^{-p_{n}t}$$

$\ensuremath{\,{\rm \tiny SM}}$ derived explicit constraints on p_n to guarantee:

$$|r_n(t)| \leq r_{\max}$$
$$|\dot{r}_n(t)| \leq v_{\max}$$
$$|\bar{u}_n(t)| \leq u_{\max}$$

M. JOVANOVIĆ, UMN

FUNDAMENTAL TRADEOFFS:
large p_n 's \Rightarrow $\begin{cases} \text{fast stabilization} \\ \text{small position overshoots} \end{cases}$ small p_n 's \Rightarrow $\begin{cases} \text{slow stabilization} \\ \text{small velocity overshoots} \\ \text{small control effort} \end{cases}$

CONTROL AROUND GENERATED TRAJECTORIES:

$$\eta_{n}(t) := x_{n}(t) - v_{d}t + nL - r_{n}(t)$$

$$\downarrow$$

$$\ddot{\eta}_{n} = u_{n} - \bar{u}_{n} =: \tilde{u}_{n}$$

$$\downarrow$$

$$u_{n} = \frac{\bar{u}_{n}}{\downarrow} + \frac{\tilde{u}_{n}}{\downarrow}$$
from trajectory generation from e.g. LQR design

PERFECT KNOWLEDGE OF INITIAL CONDITIONS: $u_n = \bar{u}_n$

t

POSITION:

Remarks

Jovanović, Fowler, Bamieh, & D'Andrea, Automatica'05 (submitted):

* trajectory planing to avoid magnitude and rate peaking

large platoons uniform convergence rates	\Rightarrow	large transient peaks
fast convergence rates	\Rightarrow	small position overshoots
slow convergence rates	\Rightarrow	small velocity overshoots small control efforts

- ONGOING/FUTURE RESEARCH
 - \star design of distributed controllers with favorable architectures
 - ★ control under communication constraints
 - Iimitations & tradeoffs in the control of 2D & 3D formations
 flocking & swarming

Additional info

