Lectures 17 \& 18: Numerical methods

- Spectral (Galerkin) method
* Basis function expansion
\star Compute inner products to determine equation for spectral coefficients
- Pseudo-spectral method
* Satisfy equation at the set of "collocation" points
\star Connection to polynomial interpolation
- Chebyshev polynomials
* Why they should be used
* Basic properties

Online resources

- Freely available books/papers
* Jonh P. Boyd

Chebyshev and Fourier Spectral Methods

* Lloyd N. Trefethen

Finite Difference and Spectral Methods for Ordinary and Partial Differential Equations

* Weideman and Reddy

A Matlab Differentiation Matrix Suite

- Publicly available software
\star A Matlab Differentiation Matrix Suite
http://dip.sun.ac.za/~weideman/research/differ.html
* Chebfun
http://www2.maths.ox.ac.uk/chebfun/

$$
\begin{aligned}
\psi_{t}(x, t) & =\psi_{x x}(x, t) \\
\psi(x, 0) & =\psi_{0}(x) \\
\psi(\pm 1, t) & =0
\end{aligned}
$$

Basis function expansion

$$
\begin{aligned}
\psi(x, t) & =\sum_{n=1}^{\infty} \alpha_{n}(t) \phi_{n}(x) \\
\alpha_{n}(t) & - \text { (unknown) spectral coefficients } \\
\phi_{n}(x) & - \text { (known) basis functions }
\end{aligned}
$$

- Approximate solution by

$$
\psi(x, t) \approx \sum_{n=1}^{N} \alpha_{n}(t) \phi_{n}(x)=\left[\begin{array}{lll}
\phi_{1}(x) & \cdots & \phi_{N}(x)
\end{array}\right]\left[\begin{array}{c}
\alpha_{1}(t) \\
\vdots \\
\alpha_{N}(t)
\end{array}\right]
$$

substitute into the equation and take an inner product with $\left\{\phi_{m}\right\}$

$$
\left[\begin{array}{ccc}
\left\langle\phi_{1}, \phi_{1}\right\rangle & \cdots & \left\langle\phi_{1}, \phi_{N}\right\rangle \\
\vdots & & \vdots \\
\left\langle\phi_{N}, \phi_{1}\right\rangle & \cdots & \left\langle\phi_{N}, \phi_{N}\right\rangle
\end{array}\right]\left[\begin{array}{c}
\dot{\alpha}_{1}(t) \\
\vdots \\
\dot{\alpha}_{N}(t)
\end{array}\right]=\left[\begin{array}{ccc}
\left\langle\phi_{1}, \phi_{1}^{\prime \prime}\right\rangle & \cdots & \left\langle\phi_{1}, \phi_{N}^{\prime \prime}\right\rangle \\
\vdots & & \vdots \\
\left\langle\phi_{N}, \phi_{1}^{\prime \prime}\right\rangle & \cdots & \left\langle\phi_{N}, \phi_{N}^{\prime \prime}\right\rangle
\end{array}\right]\left[\begin{array}{c}
\alpha_{1}(t) \\
\vdots \\
\alpha_{N}(t)
\end{array}\right]
$$

- Done if basis functions satisfy BCs

Otherwise, need additional conditions on spectral coefficients

$$
\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{lll}
\phi_{1}(-1) & \cdots & \phi_{N}(-1) \\
\phi_{1}(+1) & \cdots & \phi_{N}(+1)
\end{array}\right]\left[\begin{array}{c}
\alpha_{1}(t) \\
\vdots \\
\alpha_{N}(t)
\end{array}\right]
$$

- Advantage: superior convergence (if basis functions selected properly)
- Problem: requires integration
* Cumbersome in spatially-varying and nonlinear systems

Example: Orr-Sommerfeld equation in fluid mechanics

$$
\Delta \psi_{t}=\left(\mathrm{j} k_{x}\left(U^{\prime \prime}(y)-U(y) \Delta\right)+\frac{1}{R} \Delta^{2}\right) \psi
$$

Polynomial interpolation

- Approximate $f(x)$ by a polynomial that matches $f(x)$ at interpolation points

$$
p_{N-1}\left(x_{i}\right)=f\left(x_{i}\right), \quad i=\{1, \ldots, N\}
$$

- Examples:
$N=2 \Rightarrow$ Linear Interpolation

$f(x) \approx \frac{x-x_{1}}{x_{0}-x_{1}} f\left(x_{0}\right)+\frac{x-x_{0}}{x_{1}-x_{0}} f\left(x_{1}\right)$
$N=3 \Rightarrow$ Quadratic Interpolation

$f(x) \approx \frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} f\left(x_{0}\right)+$ $\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} f\left(x_{1}\right)+$ $\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} f\left(x_{2}\right)$

Lagrange interpolation formula

$$
\begin{aligned}
p_{N}(x) & =\sum_{i=0}^{N} f\left(x_{i}\right) C_{i}(x) \\
C_{i}(x) & =\prod_{j=0, j \neq i}^{N} \frac{x-x_{j}}{x_{i}-x_{j}}
\end{aligned}
$$

- Cardinal functions $C_{i}\left(x_{j}\right)=\delta_{i j}$
* Not efficient for computations
* Suitable for theoretical arguments
- Runge Phenomenon

$$
f(x)=\frac{1}{1+x^{2}}, x \in[-5,5]
$$

* Evenly spaced points \Rightarrow convergence for $|x| \leq 3.63$

Choice of grid points

- Cauchy interpolation error theorem
$\left.\begin{array}{l}f \quad-\text { has } N+1 \text { derivatives } \\ p_{N}-\text { interpolant of degree } N\end{array}\right\} \Rightarrow f(x)-p_{N}(x)=\frac{f^{(N+1)}(\xi)}{(N+1)!} \prod_{i=0}^{N}\left(x-x_{i}\right)$
- Chebyshev minimal amplitude theorem
* Among all polynomials $q_{N}(x)$ of degree N, with leading coefficient 1 ,

$$
\frac{T_{N}(x)}{2^{N-1}}=\frac{N \text { th Chebyshev polynomial }}{2^{N-1}}
$$

has the smallest $L_{\infty}[-1,1]$ norm

$$
\sup _{x \in[-1,1]}\left|q_{N}(x)\right| \geq \sup _{x \in[-1,1]}\left|\frac{T_{N}(x)}{2^{N-1}}\right|=\frac{1}{2^{N-1}}, \quad \text { for all } q_{N}(x)
$$

- Select polynomial part of $f(x)-p_{N}(x)$ as

$$
\prod_{i=0}^{N}\left(x-x_{i}\right)=\frac{T_{N+1}(x)}{2^{N}}
$$

- Optimal interpolation points: roots of $T_{N+1}(x)$

$$
x_{i}=\cos \left(\frac{(2 i-1) \pi}{2(N+1)}\right), \quad i=\{1, \ldots, N+1\}
$$

Chebyshev polynomials

- Solutions to Sturm-Liouville Problem

$$
\left(1-x^{2}\right) T_{n}^{\prime \prime}(x)-x T_{n}^{\prime}(x)+n^{2} T_{n}(x)=0, x \in[-1,1], \quad n=0,1, \ldots
$$

- Three-term recurrence

$$
\left\{T_{0}=1 ; T_{1}(x)=x ; T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x), n \geq 1\right\}
$$

- Alternative definition

$$
T_{n}(\cos (t))=\cos (n t) \Rightarrow\left|T_{n}(x)\right| \leq 1, \text { for all } x \in[-1,1], n=0,1, \ldots
$$

- Inner product

$$
\left\langle T_{m}, T_{n}\right\rangle_{w}=\int_{-1}^{1} \frac{T_{m}(x) T_{n}(x)}{\sqrt{1-x^{2}}} \mathrm{~d} x=\left\{\begin{array}{cl}
0 & m \neq n \\
\pi & m=n=0 \\
\frac{\pi}{2} & m=n \neq 0
\end{array}\right.
$$

- Collocation points

Gauss-Chebyshev: $\quad x_{i}=\cos \left(\frac{(2 i-1) \pi}{2 N}\right), \quad i=\{1, \ldots, N\}$ Gauss-Lobatto: $\quad x_{i}=\cos \left(\frac{\pi i}{N-1}\right), \quad i=\{0, \ldots, N-1\}$

- Integration

$$
\int_{-1}^{x} T_{n}(\xi) \mathrm{d} \xi=\frac{T_{n+1}(x)}{2(n+1)}+\frac{T_{n-1}(x)}{2(n-1)}, \quad n \geq 2
$$

Gaussian integration

- Approximate $f(x)$ by a polynomial that matches $f(x)$ at interpolation points

$$
\begin{aligned}
p_{N}\left(x_{i}\right) & =f\left(x_{i}\right), \quad i=\{0, \ldots, N\} \\
f(x) & \approx p_{N}(x)=\sum_{i=0}^{N} f\left(x_{i}\right) C_{i}(x)
\end{aligned}
$$

- Evaluate integral of $f(x)$ by integrating $p_{N}(x)$

$$
\int_{a}^{b} f(x) \mathrm{d} x \approx \sum_{i=0}^{N} w_{i} f\left(x_{i}\right)
$$

Quadrature weights:

$$
w_{i}=\int_{a}^{b} C_{i}(x) \mathrm{d} x
$$

- Gaussian integration: exact if integrand is a polynomial of degree N
- Can be made exact for polynomials of degree $2 N+1$ by optimal selection of \star interpolation points $\left\{x_{i}\right\}$
\star weights $\left\{w_{i}\right\}$
- Gauss-Jacobi integration
* orthogonal polynomials w.r.t. the inner product with weight function $\rho(x)$
\star interpolation points: zeros of $p_{N+1}(x)$
* quadrature formula: exact for polynomials of degree $2 N+1$ or smaller

$$
\int_{a}^{b} f(x) \rho(x) \mathrm{d} x=\sum_{i=0}^{N} w_{i} f\left(x_{i}\right)
$$

- Good candidates for quadrature points:

$$
\text { Gauss-Lobatto: } \quad x_{i}=\cos \left(\frac{\pi i}{N}\right), \quad i=\{0, \ldots, N\}
$$

Interpolation by quadrature

- Orthogonality w.r.t. discrete inner product

$$
\left\langle\phi_{i}, \phi_{j}\right\rangle=\delta_{i j} \Rightarrow\left\langle\phi_{i}, \phi_{j}\right\rangle_{G}=\sum_{m=0}^{N} w_{m} \phi_{i}\left(x_{m}\right) \phi_{j}\left(x_{m}\right)=\delta_{i j}
$$

- Basis function expansion

$$
f(x)=\sum_{n=0}^{\infty} \alpha_{n} \phi_{n}(x)=\sum_{n=0}^{N} \alpha_{n} \phi_{n}(x)+E_{N}(x)
$$

- Discrete vs. exact spectral coefficients

$$
\begin{aligned}
\alpha_{m, G} & =\left\langle\phi_{m}, f\right\rangle_{G} \\
& =\left\langle\phi_{m}, \sum_{n=0}^{N} \alpha_{n} \phi_{n}+E_{N}\right\rangle_{G} \\
& =\sum_{n=0}^{N} \alpha_{n}\left\langle\phi_{m}, \phi_{n}\right\rangle_{G}+\left\langle\phi_{m}, E_{N}\right\rangle_{G} \\
& =\alpha_{m}+\left\langle\phi_{m}, E_{N}\right\rangle_{G}
\end{aligned}
$$

Error bound for Chebyshev interpolation

- Error between Galerkin and Pseudo-spectral twice the sum of absolute values of neglected spectral coefficients
$\star f(x)=\sum_{n=0}^{\infty} \alpha_{n} T_{n}(x)$
* $p_{N}(x)$ - polynomial that interpolates $f(x)$ at Gauss-Lobatto points

$$
\left|f(x)-p_{N}(x)\right| \leq 2 \sum_{n=N+1}^{\infty}\left|\alpha_{n}\right|, \quad \text { for all } N \text { and all } x \in[-1,1]
$$

Back to cardinal functions

- Lagrange interpolation

$$
\begin{aligned}
p_{N}(x) & =\sum_{i=0}^{N} f\left(x_{i}\right) C_{i}(x) \\
C_{i}(x) & =\prod_{j=0, j \neq i}^{N} \frac{x-x_{j}}{x_{i}-x_{j}}
\end{aligned}
$$

Cardinal functions $C_{i}\left(x_{j}\right)=\delta_{i j} \|$

- Sinc functions

$$
\begin{aligned}
C_{k}(x ; h) & =\frac{\sin \left(\frac{(x-k h) \pi}{h}\right)}{\frac{(x-k h) \pi}{h}}=\operatorname{sinc}\left(\frac{x-k h}{h}\right) \\
\left\{x_{j}\right. & =j h ; j \in \mathbb{Z}\} \Rightarrow C_{k}\left(x_{j} ; h\right)=\delta_{j k}
\end{aligned}
$$

Approximate f by

$$
f(x)=\sum_{j=-\infty}^{\infty} f\left(x_{j}\right) C_{j}(x ; h)
$$

Cardinal functions for Chebyshev polynomials

- Gauss-Chebyshev points: zeros of $T_{N+1}(x)$
* Taylor series expansion around x_{j}
$T_{N+1}(x)=\underbrace{T_{N+1}\left(x_{j}\right)}_{0}+T_{N+1}^{\prime}\left(x_{j}\right)\left(x-x_{j}\right)+\frac{1}{2} T_{N+1}^{\prime \prime}\left(x_{j}\right)\left(x-x_{j}\right)^{2}+O\left(\left|x-x_{j}\right|^{3}\right))$
Cardinal functions

$$
\left.C_{j}(x)=\frac{T_{N+1}(x)}{T_{N+1}^{\prime}\left(x_{j}\right)\left(x-x_{j}\right)}=1+\frac{T_{N+1}^{\prime \prime}\left(x_{j}\right)\left(x-x_{j}\right)}{2 T_{N+1}^{\prime}\left(x_{j}\right)}+O\left(\left|x-x_{j}\right|^{2}\right)\right)
$$

- Gauss-Lobatto points: zeros of $\left(1-x^{2}\right) T_{N}^{\prime}(x)$

Cardinal functions: $\quad C_{j}(x)=\frac{\left(1-x^{2}\right) T_{N}^{\prime}(x)}{\left.\left(\left(1-x^{2}\right) T_{N}^{\prime}(x)\right)^{\prime}\right|_{x=x_{j}}\left(x-x_{j}\right)}$

Matlab Differentiation Matrix Suite: A Demo

```
%% number of grid points without boundaries (no \pm 1)
N = 50
%% 1st & 2nd order differentiation matrices
[yT,DM] = chebdif(N+2,2);
y = yT(2:end-1);
%% 1st & 2nd derivatives wrt y on a total grid (no BCs)
DT1 = DM(:,:,1);
DT2 = DM(:,:,2);
%% implement homogeneous Dirichlet BCs
%% ammounts to deleting lst rows and columns of DT1 & DT2
D1 = DT1(2:N+1,2:N+1);
D2 = DT2(2:N+1,2:N+1);
%% 4th derivative with Dirichlet & Neumann BCs at both ends
%% D4 - obtained on a grid without \pm 1
[y1,D4] = cheb4c(N+2);
%% e-value decomposition of D2 with Dirichlet BCs
[Vh,Dh] = eig(D2); % compare with analytical results
```

