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Decentralized Control

G1 G2 G3 G4 G5

K1 K2 K3 K4 K5

y1 u1 y2 u2 y3 u3 y4 u4 y5 u5

Control design problem is to find K which is block diagonal, whose diagonal
blocks are 5 separate controllers.
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Example: Communicating Controllers

Often we do not want perfectly decentralized control; we may achieve better
performance by allowing controllers to communicate, both

• to receive measurements from other aircraft,

• and to exchange data with other controllers.

G1 G2 G3

K1 K2 K3

D D

D D

Here, we need to design 3 separate controllers.



4 S. Lall, Stanford 2005.12.11.02

Research directions

• Spacetime models

• Infinite and finite spatial extent

• Synthesis procedures via SDP

• Decentralization structure via information passing

• Structured synthesis

• Decentralized structure specified in advance

• Quadratic invariance conditions on solvability

• See talk by Mike Rotkowitz

• Dynamic programming

• Stochastic finite state systems

• Relaxation approach
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Finite-State Stochastic Systems

In this talk

• Look at dynamics specified by Markov Decision Processes.

• Not linear, but finite state

• New semidefinite programming relaxations

• Randy Cogill, Mike Rotkowitz, Ben Van Roy

Many applications:

• Decision problems: e.g., task allocation problems for vehicles

• Detection problems: e.g., physical sensing, communication
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Example: Medium-Access Control

• Two transmitters, each with a queue that can hold up to 3 packets

• pa
k = probability that k − 1 packets arrive at queue a

p1 =
[

0.7 0.2 0.05 0.05
]

p2 =
[

0.6 0.3 0.075 0.025
]

• At each time step, each transmitter sees how many packets are in its
queue, and sends some of them; then new packets arrive

• Packets are lost when queues overflow, or when there is a collision,
i.e., both transmit at the same time
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Example: Medium-Access Control

We would like a control policy for each queue, i.e., a function mapping

number of packets in the queue 7→ number of packets sent

• One possible policy; transmit all packets in the queue.

Causes large packet loss due to collisions.

• The other extreme; wait until the queue is full

Causes large packet loss due to overflow.

• We’d like to find the policy that minimizes the expected number of
packets lost per period.
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Centralized Control

• Each transmitter can see how many packets are in the other queue

• In this case, we look for a single policy, mapping

pair of queue occupancies 7→ pair of transmission lengths

Decentralized Control

• Each transmitter can only see the number of packets in its own queue

• In this case, we look for two policies, each mapping

queue occupancy 7→ transmission length



9 S. Lall, Stanford 2005.12.11.02

Medium Access: Centralized Solution

The optimal policy is

Transmitter 2 state

Transmitter 1 state

0 1 2 3
0 (0,0) (0,1) (0,2) (0,3)

1 (1,0) (1,0) (0,2) (0,3)

2 (2,0) (2,0) (2,0) (0,3)

3 (3,0) (3,0) (3,0) (3,0)

• Easy to compute via dynamic programming

• Each transmitter needs to know the state of the other

• We would like a decentralized control law
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Markov Decision Processes

The above medium-access control problem is an example of a Markov

Decision Process (MDP)

• n states, and m actions, hence mn possible centralized policies

• However, the centralized problem is solvable by linear programming

Decentralized control

• NP-hard, even with just two policies, even non-dynamic case

• Would like efficient algorithms

• Hence focus on suboptimal solutions
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Static Problems

• Called classification or hypothesis testing

• e.g., a radar system sends out n pulses, and measures y reflections

• The cost depends on the number of false positives/negatives.

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25
prob(y|X1)
prob(y|X2)

p(y|X1) = prob. of receiving y reflections given no aircraft present

p(y|X2) = prob. of receiving y reflections given an aircraft present
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Static Centralized Formulation

• x is the state, with prior pdf Prob(x) = p(x)

• y = h(x, w) is the measurement

• w is sensor noise

Choosing control action u results in cost C(u, x)

Represent sensing by transition matrix A(y, x) = Prob(y |x)

Problem: find γ : Y → U to minimize the expected cost:

∑

x,y

p(x)A(y, x)C
(

γ(y), x
)
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Static Decentralized Formulation

• x is the state, with prior pdf Prob(x) = p(x)

• yi = hi(x, wi) is the i’th measurement

• wi is noise at i’th sensor

Choosing control actions u1, . . . , um results in cost C(u1, . . . , um, x)

y = (y1, . . . , ym) given by transitions A(y, x) = Prob(y |x)

Problem: find γ1, . . . , γm to minimize the expected cost:

∑

x,y

p(x)A(y, x)C
(

γ1(y1), . . . , γm(ym), x
)
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Change of variables

Represent the policy by a matrix

Kyu =

{

1 if γ(y) = u

0 otherwise

This matrix K satisfies

• K1 = 1, that is K is a stochastic matrix.

• K is Boolean

Then the expected cost is
∑

x,y

pxAyxC
(

γ(y), x
)

=
∑

x,y,u

pxAyxCuxKyu
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Optimization

Let Wyu =
∑

x CuxAyxpx, the cost of decision u when y is measured.

minimize
∑

y,u

WyuKyu

subject to K1 = 1

Kyu ∈ {0, 1} for all y, u

• nm variables Kij, with both linear and Boolean constraints

• Just m easy problems; pick γ(y) = arg min
u

Wyu
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Linear Programming Relaxation

Another solution: relax the Boolean constraints:

• For estimation: interpret Kyu as belief in the estimate u

• For control: we have a mixed policy Kyu = Prob(u | y)

Relaxation gives the linear program:

minimize
∑

y,u

WyuKyu

subject to K1 = 1

K ≥ 0

It is easy to show that this gives the optimal cost and rounding gives the
optimal controller.
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Decentralization Constraints

Decentralization imposes constraints on K(y1, . . . , ym, u1, . . . , um).

Measurement constraint: controller i can only measure measurement i

Prob(ui | y) = Prob(ui | yi)

Independence constraint: for mixed policies, controllers i and j use inde-
pendent sources of randomness to generate ui and uj

Prob(u | y) =

m
∏

i=1

Prob(ui | yi)
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Decentralization Constraints

We call a controller K decentralized if

K(y1, . . . , ym, u1, . . . , um) = K1(y1, u1) . . . Km(ym, um)

for some K1, . . . , Km

If K is a deterministic controller y = γ(u), this is equivalent to

γ(u1, u2) =
(

γ1(u1), γ2(u2)
)
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The Decentralized Static Control Problem

minimize
∑

y,u

Wy1y2u1u2
Ky1y2u1u2

subject to Ky1y2u1u2
= K1

y1u1
K2

y2u2

K i ≥ 0

K i
1 = 1

K i
ab ∈ {0, 1} for all a, b

• This problem is NP-hard

• In addition to linear constraints, we have bilinear constraints
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Boolean Constraints

One can show the following facts

• Removing the Boolean constraints does not change the optimal value

i.e., we can simplify the constraint set

• Then there exists an optimal solution which is Boolean

i.e., using a mixed policy does not achieve better performance than a
deterministic policy
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Relaxing the Constraints

Now we would like to solve

minimize
∑

y,u

Wy1y2u1u2
Ky1y2u1u2

subject to Ky1y2u1u2
= K1

y1u1
K2

y2u2

K i ≥ 0

K i
1 = 1

• Still NP-hard, because it would solve the original problem.

• Removing the bilinear constraint gives the centralized problem.

This is a trivial lower bound on the achievable cost
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Valid Constraints

For any decentralized controller, we know

∑

u1

Ky1y2u1u2
= K2

y2u2

• The interpretation is that, given measurements y1 and y2, averaging
over the decisions of controller 1 does not affect the distribution of
the decisions of controller 2

• Easy to see, since K1 is a stochastic matrix, and

Ky1y2u1u2
= K1

y1u1
K2

y2u2
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Valid Constraints

• Adding these new constraints leaves the optimization unchanged.

• But it changes the relaxation. Dropping the bilinear constraint gives
a tighter lower bound than the centralized problem.

minimize
∑

y,u

Wy1y2u1u2
Ky1y2u1u2

subject to Ky1y2u1u2
= K1

y1u1
K2

y2u2

∑

u1

Ky1y2u1u2
= K2

y2u2

∑

u2

Ky1y2u1u2
= K1

y1u1



















new valid

constraints

K i ≥ 0, K i
1 = 1
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Synthesis Procedure

1. Solve the linear program

minimize
∑

y,u

Wy1y2u1u2
Ky1y2u1u2

subject to
∑

u1

Ky1y2u1u2
= K2

y2u2

∑

u2

Ky1y2u1u2
= K1

y1u1

K i ≥ 0, K i
1 = 1

The optimal value gives a lower bound on the achievable cost

2. If Ky1y2u1u2
= K1

y1u1
K2

y2u2
then the solution is optimal.

If not, use K1 and K2, as approximate solutions.
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Lifting

Lifting is a general approach for constructing primal relaxations; the idea is

• Introduce new variables Y which are polynomial in x

This embeds the problem in a higher dimensional space

• Write valid constraints in the new variables

• The feasible set of the original problem is the projection of the lifted
feasible set
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Example: Minimizing a Polynomial

We’d like to find the minimum of f =
∑6

k=0 akx
k

Pick new variables Y = g(x) where

g(x) =









1 x x2 x3

x x2 x3 x4

x2 x3 x4 x5

x3 x4 x5 x6









and C =













a0
a1

2
a2

2
a3

2

0 0 a4

2

0 a5

2

a6













Then an equivalent problem is

minimize traceCY

subject to Y � 0

Y11 = 1 Y24 = Y33 Y22 = Y13 Y14 = Y23

Y = g(x)

Dropping the constraint Y = g(x) gives an SDP relaxation of the problem
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The Dual SDP Relaxation

The SDP relaxation has a dual, which is also an SDP.

Example

Suppose f = x6 + 4x2 + 1, then the SDP dual relaxation is

maximize t

subject to









1 − t 0 2 + λ2 −λ3

0 −2λ2 λ3 λ1

2 + λ2 λ3 −2λ1 0
−λ3 λ1 0 1









� 0

this is exactly the condition that f − t be sum of squares
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Lifting for General Polynomial Programs

• When minimizing a polynomial, lifting gives an SDP relaxation of
whose dual is an SOS condition

• When solving a general polynomial program with multiple constraints,
there is a similar lifting

• This gives an SDP, whose feasible set is a relaxation of the feasible
set of the original problem

• The corresponding dual SDP is a Positivstellensatz refutation

• Solving the dual certifies a lower bound on the original problem
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Example: The Cut Polytope

The feasible set of the MAXCUT problem is

C =
{

X ∈ S
n | X = vvT , v ∈ {−1, 1}n

}

A simple relaxation gives the outer approximation to its convex hull.
Here n = 11; the set has affine dimension 55; a projection is shown below

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6
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Example

Suppose the sample space is Ω = {f1, f2, f3, f4} × {g1, g2, g3, g4}

The unnormalized probabilities of (f, g) ∈ Ω are given by

g1 g2 g3 g4

f1 1 6 2 0
f2 0 1 2 4
f3 6 2 0 1
f4 4 0 1 2

• Player 1 measures f , i.e., Y 1 is the set of horizontal strips

and would like to estimate g, i.e, X1 is the set of vertical strips

• Player 2 measures g and would like to estimate f
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Example

Objective: maximize the
expected number of

correct estimates

g1 g2 g3 g4

f1 1 6 2 0
f2 0 1 2 4
f3 6 2 0 1
f4 4 0 1 2

Optimal decision rules are

K1 =









0 1 0 0
0 0 0 1
1 0 0 0
1 0 0 0









Y 1 f1 f2 f3 f4

X1
est g2 g4 g1 g2

K2 =









0 0 1 0
1 0 0 0
0 1 0 0
0 1 0 0









Y 2 g1 g2 g3 g4

X2
est f3 f1 f2 f2

• The optimal is 1.1875

• These are simply the maximum a-posteriori probability classifiers
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Example

Objective: maximize the probability that both estimates are correct

g1 g2 g3 g4

f1 1 6 2 0
f2 0 1 2 4
f3 6 2 0 1
f4 4 0 1 2

Optimal decision rules are

Y 1 f1 f2 f3 f4

X1
est g2 g4 g1 g3

Y 2 g1 g2 g3 g4

X2
est f3 f1 f4 f2

• The relaxation of the lifted problem is tight

• The optimal probability that both estimates are correct is 0.5313

• MAP estimates are not optimal; they achieve 0.5
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Example

Objective: maximize the probability that at least one estimate is correct

g1 g2 g3 g4

f1 1 6 2 0
f2 0 1 2 4
f3 6 2 0 1
f4 4 0 1 2

• The relaxation of the lifted problem is not tight; it gives upper bound
of 0.875

• The following decision rules (constructed by projection) achieve 0.8438

Y 1 f1 f2 f3 f4

X1
est g2 g4 g1 g1

Y 2 g1 g2 g3 g4

X2
est f1 f3 f1 f4

• MAP estimates achieve 0.6875
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Heuristic 1: MAP

g1 g2 g3 g4

f1
1
28 0 0 0

f2
1
14

3
28 0 0

f3 0 1
7

5
28 0

f4 0 0 3
14

1
4

The optimal probability that both estimates are correct is 4
7, achieved by

Player 1 sees: f1 f2 f3 f4

Player 1 guesses: g1 g2 g3 g4

Player 2 sees: g1 g2 g3 g4

Player 2 guesses: f1 f2 f3 f4

If both just guess most likely outcome, achieved probability is 1
4.
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Heuristic 2: Person by Person Optimality

1. Choose arbitrary initial policies γ1 and γ2.

2. Hold γ2 fixed. Choose best γ1 given γ2.

3. Hold new γ1 fixed. Choose best γ2 given this γ1.

4. Continue until no more improvement.

u1 = 0 u1 = 1

u2 = 0 1000 1001

u2 = 1 1001 1

PBPO value is 1000 times the optimal! Almost as bad as the worst policy.
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Lift and Project Performance Guarantee

• We would like to maximize reward; all rewards are nonnegative.

• Use the above LP relaxation together with a projection procedure

• The computed policies always achieve a a reward of at least

optimal reward

min{|U1|, |U2|}

This gives an upper bound, a feasible policy, and a performance guarantee
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Markov Decision Processes

We will now consider a Markov Decision Process where

• Xi(t) is the event that the system is in state i at time t

• Aj(t) is the event that action j is taken at time t

We assume for simplicity that for every stationary policy the chain is irre-
ducible and aperiodic

• Transition probabilities: Aijk = Prob(Xi(t + 1) |Xj(t) ∩ Ak(t))

• Mixed policy: Kjk = Prob(Xj(t) ∩ Ak(t))

• Cost function: Wjk = cost of action k in state j
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Markov Decision Processes

The centralized solution

minimize
∑

j,k

WjkKjk

subject to
∑

r

Kir =
∑

j,k

AijkKjk

K ≥ 0
∑

j,k

Fjk = 1
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Decentralized Markov Decision Processes

• Two sets of states Xp = {Xp
1 , . . . , X

p
n}

• Two transition matrices A
p
ijk = Prob(Xp

i (t + 1) |Xp
j (t) ∩ A

p
k(t))

• Two controllers K
p
jk = Prob(Xp

j (t) ∩ A
p
k(t))

• Cost function Wj1j2k1k2
= cost of actions k1, k2 in states j1, j2
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Decentralized Markov Decision Processes

minimize
∑

j1,j1,k1,k2

Wj1j1k1k2
Kj1j2k1k2

subject to Kj1j2k1k2
= K1

j1k1
K2

j2k2

∑

r

K
p
ir =

∑

j,k

A
p
ijkK

p
jk (1)

Kp ≥ 0 (2)
∑

j,k

K
p
jk = 1 (3)

• Each of constraints (1)–(3) can be multiplied by K3−p to construct a
valid constraint in lifted variables K

• The resulting linear program gives a lower bound on the optimal cost
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Exact Solution

If the solution K to the lifted linear program has the form

Kj1j2k1k2
= K1

j1k1
K2

j2k2

then the controller is an optimal decentralized controller.

This corresponds to the usual rank conditions in e.g., MAXCUT.

Projection

If not, we need to project the solution

• K defines a pdf on X1 × X2 × U 1 × U 2

• We project by constructing the marginal pdf on Xp × U p
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Example: Medium-Access Control

• Two transmitters, each with a queue that can hold up to 3 packets

• pa
k = probability that k − 1 packets arrive at queue a

p1 =
[

0.7 0.2 0.05 0.05
]

p2 =
[

0.6 0.3 0.075 0.025
]

• At each time step, each transmitter sees how many packets are in its
queue, and sends some of them; then new packets arrive

• Packets are lost when queues overflow, or when there is a collision,
i.e., both transmit at the same time
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Example: Medium Access

This is a Decentralized Markov Decision Process, where

• Each MDP has 4 states; the no. of packets in the queue

• Each MDP has 4 actions; transmit 0, 1, 2, 3 packets

• State transitions are determined by arrival probabilities and actions

• Cost is total number of packets lost;

Each queue loses all packets sent if there is a collision

Each queue loses packets due to overflows
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Example: Medium Access

Optimal policies for each player are

queue occupancy 0 1 2 3
number sent 0 0 2 3

queue occupancy 0 1 2 3
number sent 0 0 0 3

• Expected number of packets lost per period is 0.2202

• The policy always transmit loses 0.3375 per period
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Summary

• Decentralized control problems are inherently computationally hard

• We have developed

• Efficient algorithms to construct suboptimal solutions

• Upper bounds on achievable performance

• Guaranteed performance ratio

• Much more

• topology independent controllers

• algorithms that exploit structure

• peer-to-peer techniques

• other applications: robotics, sensor networks


