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Decentralized Control
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Control design problem is to find / which is block diagonal, whose diagonal

blocks are 5 separate controllers.
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Example: Communicating Controllers

S. Lall, Stanford 2005.12.11.02

Often we do not want perfectly decentralized control; we may achieve better

performance by allowing controllers to communicate, both
e to receive measurements from other aircraft,

e and to exchange data with other controllers.
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Here, we need to design 3 separate controllers.
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Research directions
e Spacetime models

e Infinite and finite spatial extent
e Synthesis procedures via SDP

e Decentralization structure via information passing

e Structured synthesis

e Decentralized structure specified in advance
e Quadratic invariance conditions on solvability

e See talk by Mike Rotkowitz

e Dynamic programming

e Stochastic finite state systems

e Relaxation approach
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Finite-State Stochastic Systems

In this talk
e Look at dynamics specified by Markov Decision Processes.
e Not linear, but finite state
e New semidefinite programming relaxations

e Randy Cogill, Mike Rotkowitz, Ben Van Roy

Many applications:
e Decision problems: e.g., task allocation problems for vehicles

e [Detection problems: e.g., physical sensing, communication
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Example: Medium-Access Control

Q\
QQ/

e [wo transmitters, each with a queue that can hold up to 3 packets

e p; = probability that £ — 1 packets arrive at queue a

p'=1[0.7 02 0.05 0.05] p*=][0.6 0.3 0.075 0.025]

e At each time step, each transmitter sees how many packets are in its
queue, and sends some of them; then new packets arrive

e Packets are lost when queues overflow, or when there is a collision,
I.e., both transmit at the same time
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Example: Medium-Access Control

We would like a control policy for each queue, i.e., a function mapping

number of packets in the queue +—  number of packets sent

e One possible policy; transmit all packets in the queue.

Causes large packet loss due to collisions.

e The other extreme; wait until the queue is full

Causes large packet loss due to overflow.

e We'd like to find the policy that minimizes the expected number of
packets lost per period.
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Centralized Control
e Each transmitter can see how many packets are in the other queue

e In this case, we look for a single policy, mapping

pair of queue occupancies +  pair of transmission lengths

Decentralized Control
e Each transmitter can only see the number of packets in its own queue

e In this case, we look for two policies, each mapping

queue occupancy +—  transmission length
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Medium Access: Centralized Solution

The optimal policy is

Transmitter 2 state

0 1 2 3

0(0,0) (0,1) (0,2) (0,3)

Transmitter 1 state 1 (1,0) (1,0) (0,2) (0,3)
21(2,0) (2,0) (2,0) (0,3)

31(3,0) (3,0) (3,0) (3,0)

e Easy to compute via dynamic programming
e Each transmitter needs to know the state of the other

e We would like a decentralized control law
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Markov Decision Processes

The above medium-access control problem is an example of a Markov

Decision Process (MDP)

e n states, and m actions, hence m" possible centralized policies

e However, the centralized problem is solvable by linear programming

Decentralized control

e NP-hard, even with just two policies, even non-dynamic case

e Would like efficient algorithms

e Hence focus on suboptimal solutions
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Static Problems
e (Called classification or hypothesis testing
e e.g., a radar system sends out n pulses, and measures y reflections

e The cost depends on the number of false positives/negatives.
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p(y|X1) = prob. of receiving y reflections given no aircraft present

p(y| Xo) = prob. of receiving y reflections given an aircraft present
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Static Centralized Formulation
e x is the state, with prior pdf Prob(x) = p(x)
e y = h(x,w) is the measurement
® W IS sensor noise

Choosing control action u results in cost C'(u, x)

Represent sensing by transition matrix A(y, z) = Prob(y | )

Problem: find v : ) — U to minimize the expected cost:

> plx)Aly, 2)C(v(y), x)
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Static Decentralized Formulation
e x is the state, with prior pdf Prob(x) = p(x)
o y; = h;(x,w;) is the ¢'th measurement
e w, Is noise at ¢ th sensor

Choosing control actions uy, . .., u,, results in cost C'(uy, ..., Up, T)

Yy = (Y1, ...,Ym) given by transitions A(y, x) = Prob(y | x)

Problem: find 71, ..., 7, to minimize the expected cost:

ZP (%(?Jl) s Ym(Ym), :z:)
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Change of variables

Represent the policy by a matrix

K, = {1 if v(y) = u

0 otherwise

This matrix K satisfies

e K1 =1, thatis K is a stochastic matrix.

e K is Boolean

Then the expected cost is

LY

:U?y?u
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Optimization

Let W, = > CuzA,.Ds, the cost of decision u when y is measured.

minimize g Wy Ky
y,u

subject to Kl1=1
K,, €{0,1} forall y,u

e nm variables /;;, with both /inear and Boolean constraints

e Just m easy problems; pick v(y) = arg min W,
Uu
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Linear Programming Relaxation

Another solution: relax the Boolean constraints:

S. Lall, Stanford 2005.12.11.02

e For estimation: interpret K, as belief in the estimate u

e For control: we have a mixed policy K,,, = Prob(u|y)

Relaxation gives the l/inear program:

minimize E Wty
y,u

subject to Kl1=1
K >0

It is easy to show that this gives the optimal cost and rounding gives the

optimal controller.
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Decentralization Constraints

Decentralization imposes constraints on K (Y1, ..., Ym, Ut, - - -, U ).

Measurement constraint: controller ¢ can only measure measurement 7

Prob(u; | y) = Prob(u; | ;)

Independence constraint: for mixed policies, controllers 7 and 7 use inde-
pendent sources of randomness to generate u; and u;

Prob(u |y) = H Prob(u; | y;)
i=1
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Decentralization Constraints

We call a controller K decentralized if

K<y17 ey Ym, UL, - - ,Um) — Kl(ybul) . Km<ym7um>

for some K!, ... K™

If K is a deterministic controller y = v(u), this is equivalent to

y(ur, ug) = (m(ur), v2(u2))
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The Decentralized Static Control Problem

minimize E : Woyyaurus B yryouus

y,u
) 1 2
subject to Ky rypurug = 50 100,
K'>0
K1=1

L e {0,1} for all a, b

e This problem is NP-hard

e In addition to linear constraints, we have bilinear constraints



20 S. Lall, Stanford 2005.12.11.02

Boolean Constraints

One can show the following facts

e Removing the Boolean constraints does not change the optimal value

I.e., we can simplify the constraint set

e Then there exists an optimal solution which is Boolean

l.e., using a mixed policy does not achieve better performance than a
deterministic policy
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Relaxing the Constraints

Now we would like to solve

minimize § : Wy1y2u1U2Kyly2ulu2

y,u
) 1 2
subject to Ky ryuruy = 10, Ky,
K'>(
K'1=1

e Still NP-hard, because it would solve the original problem.

e Removing the bilinear constraint gives the centralized problem.

This is a trivial lower bound on the achievable cost
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Valid Constraints

For any decentralized controller, we know

_ 2
Z Kyly2ulu2 o Kyqu
uy

e The interpretation is that, given measurements y; and 15, averaging
over the decisions of controller 1 does not affect the distribution of

the decisions of controller 2

e Easy to see, since K is a stochastic matrix, and

_ 1 2
Ky1y2ulu2 o K K

yiul— " yau2
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Valid Constraints
e Adding these new constraints leaves the optimization unchanged.

e But it changes the relaxation. Dropping the bilinear constraint gives
a tighter lower bound than the centralized problem.

minimize E : Wy ypurus B yryougus

YU
. o 2
subject to Ky youguy = Ky1u1Ky2u2
9 )
Z KylﬁUQulUQ — Ky2u2
U new valid
_ ol constraints
Z Kyly2ulu2 o Ky1u1
’UQ J

K'>0 Kl1=1
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Synthesis Procedure

1. Solve the linear program

minimize E : Wy yaurua B yryouus

Yy, u
. 2
subject to g Ky youguy = K5,
uj

1
Z KylyQU1U2 — Ky1u1
U9
K'>0 Kl1=1

The optimal value gives a lower bound on the achievable cost

_ 1 2
2. If K =K., K

Y1Y2u1u2 Lu, then the solution is optimal.
If not, use K' and K?, as approximate solutions.

1u1
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Lifting

Lifting is a general approach for constructing primal relaxations; the idea is

e Introduce new variables Y which are polynomial in x
This embeds the problem in a higher dimensional space

e Write valid constraints in the new variables

e The feasible set of the original problem is the projection of the lifted
feasible set
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Example: Minimizing a Polynomial

y . . .. L §) k
We'd like to find the minimum of f =) aix

Pick new variables Y = g(x) where

B ap a2 a4z
1 a2 3] o 5 35 3
ay
g(x) = v and (O = 003
) i 0 %
i il i
i 1 _ as.

Then an equivalent problem is

minimize traceC'Y
subject to Y >0
Yin=1 Yyu=Y; Yn=Ys Y=Yy
Y =g(z)

Dropping the constraint Y = g(x) gives an SDP relaxation of the problem



27 S. Lall, Stanford 2005.12.11.02

The Dual SDP Relaxation
The SDP relaxation has a dual, which is also an SDP.

Example

Suppose f = 2% + 422 + 1, then the SDP dual relaxation is

maximize t

1—t 0 24X —A3
0 —2X A3 N\
2+ )\2 )\3 —2)\1 0 o
—A3 A\ 0 1

subject to

this is exactly the condition that f — ¢ be sum of squares
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Lifting for General Polynomial Programs

e When minimizing a polynomial, lifting gives an SDP relaxation of
whose dual is an SOS condition

e When solving a general polynomial program with multiple constraints,
there is a similar lifting

e This gives an SDP, whose feasible set is a relaxation of the feasible
set of the original problem

e The corresponding dual SDP is a Positivstellensatz refutation

e Solving the dual certifies a lower bound on the original problem
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Example: The Cut Polytope
The feasible set of the MAXCUT problem is

C={XeS"'|X=w", ve{-11}"}

A simple relaxation gives the outer approximation to its convex hull.
Here n = 11; the set has affine dimension 55; a projection is shown below
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Example
SUppOSG the Sample Space is ) = {f17 f27 f37 f4} X {gla 92, 93, 94}

The unnormalized probabilities of (f, g) € €) are given by

g1 g2 gs g4
fill 6 20
Ve

/3
fa

s oy O
DO —

L 2
2 0
0 1

o Player 1 measures f, i.e., Y! is the set of horizontal strips

and would like to estimate ¢, i.e, X! is the set of vertical strips

e Player 2 measures g and would like to estimate f
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Example

Objective: maximize the
expected number of
correct estimates

g1 g2 gs g4

h
f2
13
fa

e The optimal is 1.1875

16 20

= O O

1 2 4
2 0 1
0 1 2

S. Lall, Stanford 2005.12.11.02

Optimal decision rules are

Kl

0100]
0001
1000

YV A f fs fu

1000

0010]
1000
0100

XLl 91 91 9o

Y? g1 9 g3 g4

0100

X\ s fi o fo

e These are simply the maximum a-posteriori probability classifiers
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Example

Objective: maximize the probability that both estimates are correct

gi 92 g3 g4

fill1 6 2 0

fol 01 2 4

f316 2 0 1

faird 01 2

Optimal decision rules are

YU L o fs fa Y2 g1 g2 93 94
XelstQQ 94 91 93 Xe25tf3 Ji Ja o

e The relaxation of the lifted problem is tight
e The optimal probability that both estimates are correct is 0.5313

e MAP estimates are not optimal; they achieve 0.5
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Example

Objective: maximize the probability that at least one estimate is correct

g1 92 g3 g4
fill1 6 20
o

13
/4

1 2 4
2 0 1
0 1 2

= O O

e The relaxation of the lifted problem is not tight; it gives upper bound
of 0.875

e The following decision rules (constructed by projection) achieve 0.8438

YU L fs fa Y? g1 g2 93 94
XelstQQ g4 g1 g1 Xe25tf1 Is i fa

e MAP estimates achieve 0.6875
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Heuristic 1: MAP
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g1 92 g3 g4

00 0
0

h
f2
/3
fa

oS O K- B
O - B

oo 5o
=~ O O

The optimal probability that both estimates are correct is %, achieved by

Player 1 sees: | f1 o f3 [ Player 2 sees:| g1 g2 g3 ga
Player 1 guesses: | g1 g2 g3 g4 Player 2 guesses: | f1 o f3 fu

If both just guess most likely outcome, achieved probability is %.
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Heuristic 2: Person by Person Optimality

1. Choose arbitrary initial policies v, and ..
Hold ~5 fixed. Choose best v, given ..
Hold new ~y; fixed. Choose best v given this .

=~ W N

Continue until no more improvement.

PBPO value is 1000 times the optimal! Almost as bad as the worst policy.
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Lift and Project Performance Guarantee

e We would like to maximize reward; all rewards are nonnegative.
e Use the above LP relaxation together with a projection procedure

e The computed policies always achieve a a reward of at least

optimal reward

min{ |Uy|, |Us|}

This gives an upper bound, a feasible policy, and a performance guarantee
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Markov Decision Processes
We will now consider a Markov Decision Process where
e X,(t) is the event that the system is in state ¢ at time ¢

e A;(t) is the event that action j is taken at time ¢

We assume for simplicity that for every stationary policy the chain is irre-
ducible and aperiodic

o Transition probabilities: A;;, = Prob(X;(t + 1) | X;(t) N Ax(t))
o Mixed policy: K, = Prob(X;(t) N Ax(t))

o Cost function: Wj, = cost of action k in state j
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Markov Decision Processes

The centralized solution

minimize

subject to

S. Lall, Stanford 2005.12.11.02
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Decentralized Markov Decision Processes
e Two sets of states X7 = {X7, ..., XP}
e Two transition matrices A, = Prob(X}(t + 1) | X[(t) N A}(t))

e Two controllers K7, = Prob(X7(t) N Aj(t))

o Cost function W ik, = cost of actions ky, ky in states 7,
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Decentralized Markov Decision Processes

minimize Z Wi ko S gy ok ey
J1:J1,k1,k2
: 1 2
subject to K jokrky = K55, K,
p _ p P
Z Kz'r o Z Aiijjk (1)
r 7k
K? > 0 (2)

) Kh=1 (3)
1,k

e Each of constraints (1)—(3) can be multiplied by K ? to construct a
valid constraint in lifted variables /K

e The resulting linear program gives a lower bound on the optimal cost
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Exact Solution

If the solution K to the lifted linear program has the form

L 1 2
Kj1j2k1k2 — K'lle'

J Joko

then the controller is an optimal decentralized controller.

This corresponds to the usual rank conditions in e.g., MAXCUT.

Projection
If not, we need to project the solution
o K defines a pdf on X! x X? x U' x U?

e We project by constructing the marginal pdf on X? x U?
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Example: Medium-Access Control

Q\
QQ/

e [wo transmitters, each with a queue that can hold up to 3 packets

e p; = probability that £ — 1 packets arrive at queue a

p'=1[0.7 02 0.05 0.05] p*=][0.6 0.3 0.075 0.025]

e At each time step, each transmitter sees how many packets are in its
queue, and sends some of them; then new packets arrive

e Packets are lost when queues overflow, or when there is a collision,
I.e., both transmit at the same time
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Example: Medium Access

This is a Decentralized Markov Decision Process, where
e Each MDP has 4 states; the no. of packets in the queue
e Each MDP has 4 actions; transmit 0, 1, 2, 3 packets
e State transitions are determined by arrival probabilities and actions

e Cost is total number of packets lost;
Each queue loses all packets sent if there is a collision

Each queue loses packets due to overflows
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Example: Medium Access

Optimal policies for each player are

queue occupancy |0 1 2 3 queue occupancy |0 1 2 3
number sent 0 0 2 3 number sent|0 0 0 3

e Expected number of packets lost per period is 0.2202

e The policy always transmit loses 0.3375 per period

6000 - : : 6000

5000 5000

4000 4000 -

3000 - 3000 queue 2
successful

2000 - 2000 -

1000 - 1000 - . .
collisions

—————————— 0 overflows

0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
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Summary

e Decentralized control problems are inherently computationally hard

e We have developed

e Efficient algorithms to construct suboptimal solutions
e Upper bounds on achievable performance

e Guaranteed performance ratio

e Much more

e topology independent controllers
e algorithms that exploit structure
e peer-to-peer techniques

e other applications: robotics, sensor networks



