Due Friday 04/19/13 (5pm, Xiaofan's office)

1. Consider the system:

$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = -g(k_1x_1 + k_2x_2), \qquad k_1, k_2 > 0,$

where the nonlinearity $g(\cdot)$ is such that

$$g(y) y > 0, \quad \forall y \neq 0$$
$$\lim_{|y| \to \infty} \int_{0}^{y} g(\xi) d\xi = +\infty$$

- (a) Using an appropriate Lyapunov function, show that the equilibrium x = 0 is globally asymptotically stable.
- (b) Show that the saturation function $sat(y) = sign(y) min\{1, |y|\}$ satisfies the above assumptions for $g(\cdot)$. What is the exact form of your Lyapunov function for this saturation nonlinearity?
- (c) Parts (a) and (b) imply that a double integrator with a saturating actuator

$$\dot{x}_1 = x_2$$
$$\dot{x}_2 = \operatorname{sat}(u)$$

can be stabilized with the state-feedback controller $u = -k_1x_1 - k_2x_2$. Design k_1 and k_2 to place the eigenvalues of the linearization at $-1 \pm j$, and simulate the resulting closed-loop system both with, and without, saturation. Compare the resulting trajectories. (Please provide plots of $x_1(t)$ and $x_2(t)$ rather than phase portraits.)

2. Consider the mass-spring-damper system described by

$$m\ddot{y} + \beta\dot{y} + ky = u,$$

- (a) If y(t) and u(t) are available for measurement, design a gradient algorithm to estimate constant but unknown parameters m, β , and k.
- (b) Simulate your algorithm in (a) assuming that true values are m = 20, $\beta = 0.1$, and k = 5. Repeat your simulation for different choices of u(t) and observe the resulting parameter convergence properties.
- 3. Consider the reference model:

$$\dot{y}_m = -ay_m + r(t), \qquad a > 0,$$

and the plant:

$$\dot{y} = a^* y + b^* u, \qquad b^* \neq 0.$$

(a) Show that a controller of the form:

$$u = \theta_1 y + \theta_2 r(t)$$

with an appropriate choice of gains θ_1^* and θ_2^* , drives the tracking error $e := y - y_m$ asymptotically to zero.

(b) Now suppose a^* and b^* are unknown parameters, but the sign of b^* is known. Show that the adaptive implementation of the controller above achieves tracking when the gains are updated according to the rule:

$$\dot{\theta}_1 = -\operatorname{sign}(b^\star)\gamma_1 y e, \qquad \dot{\theta}_2 = -\operatorname{sign}(b^\star)\gamma_2 r e,$$

where $\gamma_1 > 0$ and $\gamma_2 > 0$.

- (c) Provide a condition that also guarantees $\theta_1(t) \to \theta_1^{\star}$ and $\theta_2(t) \to \theta_2^{\star}$ as $t \to \infty$.
- 4. A simplified model of an axial compressor, used in jet engine control studies, is given by the following second order system

$$\dot{\phi} = -\frac{3}{2}\phi^2 - \frac{1}{2}\phi^3 - \psi$$
$$\dot{\psi} = \frac{1}{\beta^2}(\phi + 1 - u).$$

This model captures the main surge instability between the mass flow and the pressure rise. Here, ϕ and ψ are deviations of the mass flow and the pressure rise from their set points, the control input u is the flow through the throttle, and β is positive constant.

- (a) Use backstopping to obtain a control law that stabilizes the origin $(\phi, \psi) = 0$.
- (b) Use Sontag's Formula and the Control Lyapunov Function obtained in part (a) to obtain an alternative control law.