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Abstract—Inter-area oscillations in bulk power systems are typ-
ically poorly controllable by means of local decentralized control.
Recent research efforts have been aimed at developing wide-area
control strategies that involve communication of remote signals.
In conventional wide-area control, the control structure is fixed
a priori typically based on modal criteria. In contrast, here we
employ the recently-introduced paradigm of sparsity-promoting
optimal control to simultaneously identify the optimal control
structure and optimize the closed-loop performance. To induce a
sparse control architecture, we regularize the standard quadratic
performance index with an -penalty on the feedback matrix.
The quadratic objective functions are inspired by the classic
slow coherency theory and are aimed at imitating homogeneous
networks without inter-area oscillations. We use the New England
power grid model to demonstrate that the proposed combination
of the sparsity-promoting control design with the slow coherency
objectives performs almost as well as the optimal centralized con-
trol while only making use of a single wide-area communication
link. In addition to this nominal performance, we also demonstrate
that our control strategy yields favorable robustness margins and
that it can be used to identify a sparse control architecture for
control design via alternative means.

Index Terms—Alternating direction method of multipliers,
inter-area modes, sparsity-promoting control, wide-area control.

I. INTRODUCTION

B ULK power systems typically exhibit multiple electro-
mechanical oscillations. Local oscillations are character-

ized by single generators swinging relative to the rest of the
network, whereas inter-area oscillations are associated with the
dynamics of power transfers and involve groups of generators
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oscillating relative to each other. With steadily growing de-
mand, deployment of renewables in remote areas, and dereg-
ulation of energy markets, long-distance power transfers out-
pace the addition of new transmission facilities. These develop-
ments lead to a maximum use of the existing network, result in
smaller stability margins, and cause inter-area modes to be ever
more lightly damped. In a heavily stressed grid, poorly damped
inter-area modes can even become unstable. For example, the
blackout of August 10, 1996, resulted from an instability of the
0.25 Hz mode in the Western interconnected system [2].
Local oscillations are typically damped by generator excita-

tion control via power system stabilizers (PSSs) [3]. However,
these decentralized control actions can interact in an adverse
way and destabilize the overall system [4]. Sometimes inter-area
modes cannot be even stabilized by PSSs [5], unless sufficiently
many and carefully tuned PSSs are deployed [6]–[8]. Regarding
tuning of conventional PSSs, high-gain feedback is necessary in
some networks [5] but may destabilize other networks [6], [7].
Furthermore, even when decentralized controllers provide sta-
bility they may result in poor performance, and their optimal
tuning presents non-trivial design challenges.
In principle, the above problems can be solved by distributed

wide-area control (WAC), where controllers make use of
remote measurements and control signals. WAC is nowadays
feasible thanks to recent technological advances including fast
and reliable communication networks, high-bandwidth and
time-stamped phasor measurement units (PMUs), and flexible
AC transmission system (FACTS) devices. We refer to the
surveys [9]–[11] and the articles in [12] for a detailed account
of technological advances and capabilities. Several efforts have
been directed towards WAC of oscillations based on robust and
optimal control methods; see [12]–[19] and references therein.
The chosen performance metrics include frequency domain
and root-locus criteria, signal amplifications from disturbance
inputs to tie line flows, inter-area angles, or machine speeds.
In comparison to local control, WAC involves the communi-

cation of remote signals and may suffer from additional vul-
nerabilities, such as uncertain communication channels, time
delays, and the lack of globally known models and their time
constants. Known time delays can be incorporated into the con-
trol design, for example, via linear matrix inequalities [6], [17]
or predictor-based design [19]. Unknown time constants can be
treated using linear parameter-varying systems [13] or online
identification of parameters [16], aggregated models [20], or
non-parameterized models [21]–[23]. Unknown delays, com-
munication uncertainties, and uncertain time constants can be
incorporated into a robust control synthesis using (un)structured
uncertainties and robustness margins [24].

0885-8950 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



2282 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 29, NO. 5, SEPTEMBER 2014

Typically, the controllers are designed for pre-specified
sensor and actuator locations and an a priori fixed sparsity
pattern that induces the necessary communication structure.
In an attempt to identify optimal sensor or actuator place-
ments and to reduce the communication complexity and the
interaction between control loops, different strategies aim at
identifying few but critical control channels [18], [25]–[28];
see [11] and [29] for a comparison and robustness evaluation.
These strategies rely on modal perspectives and aim at max-
imizing geometric metrics such as modal controllability and
observability residues. As a result, the control channels are
typically chosen through combinatorial SISO criteria and not
in an optimal way.
Another body of literature relevant to our study is optimal

control subject to structural constraints, for example, a desired
sparsity pattern of the feedback matrix in static state feedback
design [30]. In general, control design subject to structural con-
straints is hard, stabilizability is not guaranteed, and optimal
control formulations are not convex for arbitrary structural con-
straints [31]. Furthermore, in the absence of pre-specified struc-
tural constraints, most optimal control formulations result in
controllers without any sparsity structure according to which
measurements and control channels can be selected, and they
typically require a centralized implementation. In order to over-
come these limitations of decentralized optimal control, alter-
native strategies have recently been proposed that simultane-
ously identify the control structure and optimize the closed-loop
performance; see [32]–[37]. The proposed strategies combine
classic optimal and robust control formulations with recent ad-
vances in compressed sensing [38].
Here we investigate a novel approach to WAC design for

bulk power systems. We follow the sparsity-promoting optimal
control approach developed in [37] and find a linear static state
feedback that simultaneously optimizes a standard quadratic
cost criterion and induces a sparse control structure. Our
choice of performance criterion is inspired by the classic work
[39]–[41] on slow coherency. We propose a novel criterion that
encourages the closed-loop system to imitate a homogeneous
network of identical generators with no inter-area oscillations.
Besides this physical insight, an additional advantage of our
performance criteria is that the optimal controller makes use
of readily accessible state variables such as angles and fre-
quencies. In the performance and robustness assessment of our
sparsity-promoting optimal control synthesis, we emphasize
robustness to time delays, gain uncertainties, and variable
operating conditions arising in WAC implementation.
We consider a coordinated PSS design for the IEEE 39

New England power grid model to illustrate the utility of our
approach. This compelling example shows that, with only a
single WAC link, it is possible to achieve nearly the same
performance as a centralized optimal controller. In particular,
our sparsity-promoting controller is within 1.5882% of the
performance achieved by the optimal centralized controller.
Besides this nominal performance level, we also show that
the identified control structure is not sensitive to the chosen
operating point, and that robustness margins gracefully dete-
riorate as the control structure becomes increasingly sparse.
We also illustrate the robustness of our WAC strategy through
simulations with communication noise and delays. Finally,

we show that our approach can also be used to identify a
sparse architecture for control design via alternative means. In
particular, we use nonlinear simulations to demonstrate that
the closed-loop performance can be significantly improved
with a proportional feedback of a single remote measurement
(identified by our sparsity-promoting framework).
The remainder of the paper is organized as follows: Section II

describes the sparsity-promoting optimal control approach with
the slow coherency objectives. Section III shows the application
to the New England Power Grid. The algorithmic implementa-
tion and a link to our source code can be found in the Appendix.
Finally, Section IV concludes the paper.

II. PROBLEM SETUP AND THEORETICAL FRAMEWORK

A. Modeling of Generation, Transmission, and Control

We initially consider a detailed, nonlinear, and differential-
algebraic power network model of the form

(1a)

(1b)

where the dynamic and algebraic variables and
constitute the state, is the control action,

and is a white noise signal. Here, the dynamic equa-
tions (1a) account for the electromechanical dynamics of syn-
chronous generators and their excitation control equipment. The
algebraic equations (1b) account for load flow, generator stator,
and power electronic circuit equations. The control input
enters through either power electronics (FACTS), generator

excitation (PSS) or governor control. Finally, the noise can arise
from disturbances in the control loops, or fluctuating loads and
generator mechanical power inputs. Though not explicitly con-
sidered in this article, the differential-algebraic model (1) and
our analysis are sufficiently general to allow for dynamic loads,
synchronous condensers, and detailed models of FACTS de-
vices.
Next we linearize the system (1) at a stationary operating

point, solve the resulting linear algebraic equations for the vari-
able , and arrive at the linear state-space model

(2)

where , , and . The linear
model (2) is of large scale and its time constants depend on the
current operating point. Thus, the precise model (2) of a bulk
power system may not be known system-wide, or it may be
known only with a limited accuracy. We discuss related robust-
ness issues in Section II-F. As discussed in Section I, the model
(2) can also be estimated online using subspace identification
methods [21]–[23], identification of aggregated models [20], or
adaptive Kalman filtering methods [16].

B. Review of Slow Coherency Theory

To obtain an insightful perspective on inter-area oscillations,
we briefly recall the classic slow coherency theory [39]–[41].
Let the state variable of the power network model (1) [or its
linearization (2)] be partitioned as , where
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are the rotor angles and frequencies of syn-
chronous generators and are the remaining
state variables, which typically correspond to fast electrical dy-
namics. In the absence of higher-order generator dynamics, and
for constant-current and constant-impedance loads, the power
system dynamics (1) can be reduced to the electromechanical
swing dynamics of the generators [3]:

(3)
Here, and are the inertia and damping coefficients, is
the -axis voltage, and is the generator power injection
in the network-reduced model. The Kron-reduced admittance
matrix describes the interactions among the generators,
and the phase shifts

are due to transfer conductances [42]. When lin-
earized at an operating point , the swing equation (3)
read as

(4)

where and are the diagonal matrices of inertia and
damping coefficients, and is a Laplacian matrix with off-di-
agonals and diagonal
elements . Notice that, in the absence
of transfer conductances, equation (4) describes a dissipative
mechanical system with kinetic energy and
potential energy . Since and are diagonal,
the interactions among generators in (4) are entirely described
by the weighted graph induced by the Laplacian matrix .
Inter-area oscillations may arise from non-uniform inertia

and damping coefficients (resulting in slow and fast responses),
clustered groups of machines (swinging coherently) and sparse
interconnections among them, as well as large inter-area power
transfers.1 Assume that the set of generators
is partitioned in multiple coherent (and disjoint) groups of
machines (or areas), that is, . Then it can
be shown [39]–[41] that the long-time dynamics of each area
with nodal set are captured by the aggregate variable

describing the center of
mass of area . The slow inter-area dynamics are obtained as

(5)

where and , , and are the aggregated
inertia, dissipation, and Laplacian matrices.

C. Local and Wide-Area Control Design

As illustrated in the block diagram2 in Fig. 1, we seek for
linear time-invariant control laws and follow a two-level control
strategy of the form .
In the first step, the local control is designed based on

locally available measurements and with the objective of sta-

1A large power transfer between two nodes in distinct areas amounts to
a large steady state difference angle . Equivalently, in the linearized
model (4), the coupling is small.
2In Fig. 1, the system dynamics ( matrix) includes the power network dy-

namics and the local control loops. The WAC signal is added to the PSS input.
Alternatively, the WAC signal can be added to the automatic voltage regulator
(AVR). Both strategies have been advocated, see [6], [17], [18].

Fig. 1. Two-level control design combining local and wide-area control.

bilizing each isolated component. For example, can be
obtained by a conventional PSS design with the objective of
suppressing local oscillations [3]. Next, the wide-area control

is designed to enhance the global system behavior and
suppress inter-area oscillations. For this second design step, the
local control is assumed to be absorbed into the plant
(2). Additionally, since relies on the communication of
remote signals, the two-level control strategy guarantees a nom-
inal performance level in case of communication failures.

D. Sparsity-Promoting Linear Quadratic Control

As discussed in Section I, an inherent problem in WAC is
the proper choice of control architecture, that specifies which
quantities need to be measured and which controller needs to
access which measurement. Here, we confine our attention to
static state feedback , where the control
structure is determined by the sparsity pattern of the feedback
gain . We use the sparsity-promoting optimal con-
trol framework [37] to minimize the -regularized steady-state
variance of a stochastically-driven closed-loop system:

(6)

Here, is a nonnegative parameter, is the expectation
operator, and , are positive semidefinite
and positive definite matrices that denote the state and control
weights, respectively. We assume that the triple
is stabilizable and detectable. The term is a
weighted -norm of , where are positive weights.
The weighted -norm serves as a proxy for the (non-convex)
cardinality function denoting the number of non-zero
entries in . An effective method for enhancing sparsity is to
solve a sequence of weighted -optimization problems, where
the weights are determined by the solution of the weighted
-problem in the previous iteration; see [43] for further details.
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An equivalent formulation of the optimal control problem (6)
is given via the closed-loop observability Gramian as

(7)

The latter formulation (7) is amenable to an iterative solution
strategy using the alternating direction method of multipliers
(ADMM); see [36] and [37]. The cost function in (7) is a linear
combination of the -norm of the closed-loop system

and the sparsity-promoting term . In what fol-
lows, for a fixed value of , we denote the minimizer to
(7) by and the optimal cost by . For the
problem (7) reduces to the standard state-feedback -problem
[24] with the optimal gain and the optimal cost . On the
other hand, for the weighted -norm promotes sparsity
in the feedback gain , thereby identifying essential pairs of
control inputs and measured outputs.
To solve the sparsity-promoting optimal control problem (7),

we rely on the approach proposed in [37] using ADMM. See the
Appendix for details on the algorithmic implementation.

E. Choice of Optimization Objectives

The design parameters , , , need to be chosen with the
objective of damping inter-area oscillations. The resulting feed-
back , the control variables , the communication
structure (the sparsity pattern of the off-diagonals of ), and
the control effort depend solely on the system model and our
choices of the design parameters , , , and .
State Cost: Slow coherency theory shows that an ideal

power system without inter-area oscillations is characterized by
uniform inertia coefficients and homogenous power transfers
among generators. Equivalently, the Laplacian and inertia
matrices in the linearized swing equation (4) take the form

where are constants, is the -dimensional iden-
tity matrix, and is the -dimensional vector of ones.
Inspired by the above considerations, we choose the fol-

lowing performance specifications for the state cost:

(8)

where is a small regularization parameter. For , the
state cost quantifies the kinetic and potential energy of a
homogenous network composed of identical generators, and it
penalizes frequency violations and angular differences. The cost

does not penalize deviations in the generator voltages,

the states of the excitation system, or the local control
included in the matrix. The regularization term assures
numerical stability and detectability3 of .
As we will see in Section III, the state cost (8) results in an

improved average closed-loop performance with all inter-area
modes either damped or distorted. If the objective is to reject
a specific inter-area mode, for example, a dominant inter-area
mode featuring the two groups and , then the discussion
preceding the inter-area dynamics (5) suggests the cost

(9)

where are gains, are the aggregate variables,
and is a small regularization parameter.
Alternative cost functions penalize selected generator fre-

quency deviations or branch power flows to
assure coherency and guarantee (soft) thermal limit constraints.
Finally, linear combinations of all cost functions can also be
chosen.
In the costs (8) and (9), the parameter mainly affects

the frequency damping, whereas the parameter affects the
damping of the machine difference angles, that is, inter-area
power flows. In summary, the state costs (8)–(9) reflect the
insights of slow coherency theory, and, as we will see later,
they also promote the use of readily available control variables.
Control Cost: For simplicity and in order to minimize in-

teractions among generators the control effort is penalized as
, where is a positive definite diagonal matrix. Larger

diagonal values of result in a smaller control effort.
System Noise: In standard (centralized) linear quadratic con-

trol, the optimal feedback gain is independent of the choice
of [24]. However, for the optimal feedback gain

depends on the choice of ; see the necessary optimality
conditions in [37]. In order to mitigate the impacts of noisy or
lossy communication among spatially distributed controllers,
one may choose . Otherwise, can be chosen to
include load and generation uncertainties in (1).
Promoting Sparsity: For , the optimal control problem

(7) reduces to a standard state-feedback -problem whose so-
lution can be obtained from the positive definite solution to the
algebraic Riccati equation. Starting from this initial value, we it-
eratively solve the optimal control problem (7) for increasingly
larger values of . We found that a logarithmically spaced se-
quence of -values performs well in practice. In the end, the re-
sulting sequence of optimal controllers is analyzed, and a value
of is chosen to strike a balance between the closed-loop per-
formance and sparsity of the controller.
In summary, if the state costs (8) or (9) are chosen, then the

parameters affecting the optimal feedback gains are , , ,
, the diagonal values of , and the sequence of -values.

3If the power system model (1) entails a slack bus, then can be set to zero.
Otherwise, there is a marginally stable and unobservable mode corresponding
to the rotational symmetry of the power flow: a uniform shift of all angles does
not change the vector field (1). The optimal control problem (7) is still feasible,
and the marginally stable mode is not affected by controllers using only angular
differences (i.e., power flows) [37], [44]. To guarantee a simple numerical treat-
ment of the resulting Ricatti equations using standard software, an inclusion of
a small positive regularization parameter is necessary.
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Fig. 2. Gain uncertainties and multiplicative uncertainties account for
delays and uncertain (or unmodeled) dynamics in the WAC channel.

F. Robustness, Time Delays, and Gain Uncertainties

As discussed in Section I, WAC may have to deal with uncer-
tain communication channels, time delays, and the lack of pre-
cisely known system-wide time constants. In particular, time de-
lays may arise from communication delays, latencies and mul-
tiple data rates in the SCADA (supervisory control and data ac-
quisition) network, asynchronous measurements, and local pro-
cessing and operating times. As a result, local control signals
and measurements may have different rates and time stamps
than WAC signals obtained from remote sites.
Given the above vulnerabilities, the wide-area control loop

needs to be robust to gain uncertainties and multiplicative
uncertainties , as depicted in Fig. 2. For instance, if the
channel from measurement to control input features a time-
delay, then the th entry of is a pure phase delay. We
refer to [24, Section 7.4] for the modeling of delays with mul-
tiplicative uncertainties . In a general robust control theory
framework, the uncertainty blocks and are unknown,
stable, and proper dynamical systems that typically satisfy cer-
tain norm bounds on their input-output behavior.
Standard frequency domain arguments show that robustness

to delays is directly related to phase margins [24]. For a non-in-
teracting (i.e., diagonal) uncertainty , the optimal central-
ized feedback gain results in guaranteed phase margins of

, lower gain (reduction) margins of 0.5, and upper gain
(amplification) margins of in every channel [45]. For an un-
structured multiplicative uncertainty , the optimal central-
ized feedback gain guarantees closed-loop stability pro-
vided that its -induced input-output norm is bounded by 0.5
corresponding to a multivariable phase margin of 30 [46].
Yet another source of uncertainty results from the fact that

the time constants of the linearized model (2) depend on the
current operating condition of the overall power system. The
gain margins discussed in preceding paragraphs provide safe-
guards against gain uncertainties in the control loop arising, for
example, from variable or uncertain time constants in the gen-
erator excitation system or the measurement channels.
For the -parameterized family of sparsity-promoting con-

trollers, we explicitly verify robustness to phase and gain un-
certainties in Section III. In particular, we observe that the phase
and gain margins decay gracefully for as increases. Alter-
natively, robustness to known time delays can be included in the

TABLE I
INTER-AREA MODES OF NEW ENGLAND POWER GRID WITH PSSs

control design by explicitly accounting for delays via Padé ap-
proximations (absorbed in the plant) [24].

III. COORDINATED SUPPLEMENTARY PSSS DESIGN

In this section, we use the IEEE 39 New England power grid
model to validate performance of the proposed WAC strategy.
This model consists of 39 buses and 10 two-axis generator
models, where generator 10 is an equivalent aggregated model.

A. Local Control Design and Inter-Area Dynamics

The Power System Toolbox [47] was used to obtain the non-
linear differential-algebraic model (1) and the linear state space
system (2). The open-loop system is unstable, and the genera-
tors are equipped with PSS excitation controllers designed with
washout filters and lead/lag elements. For generator , the local
PSS reads in the Laplace domain as

(10)

where, with an abuse of notation, and denote the
Laplace transforms of and , respectively. The con-
troller gains are chosen according to the tuning strategy [8] as

, , for
, for , ,

, and . As in [8], we adopt the first-order
exciter model, and choose uniform time constants
and regulator gains for all generators. The static DC
gains in the exciter and PSS control channels are slightly
different compared to the highly tuned data in [8]. We made this
choice for the sake of illustration: the PSSs (10) provide good
damping for the local modes and stabilize the otherwise unstable
open-loop system (2). On the other hand, the chosen PSSs do not
severely distort the shapes of the inter-area modes unless they
are very carefully tuned to the linearized model (depending on
the particular operating condition).
An analysis of the closed-loop modes and participation fac-

tors reveals the presence of five dominant inter-area modes.
These five modes are reported in Table I, and the groups of co-
herent machines and the frequency components of the associ-
ated eigenvectors are illustrated in Fig. 3.

B. WAC Design and Nominal Performance

To provide additional damping for the inter-area oscil-
lations, we design a supplementary WAC signal
which additively enters the AVRs of the controlled genera-
tors. The sparsity-promoting optimal control strategy (6) is
used to design , where the state cost (8) is selected
with and . To share the control
burden equally we set the control weight to be identity

. This choice results in a WAC signal of the
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Fig. 3. Subfigure (a) displays the IEEE 39 New England power grid and its
coherent groups. The polar plots in Subfigure (b) show the generator frequency
components of the five dominant inter-area modes.

Fig. 4. Number of nonzero entries in the sparse feedback gain and the
performance degradation of relative to the optimal centralized gain .

same magnitude as the local control signal , that is,
, and it avoids

input saturation. Furthermore, to reject communication noise
in the WAC implementation, we choose . Finally, we
solve the optimal control problem (7) for 40 logarithmically
spaced values of in the interval . Our results are
reported in Figs. 4 and 5.
For , the optimal feedback gain is fully populated,

thereby requiring centralized implementation. As increases,
the off-diagonal elements of the feedback matrix become
significantly sparser whereas the relative cost in-
creases only slightly; see Figs. 4 and 5. Additionally, as in-
creases, the state cost (8) promotes the use of angles and speeds

Fig. 5. The sparsity patterns of illustrate the control architecture. A
nonzero element of (denoted by a colored dot) implies that controller
needs to access state . The diagonal blocks (framed) with blue dots corre-
spond to local feedback, and the off-diagonal blocks with red dots correspond
to remote feedback signals. As increases, the information exchange becomes
sparser, and angles and frequencies (the first two states of each vertical block)
become the sole signals to be communicated.

in the off-diagonal elements of , and most nonzero elements
of correspond to local feedback. For , the optimal
controller is within 1.5882% of the optimal centralized per-
formance even though only a single signal needs to be commu-
nicated: the controller at generator 1 needs to access . As
expected, as increases most of the control burden is on gener-
ator 1, which has the largest inertia of all controlled generators.
Likewise, the angle of loosely connected4 generator 9 needs to
be measured and communicated to generator 1. The identified
WAC channel 9 1 appears to be necessary to suppress the
inter-area mode 2 in Table I, which is mainly dominated by gen-
erators 1 and 9.
Fig. 6 displays the spectrum of the open-loop matrix and

the closed-loop matrix for different values of . We
make the following observations: First, as increases, the lo-
cations of the poles of do not change significantly,
and the poorly damped poles essentially overlap. This confirms
our observation from Fig. 4: (with ) achieves a sim-
ilar performance as the centralized feedback gain . Second,
the weakly damped pair of poles (with nearly zero imaginary
part and very high damping ratio 0.7452) is an artifact of the
-regularization in (8). For , this pole pair becomes real

4In terms of graph theory, the sum of effective resistances [42] between gen-
erator 9 and the others is very large compared to remaining network.
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Fig. 6. Spectrum of the WAC open loop matrix displayed in blue and the
spectrum of the WAC closed-loop matrix for dis-
played in red, green, and yellow, respectively. The central and right panels are
magnifications of the left and central panel, respectively.

Fig. 7. Subfigure (a) displays the frequency components of the least damped
oscillatory mode of the closed loop with local PSSs and WAC. Subfigure (b)
shows the WAC signal . The initial conditions are aligned with the
eigenvector of the dominant open-loop inter-area mode 1, and is sub-
ject to additive white noise with zero mean and standard deviation 0.01.

and one of the poles becomes zero corresponding to the rota-
tional symmetry of the power flow. Third, in comparison with
the open loop, the wide-area controller does not significantly
change the real part of the eigenvalues of the weakly damped
oscillatory modes. Rather, the closed-loop performance is im-
proved by increasing the damping ratio and distorting the as-
sociated eigenvectors. Apart from one pair of eigenvalues lo-
cated at with high damping ratio 0.239 (pos-
sibly corresponding to the inter-area mode 1 in Table I), all
other complex-conjugate eigenvalue pairs are left of the asymp-
tote . From the frequency components of
its eigenvector [in Fig. 7(a)] and the frequency time series [in
Fig. 8(a) and (b)], it can be seen that this mode does not any-
more correspond to generators oscillating against each other. As
a consequence, poorly damped power flow oscillations between
the areas and have been suppressed;
see Fig. 8(d) and 8(e). We finally note that, besides the critical
mode, the damping ratio is also significantly improved for all
other weakly damped modes.

C. Implementation Issues, Robustness, and Delays

As discussed in Section II-F, multivariable phase margins are
well suited robustness measures to account for communication
delays, latencies in the SCADA network, and asynchronous
measurements of generator rotor angles. Here, we investigate
how the general multivariable phase margin of the WAC closed

loop changes with the sparsity-promoting parameter ; see
Fig. 9. Similar to the performance and sparsity levels of in
Fig. 4, the multivariable phase margin is nearly a monotonic
function of . Over the range of examined values
of , the phase margin experiences a modest drop of about 4 .
Similar observations can be made about the multivariable gain
reduction and amplification margins displayed in Fig. 9. They
deteriorate gracefully, in a monotonic way, and by compara-
tively small amounts. Hence, each PSS gain can differ from
its nominal gain [used to construct the linearized model (2)]
and independently from other PSS gains by a factor of order
[0.2,5] even for . We thus conclude that the controller
resulting from the sparsity-promoting optimal control problem
(6) enjoys nearly the same robustness properties as the optimal
centralized controller.
The wide-area control signal can be further decomposed as

(11)

where corresponds to block-diagonal state feedback,
and corresponds to feedback that utilizes the remote
measurement signal (which has to be communicated to the
AVR controller at generator 1). Since the block-diagonal state
feedback depends only on generator internal states, it
can be implemented locally. The required generator state vari-
ables can be reconstructed online using appropriate filters and
readily available measurements [48].
For the wide-area controller , if the

local control is absorbed in the plant, then we obtain a
58.303 phase margin with respect to the remote control input

. The corresponding tolerable time-delay margin is
3.964 s. From a simulation of the linearized power grid model
(2), we observe that a delay of 750 ms of the remote feedback
signal does not significantly affect the closed-loop
performance; see Fig. 8(c) and 8(f). In the delayed case, only
a slight distortion of the trajectories of generator 1 [which is
implementing the remote WAC signal ] is noticed.
Additionally, we found that the information structure identi-

fied by the WAC feedback is not sensitive
to the actual operating and linearization point in the dynamics
(1). To validate this hypothesis, we randomly altered the power
demand at each load to create different loading conditions and
operating points. Additionally, we perturbed the nominal PSS
gains in (10). As a result, even if the PSS gains are randomly
altered by factors within [0.5,4], and the load power demand is
randomly altered within 25% of the nominal demand [leading
to different linearization matrices in (2)], the sparsity pattern of

is identical to the one shown in Fig. 5.
We conclude that the feedback resulting from the sparsity-

promoting optimal control problem (6) is not only character-
ized by low communication requirements and good closed-loop
performance but also by favorable robustness margins.

D. Sparsity Identification and Alternative Control Schemes

We note that while the local state feedback essen-
tially requires a retuning of the local generator excitation con-
trol, the remote control signal needs to be communi-
cated. Recall that one of our motivations for the sparsity-pro-
moting optimal control formulation (6)—besides finding a sta-
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Fig. 8. Time-domain simulation of the linearized model (2) for the New England power grid: The subfigures show the generator frequencies and the angle differ-
ences (corresponding to inter-area power transfers) resulting from the use of only local PSS control, local PSS control and WAC (with the WAC signal ),
and local PSS control and delayed WAC (with the remote WAC signal from (11) being delayed by 750 ms). The initial conditions are aligned with the
eigenvector of the dominant open-loop inter-area mode 1, and is subject to additive white noise with zero mean and standard deviation 0.01.

bilizing, robust, and optimal feedback—was the identification
of an appropriate WAC architecture: which remote measure-
ments need to be accessed by which controller?
For the considered model, our sparsity-promoting optimiza-

tion framework identified a single crucial WAC channel: the
rotor angle serves as measurement to the AVR control at
generator 1. After having identified this WAC channel, alter-
native control schemes can be developed. For instance, in ab-
sence of the local “retuning” control , the WAC feed-
back signal reduces to the proportional feedback

(12)

Here, is the (1,9) element of and we use the local
rotor angle as a reference for . Hence, no absolute
angle measurements are required,5 and the WAC control (12)
can be implemented, for example, by integrating the frequency
difference . The simple yet crucial proportional
remote control signal (12) together with an appropriate retuning
of the local PSSs (10) then yields the WAC signal .
To illustrate the utility of our sparsity-promoting identifica-

tion scheme, we apply the proportional WAC signal (12) to the
full nonlinear differential-algebraic power network model (1)
equipped with the PSSs (10). To demonstrate the importance of
the WAC channel 9 1, we do not re-tune the local PSSs to
emulate . We verify that the WAC signal (12) does not
lead to a loss of small-signal stability, and we investigate the
performance of the closed-loop using time-domain simulations
in Fig. 10. Our simulation scenario is based on a three phase
fault at line {3,4} at 0.1 s, which is cleared at 0.2 s. The WAC
input (12) is subject to a delay of 750 ms. In analogy to the
linear simulation in Fig. 8, we compare the system responses
with and without the WAC signal (12) both with and without

5Indeed, in the limit in the cost functions (8), (9), the solution to
the optimal control problem (7) features a rotational symmetry, and the control
input requires only angular differences rather than absolute angles.

Fig. 9. Multivariable phase and gain margins achieved by the optimal sparsity-
promoting controller as a function of .

a 750 ms delay. As in the linearized case, the decay rates of
the frequencies are comparable but the inter-area modes are dis-
torted in WAC closed loop; see Fig. 10(a) and 10(b). Due to the
lack of tuned local feedback in (12), generator 10 still
slightly swings against the remaining generators in WAC closed
loop. On the other hand, the implementation of the WAC signal
(12) by generator 1 results in a reduced effort in providing sta-
bilizing control signals; see Fig. 10(d) and 10(e). These con-
clusions also hold in presence of a severe delay, as seen in
Fig. 10(c) and 10(f). As compared to the linear case [including
the local feedback ] shown in Fig. 8, the nonlinear per-
formance [without local feedback ] is not insensitive to
delays and slightly degrades. To further account for communi-
cation delays, a local control can be added, and the re-
mote proportionalWAC feedback signal (12) can be fed through
a delay-compensating filter as in [21].
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Fig. 10. Time-domain simulation of the full nonlinear differential-algebraic model (1) for the New England power grid: The subfigures show the generator fre-
quencies and active power outputs using only local PSS control and using the remote WAC signal both without delay and with a 750 ms delay. Initially,
the system is at steady state, and a three phase fault at line {3, 4} at 0.1 s, which is cleared at 0.2 s.

We conclude that the simple proportional feedback (12)
identified by the sparsity-promoting framework significantly
improves the closed-loop performance. We note that the propor-
tional WAC strategy (12) merely serves as an illustration of the
ability of our method to identify a suitable WAC architecture.
Now that the crucial WAC channel 9 1 has been identified,
more sophisticated single-input-single-output control strategies
can be developed via alternative means.

IV. CONCLUSIONS

We proposed a novel approach to wide-area control of inter-
area oscillations. We followed a recently introduced paradigm
to sparsity-promoting optimal control [37]. Our performance
objectives were inspired by the well-known slow coherency
theory. We validated the proposed control strategy on the IEEE
39 New England power grid model, which demonstrated nearly
optimal performance, low communication requirements, and ro-
bustness of the sparsity-promoting controller.
Of course, further scrutiny of the proposed sparsity-pro-

moting framework on other power system models is needed.
We note that both the structure and the performance achieved
by our sparsity-promoting controller are problem-dependent:
they are influenced by the model of the underlying power
system as well as by the selection of state and control weights.
For the considered IEEE 39 New England model, we have
illustrated the insensitivity of the identified controller structure
on the operating point and the graceful performance degrada-
tion relative to the optimal centralized controller. In our future
effort, we will examine if these properties also hold for other
power systems and investigate how the resulting controller
structure is influenced by the system’s dynamics.
Our initial results are very promising, and we are currently

working on further extensions. The authors also envision an ap-
plication of the proposed control strategy to enhance the per-
formance of purely decentralized primary and secondary con-
trol schemes [49] with supplementary WAC. Since sparsity is

a function of the state space coordinates, the identified control
scheme may not be sparse in other coordinates. Hence, an in-
teresting question is to identify state space representations of
power system models, which are amenable to a sparsity-pro-
moting control design. For example, it is of interest to extend
the proposed design methodology to sparse, differential-alge-
braic, and structure-preserving models. Finally, the authors also
aim to gain insight into fundamental performance limitations in-
duced by localized and wide-area control strategies.

APPENDIX

A. Algorithmic Methods for Sparsity-Promoting Optimization

We briefly summarize the algorithmic approach to the opti-
mization problem (7) and refer to [37] for further details:
1) Warm-start and homotopy: The optimal control
problem (7) is solved by tracing a homotopy path that
starts at the optimal centralized controller with
and continuously increases until the desired value

;
2) ADMM: For each value of , the optimiza-
tion problem (7) is solved iteratively using ADMM;

3) Updates of weights: In each step of ADMM, the
weights are updated as with .
We have conducted 5 update steps with ; and

4) Polishing: Once the desired sparsity pattern is identi-
fied, a structured optimal control problem is solved:

This iterative approach is convergent under a local convexity
assumption, and stability of is guaranteed. The algo-
rithms developed in [37] have been implemented in MATLAB.
The associated software as well as the numerical power network
data used in the present paper can be downloaded at http://www.
ece.umn.edu/users/mihailo/software/lqrsp/.
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