Reference: Zelazo Ge Mesbahi CDC'o9

$$
\text { TAG' } 11
$$

$E \ldots$ incidence matrix
L... Laplacian

$$
L(k)=E K E^{T}=\sum_{l=1}^{m} k e_{l} e_{l}^{T}
$$

Structured feedback gain $k=\left[\begin{array}{lll}k_{1} & & \\ & \ddots & \\ & \ddots & k_{m}\end{array}\right]$
Arrive at a structured optional control problem.
Let's first Consider graphs that do not have loops. (trees)
Coordinate transformation:

$$
\left[\begin{array}{l}
\psi(t) \\
\bar{x}(t)
\end{array}\right]=\underbrace{\left[\begin{array}{l}
E T \\
\frac{1}{N} \mathbb{I}^{T}
\end{array}\right]}_{T} x(t)
$$

$\Psi(t) . .$. relative difference between adjacent nodes.
$\bar{x}(t) \quad \cdots$ average mode.
Then,

$$
\left[\begin{array}{c}
\dot{\psi}(t) \\
\dot{\bar{x}}(t)
\end{array}\right]=\left[\begin{array}{cc}
-E_{t}^{\top} E_{t} K & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
\psi(t) \\
\bar{x}(t)
\end{array}\right]+\left[\begin{array}{c}
E_{t}^{\top} \\
\frac{1}{N} \pi^{\top}
\end{array}\right] d(t)
$$

- $\bar{x}(t)$ is preserved when $d(t)=0$, otherwise it drifts with random walk.

$$
\begin{aligned}
\psi(t) & =-E_{t}^{\top} E_{t} K \psi(t)+E_{t}^{\top} d(t) \\
z(t) & =\left[\begin{array}{c}
E_{t}\left(E_{t}^{\top} E_{t}\right)^{-1} \\
-E_{t} k
\end{array}\right] \psi(t)
\end{aligned}
$$

H_{2}-nom from d to z :

$$
J(k)=\frac{1}{2} \operatorname{trace}\left(G^{-1} k^{-1}+G k\right)
$$

where $G=E_{t}^{\top} E_{t}$

$$
\begin{aligned}
J(k) & =\frac{1}{2} \sum_{n=1}^{N-1}\left(\frac{1}{k_{n} g_{n}}+k_{n} g_{n}\right) \\
& =\frac{1}{2} \sum_{n=1}^{N-1} \frac{1+\left(k_{n} g_{n}\right)^{2}}{k_{n} g_{n}}
\end{aligned}
$$

Can minimize $\bar{J}(k)$ by minimizing each term

$$
\frac{1+\left(k_{n} g_{n}\right)^{2}}{k_{n} g_{n}} \text {, because we hare seperability }
$$

between the index ' n ' or between nodes.

So, if we use incidence matrix of a tree graph, we can separate the effect of nodes on the objectirefunction, if \mathcal{F} is the difference between the values of each node, and then we can solve the optimal control problem.

General undirected graphs.
incidence matrix $E=\left[\begin{array}{ll}E_{t} & E_{c}\end{array}\right]$
part of the incidence matrix where there is a loop (cycle).
Columns of E_{C} are Linear Combination of columns of E_{t}.

Equality-Constrained Convex optimization problem
minimize $f(x)$

$$
\begin{gathered}
\text { s.t. } \quad A x-b=0 \\
\mathcal{L}(x, y)=f(x)+y^{\top}(A x-b)
\end{gathered}
$$

if f is differentiable,

$$
\nabla_{x} \mathcal{L}(x, y)=\nabla f(x)+A^{\top} y=0
$$

$$
\text { Ex } \left.\begin{array}{ll}
f(x)=\frac{1}{2} x^{\top} Q x ; Q=Q^{\top}>0 \\
Q x+A^{\top} y=0 &
\end{array}\right]
$$

Advantage it may lead to distributed implementation.

