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Lectures 17 & 18: Numerical methods

• Spectral (Galerkin) method

? Basis function expansion

? Compute inner products to determine equation for spectral coefficients

• Pseudo-spectral method

? Satisfy equation at the set of ”collocation” points

? Connection to polynomial interpolation

• Chebyshev polynomials

? Why they should be used

? Basic properties
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Online resources

• Freely available books/papers

? Jonh P. Boyd
Chebyshev and Fourier Spectral Methods

? Lloyd N. Trefethen
Finite Difference and Spectral Methods for Ordinary and Partial Differential
Equations

? Weideman and Reddy
A Matlab Differentiation Matrix Suite

• Publicly available software

? A Matlab Differentiation Matrix Suite
http://dip.sun.ac.za/∼weideman/research/differ.html

? Chebfun
http://www2.maths.ox.ac.uk/chebfun/

http://www-personal.umich.edu/~jpboyd/AOSS555.html
http://people.maths.ox.ac.uk/trefethen/pdetext.html
http://people.maths.ox.ac.uk/trefethen/pdetext.html
http://web.mit.edu/ehliu/Public/Spring2007/18.354/term_paper/research_papers/matlab_differentiation_matrix_suite.pdf
http://dip.sun.ac.za/~weideman/research/differ.html
http://www2.maths.ox.ac.uk/chebfun/
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Diffusion equation on L2 [−1, 1]

ψt(x, t) = ψxx(x, t)

ψ(x, 0) = ψ0(x)

ψ(±1, t) = 0

Basis function expansion

ψ(x, t) =

∞∑
n=1

αn(t)φn(x)

αn(t) − (unknown) spectral coefficients

φn(x) − (known) basis functions
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Galerkin method
• Approximate solution by

ψ(x, t) ≈
N∑

n=1

αn(t)φn(x) =
[
φ1(x) · · · φN(x)

]  α1(t)
...

αN(t)


substitute into the equation and take an inner product with {φm} 〈φ1, φ1〉 · · · 〈φ1, φN〉

...
...

〈φN , φ1〉 · · · 〈φN , φN〉


 α̇1(t)

...
α̇N(t)

 =

 〈φ1, φ
′′
1〉 · · · 〈φ1, φ′′N〉

...
...

〈φN , φ′′1〉 · · · 〈φN , φ′′N〉


 α1(t)

...
αN(t)


• Done if basis functions satisfy BCs

Otherwise, need additional conditions on spectral coefficients

[
0
0

]
=

[
φ1(−1) · · · φN(−1)
φ1(+1) · · · φN(+1)

] α1(t)
...

αN(t)
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Pros and cons

• Advantage: superior convergence
(if basis functions selected properly)

• Problem: requires integration

? Cumbersome in spatially-varying and nonlinear systems

Example: Orr-Sommerfeld equation in fluid mechanics

∆ψt =

(
jkx (U ′′(y) − U(y) ∆) +

1

R
∆2

)
ψ
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Polynomial interpolation
• Approximate f(x) by a polynomial that matches f(x) at interpolation points

pN−1(xi) = f(xi), i = {1, . . . , N}

• Examples:

N = 2 ⇒ Linear Interpolation N = 3 ⇒ Quadratic Interpolation82 CHAPTER 4. INTERPOLATION, COLLOCATION & ALL THAT

x0 x1

Figure 4.1: Linear interpolation. The dashed line is that linear polynomial which intersects
the function being approximated (solid curve) at the two interpolation points.

4.2 Polynomial interpolation

Before hand-held calculators, tables of mathematical functions were essential survival equip-
ment. If one needed values of the function at points which were not listed in the table, one
used interpolation. The simplest variant, linear interpolation, is to draw a straight line
between the two points in the table which bracket the desired x. The value of the linear
function at x is then taken as the approximation to f(x), i. e.

f(x) ≈ (x− x1)

(x0 − x1)
f(x0) +

(x− x0)

(x1 − x0)
f(x1) [Linear Interpolation] (4.2)

Fig. 4.1 is a graphic proof of the high school theorem: a straight line is completely deter-
mined by specifying any two points upon it; the linear interpolating polynomial is unique.
A more abstract definition is that P1(x) is that unique linear polynomial which satisfies the
two interpolation conditions

P1(x0) = f(x0) ; P1(x1) = f(x1) (4.3)

Linear interpolation is not very accurate unless the tabulated points are very, very close
together, but one can extend this idea to higher order. Fig. 4.2 illustrates quadratic interpo-

x0 x1 x2

Figure 4.2: Schematic of quadratic interpolation. The dashed curve is the unique quadratic
polynomial (i. e., a parabola) which intersects the curve of the function being approximated
(solid) at three points.
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f(x) ≈ x− x1
x0 − x1

f(x0) +
x− x0
x1 − x0

f(x1)

f(x) ≈ (x− x1)(x− x2)
(x0 − x1)(x0 − x2)

f(x0) +

(x− x0)(x− x2)
(x1 − x0)(x1 − x2)

f(x1) +

(x− x0)(x− x1)
(x2 − x0)(x2 − x1)

f(x2)
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Lagrange interpolation formula

pN(x) =
N∑

i=0

f(xi)Ci(x)

Ci(x) =

N∏
j =0, j 6= i

x− xj
xi − xj

• Cardinal functions Ci(xj) = δij

? Not efficient for computations

? Suitable for theoretical arguments

• Runge Phenomenon

f(x) =
1

1 + x2
, x ∈ [−5, 5]

? Evenly spaced points ⇒ convergence for |x| ≤ 3.63

Interactive Demo

http://mathdl.maa.org/images/upload_library/4/vol6/Sarra/Chebyshev.html
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Choice of grid points

• Cauchy interpolation error theorem

f − has N + 1 derivatives

pN − interpolant of degree N

}
⇒ f(x) − pN(x) =

f (N+1)(ξ)

(N + 1)!

N∏
i=0

(x − xi)

• Chebyshev minimal amplitude theorem

? Among all polynomials qN(x) of degree N , with leading coefficient 1,

TN(x)

2N−1
=

N th Chebyshev polynomial
2N−1

has the smallest L∞[−1, 1] norm

sup
x∈ [−1, 1]

|qN(x)| ≥ sup
x∈ [−1, 1]

∣∣∣∣TN(x)

2N−1

∣∣∣∣ =
1

2N−1
, for all qN(x)
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Optimal interpolation points

• Select polynomial part of f(x) − pN(x) as

N∏
i=0

(x − xi) =
TN+1(x)

2N

• Optimal interpolation points: roots of TN+1(x)

xi = cos

(
(2i − 1)π

2 (N + 1)

)
, i = {1, . . . , N + 1}
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Chebyshev polynomials
• Solutions to Sturm-Liouville Problem(

1 − x2
)
T ′′n (x) − xT ′n(x) + n2 Tn(x) = 0, x ∈ [−1, 1], n = 0, 1, . . .

• Three-term recurrence

{T0 = 1; T1(x) = x; Tn+1(x) = 2xTn(x) − Tn−1(x), n ≥ 1}

• Alternative definition

Tn (cos (t)) = cos (n t) ⇒ |Tn(x)| ≤ 1, for all x ∈ [−1, 1], n = 0, 1, . . .
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• Inner product

〈Tm, Tn〉w =

∫ 1

−1

Tm(x)Tn(x)√
1 − x2

dx =


0 m 6= n

π m = n = 0

π

2
m = n 6= 0

• Collocation points

Gauss-Chebyshev: xi = cos

(
(2i − 1)π

2N

)
, i = {1, . . . , N}

Gauss-Lobatto: xi = cos

(
π i

N − 1

)
, i = {0, . . . , N − 1}

• Integration ∫ x

−1
Tn(ξ) dξ =

Tn+1(x)

2 (n + 1)
+

Tn−1(x)

2 (n − 1)
, n ≥ 2
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Gaussian integration

• Approximate f(x) by a polynomial that matches f(x) at interpolation points

pN(xi) = f(xi), i = {0, . . . , N}

f(x) ≈ pN(x) =

N∑
i=0

f(xi)Ci(x)

• Evaluate integral of f(x) by integrating pN(x)

∫ b

a

f(x) dx ≈
N∑

i=0

wi f(xi)

Quadrature weights:

wi =

∫ b

a

Ci(x) dx

• Gaussian integration: exact if integrand is a polynomial of degree N
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• Can be made exact for polynomials of degree 2N + 1 by optimal selection of

? interpolation points {xi}

? weights {wi}

• Gauss-Jacobi integration

? orthogonal polynomials w.r.t. the inner product with weight function ρ(x)

? interpolation points: zeros of pN+1(x)

? quadrature formula: exact for polynomials of degree 2N + 1 or smaller∫ b

a

f(x) ρ(x) dx =

N∑
i=0

wi f(xi)

• Good candidates for quadrature points:

Gauss-Lobatto: xi = cos

(
π i

N

)
, i = {0, . . . , N}
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Interpolation by quadrature
• Orthogonality w.r.t. discrete inner product

〈φi, φj〉 = δij ⇒ 〈φi, φj〉G =

N∑
m=0

wm φi(xm)φj(xm) = δij

• Basis function expansion

f(x) =

∞∑
n=0

αn φn(x) =

N∑
n=0

αn φn(x) + EN(x)

• Discrete vs. exact spectral coefficients

αm,G = 〈φm, f〉G

=

〈
φm,

N∑
n=0

αn φn + EN

〉
G

=

N∑
n=0

αn 〈φm, φn〉G + 〈φm, EN〉G
= αm + 〈φm, EN〉G
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Error bound for Chebyshev interpolation

• Error between Galerkin and Pseudo-spectral
twice the sum of absolute values of neglected spectral coefficients

? f(x) =

∞∑
n=0

αn Tn(x)

? pN(x) – polynomial that interpolates f(x) at Gauss-Lobatto points

|f(x) − pN(x)| ≤ 2

∞∑
n=N+1

|αn|, for all N and all x ∈ [−1, 1]
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Back to cardinal functions
• Lagrange interpolation

pN(x) =
N∑

i=0

f(xi)Ci(x)

Ci(x) =

N∏
j =0, j 6= i

x− xj
xi − xj

Cardinal functions Ci(xj) = δij

• Sinc functions

Ck(x;h) =

sin

(
(x − kh)π

h

)
(x − kh)π

h

= sinc

(
x − kh

h

)

{xj = j h; j ∈ Z} ⇒ Ck(xj;h) = δjk

Approximate f by

f(x) =

∞∑
j =−∞

f(xj)Cj(x;h)
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Cardinal functions for Chebyshev polynomials

• Gauss-Chebyshev points: zeros of TN+1(x)

? Taylor series expansion around xj

TN+1(x) = TN+1(xj)︸ ︷︷ ︸
0

+ T ′N+1(xj) (x − xj) +
1

2
T ′′N+1(xj) (x − xj)

2
+O

(
|x − xj|3

)
)

Cardinal functions

Cj(x) =
TN+1(x)

T ′N+1(xj) (x − xj)
= 1 +

T ′′N+1(xj) (x − xj)

2T ′N+1(xj)
+ O

(
|x − xj|2

)
)

• Gauss-Lobatto points: zeros of (1− x2)T ′N(x)

Cardinal functions: Cj(x) =

(
1 − x2

)
T ′N(x)

((1 − x2)T ′N(x))
′∣∣
x= xj

(x − xj)
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Matlab Differentiation Matrix Suite: A Demo
%% number of grid points without boundaries (no \pm 1)
N = 50

%% 1st & 2nd order differentiation matrices
[yT,DM] = chebdif(N+2,2);
y = yT(2:end-1);

%% 1st & 2nd derivatives wrt y on a total grid (no BCs)
DT1 = DM(:,:,1);
DT2 = DM(:,:,2);

%% implement homogeneous Dirichlet BCs
%% ammounts to deleting 1st rows and columns of DT1 & DT2
D1 = DT1(2:N+1,2:N+1);
D2 = DT2(2:N+1,2:N+1);

%% 4th derivative with Dirichlet & Neumann BCs at both ends
%% D4 - obtained on a grid without \pm 1
[y1,D4] = cheb4c(N+2);

%% e-value decomposition of D2 with Dirichlet BCs
[Vh,Dh] = eig(D2); % compare with analytical results


