Due Tu 04/30/13 (at the beginning of the class)

- 1. Show that the parallel connection of two passive dynamical systems is passive. Can you claim the same for the series connection of two passive systems? Either provide a proof or a counterexample.
- $2. \ Let$

$$H(s) = \frac{s+\lambda}{s^2+as+b}$$

with a > 0, b > 0.

- (a) For which values of λ is H(s) Positive Real (PR)?
- (b) Using your answer to (a), select two values, λ_1 and λ_2 , such that

$$H_1(s) = \frac{s + \lambda_1}{s^2 + s + 1} \text{ is PR,}$$
$$H_2(s) = \frac{s + \lambda_2}{s^2 + s + 1} \text{ is not.}$$

Verify the PR property or its absence from the Nyquist plots of $H_1(s)$ and $H_2(s)$. (You can use the MATLAB nyquist command.)

- (c) For $H_1(s)$ and $H_2(s)$ write a state-space realization and solve for $P = P^T > 0$ in the PR lemma. Explain why your attempt fails for $H_2(s)$.
- 3. Consider the following model for a three-stage ring oscillator, discussed in class:

$$\tau_1 \dot{x}_1 = -x_1 - \alpha_1 \tanh(\beta_1 x_3)$$

$$\tau_2 \dot{x}_2 = -x_2 - \alpha_2 \tanh(\beta_2 x_1)$$

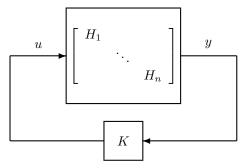
$$\tau_3 \dot{x}_3 = -x_3 - \alpha_3 \tanh(\beta_3 x_2)$$

where $\tau_i, \alpha_i, \beta_i$ are positive constants and x_i represent voltages, i = 1, 2, 3.

- (a) Suppose $\alpha_1\beta_1 = \alpha_2\beta_2 = \alpha_3\beta_3 =: \mu$, and prove that the origin is globally asymptotically stable when $\mu < 2$.
- (b) Show that, if $\tau_1 = \tau_2 = \tau_3 =: \tau$, then $\mu < 2$ is also necessary for asymptotic stability. What type of bifurcation occurs at $\mu = 2$?
- (c) Investigate the dynamical behavior of this system for $\mu > 2$ with numerical simulations. (You can take $\tau = 1$ for simplicity. Note that changing τ simply scales the time variable: If x(t) is a solution for $\tau = 1$, then $x(t/\tau)$ is a solution for $\tau \neq 1$.)
- 4. Consider the systems H_i , $i = 1, \dots, n$, whose inputs u_i and outputs y_i are coupled according to:

$$\left[\begin{array}{c} u_1\\ \vdots\\ u_n \end{array}\right] = K \left[\begin{array}{c} y_1\\ \vdots\\ y_n \end{array}\right]$$

as in the figure below, where K is an $n \times n$ matrix.



Suppose each H_i satisfies the dissipation inequality:

$$\dot{V}_i(x_i) \leq -y_i^2 + \gamma_i^2 u_i^2$$

with a positive definite storage function of its state vector x_i .

(a) Determine a matrix inequality that restricts the matrices:

$$D := \begin{bmatrix} d_1 & & \\ & \ddots & \\ & & d_n \end{bmatrix}, \quad \Gamma := \begin{bmatrix} \gamma_1 & & \\ & \ddots & \\ & & \gamma_n \end{bmatrix}$$

and K, such that $V(x) = \sum_{i=1}^{n} d_i V_i(x_i)$ is a Lyapunov function for the interconnected system.

(b) Investigate when an appropriate matrix D satisfying this inequality exists for $K\in\mathbb{R}^{2\times 2}$ given by

$$K = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$