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Motivating application: flow control
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technology: shear-stress sensors; surface-deformation actuators
application: turbulence suppression; skin-friction drag reduction

challenge: distributed controller design for complex flow dynamics



Control-oriented modeling
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Control-oriented modeling

stochastic stochastic
¢ = Az + Bd input linearized output
_—m _—
y = Cuz dynamics
e OBJECTIVE

x combine physics-based with data-driven modeling

= account for statistical signatures of dynamical systems using

stochastically-forced linear models
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e PROPOSED APPROACH

* view second-order statistics as data for an inverse problem

e KEY QUESTIONS

= Can we identify input statistics to reproduce available statistics?

x Can this be done by white in-time stochastic process?
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OUR CONTRIBUTION
principled way of embedding statistics in control-oriented models




Response to stochastic inputs

stochastic input d

T = Az + Bd

stochastic output =
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x propagates white correlation of d into colored statistics of «
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Response to stochastic inputs

stochastic input d
&= Ax + Bd

stochastic output =

e LYAPUNOV EQUATION

x propagates white correlation of d into colored statistics of «

AX + XA = —BWDB*
* colored-in-time d B
AX + XA* = —(BH* + HB")

white input: H = (1/2) BW

Georgiou, IEEE TAC 02
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Lyapunov equation
discrete-time dynamics: T = Az + Bd,

white-in-time input: E(d,d) = W _,

e LYAPUNOV EQUATION
Xiy1 = E(mp127,)
= E((A:ct + Bdy) (xf A" + d:B*))
= AE (zi27) A* + BE(d; d;) B*
= AX;A* + BWB"*
* continuous-time version

d X,




Outline
STRUCTURED COVARIANCE COMPLETION PROBLEM

* embed available statistical features in control-oriented models

* complete unavailable data (via convex optimization)

ALGORITHM
* Alternating Minimization Algorithm (AMA)

* works as proximal gradient on the dual problem

CASE STUDY
* turbulent channel flow

* verification in linear stochastic simulations

SUMMARY AND OUTLOOK



Problem setup

known elements of X

?
AX + XA* = —(BH* + HB) \

Z

e PROBLEM DATA

* system matrix A

= partially available entries of X

e UNKNOWNS

* missing entries of X

= disturbance dynamics Z {

input matrix B

input power spectrum H
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An example
e RESPONSE OF A BOUNDARY LAYER TO FREE-STREAM TURBULENCE

free-stream
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An example
e RESPONSE OF A BOUNDARY LAYER TO FREE-STREAM TURBULENCE

free-stream
turbulence —

—_— %;
—

—_—

 ——

AX + XA* = —(BH* + HB")

Z

number of input channels: limited by the rank of Z

Chen, Jovanovic, Georgiou, IEEE CDC ’13
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Inverse problem
e CONVEX OPTIMIZATION PROBLEM

mininzlize — logdet (X) + ~||Z]«

)

subjectto AX + XA* + Z =0 physics
Xij = Gy forgiven i,j available data
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Inverse problem
e CONVEX OPTIMIZATION PROBLEM

mininzlize — logdet (X) + ~||Z]«

)

subjectto AX + XA* + Z =0 physics
Xij = Gy forgiven i,j available data

x nuclear norm: proxy for rank minimization
1Z]l. =) 0i(2)

Fazel, Boyd, Hindi, Recht, Parrilo, Candes, Chandrasekaran, . ..
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Primal and dual problems

e PRIMAL
mir)l(inzlize — logdet (X) + || Z||«

subjectto AX + BZ — C =0
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e PRIMAL

e DUAL

Primal and dual problems

mir)l(inzlize — logdet (X) + || Z||«

subjectto AX + BZ — C =0

maximize logdet (ATY) — (G,Y5)

Y1,Ye

subject to ||Yi|l2 < ~

Al — adjoint of 4; Y :=
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SDP characterization

Z:Z+—Z_, Z_;_EO, Z_EO

minimize —logdet (X) + ytrace(Z; + Z_)
X, %4, 2-

subjectto AX + BZ — C =0
Z, =0, Z_ =0
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Customized algorithms

e ALTERNATING DIRECTION METHOD OF MULTIPLIERS (ADMM)

Boyd et al., Found. Trends Mach. Learn. ’11

e ALTERNATING MINIMIZATION ALGORITHM (AMA)

Tseng, SIAM J. Control Optim. 91
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Augmented Lagrangian

L,(X,Z;Y) = —logdet (X) + v[|Z|l. + (Y, AX + BZ — C)

+ LIAX + BZ - |}
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Augmented Lagrangian
L,(X,Z;Y) = —logdet(X) + v||Z|l. + (Y,AX + BZ — C)

+ LIAX + BZ - |}

e METHOD OF MULTIPLIERS

» minimizes L, jointly over X and Z
(X*HL ZFY) = argmin £,(X, Z;YF)
X, Z

Yk+1 — Yk + p(AXkJrl + szJrl - C)
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ADMM vs AMA
e ADMM

XEH = argmin L,(X, Z%; V")
X

ZF = argmin L,(X*1, Z;YF)
Z

VEH = YR 4+ p (AXFH + BZMT — C)
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ADMM vs AMA
e ADMM

XL = arg)r(nin L, (X, 7% YF)

Zk = arg;nin L,(XF Z:YF)

YEI = YR 4 p (AXET 4+ BZMT — ()
e AMA

XHFL = arg;nin Lo(X,ZFYF)

Zk = arg;nin L,(XF ZYF)

YE+L .— YV + i (AXk—H 4 B Zkt1 _ C)

15/32



Z-update

minimize [ Z]|, + guz — VR

VE = — (A XFT 4+ (1/p) YY)
= UXU* svd
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Z-update

minimize [ Z]|, + guz e

VE = = (X 4 (1/p) YY)
= UXU* svd
soft-thresholding
| e
singular value thresholding
7M1 = US,,,(2) U /
Ve

complexity: O(n?)
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X-update in AMA
minimize — log det (X) + (Y, AX)

explicit solution: X*1 — (ATY*)™

AP — adjoint of A

complexity: O(n?)
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X-update in ADMM

mini}gnize —logdet (X) + gHAX — U*||%

optimality condition: — X' + pAT(AX — U*) = 0
challenge: non-unitary A

solution: proximal gradient algorithm
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e PROXIMAL ALGORITHM

* linearize g |AX — U*||% around X;
» add proximal term % X — X;|%
optimality condition:

pX — X' = (ul—pATA)X; + p AT(UF)
= VAV*
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e PROXIMAL ALGORITHM

* linearize g |AX — U*||% around X;
» add proximal term g X — X;|%
optimality condition:

pX — X7t = (ul—pATA) X; + p AT (UF)
= VAV

explicit solution: X;.; = Vdiag(g) V*

2
e
7 21 21 I
complexity per iteration: O(n?)
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Y-update in AMA

sat, (Y] + pp Ay X*H1)

Y'2k + pk(AszH . G)

—

Yills < v
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Y-update in AMA

Y = Satw(Y1k + oo A Xk+1)

Y'Qk-&-l — Y2k 4 pk(AszH . G)

—  [Yillz £ v

saturation of
singular values

saturation operator
saty (M) = M — S,(M)
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Properties of AMA

e COVARIANCE COMPLETION VIA AMA

x proximal gradient on the dual problem

* sub-linear convergence with constant step-size
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Properties of AMA

e COVARIANCE COMPLETION VIA AMA

x proximal gradient on the dual problem

* sub-linear convergence with constant step-size
STEP-SIZE SELECTION

= Barzilla-Borwein initialization followed by backtracking

x positive definiteness of X*+1

= sufficient dual ascent

Dalal & Rajaratnam, arXiv:1405.3034
Zare, Chen, Jovanovic, Georgiou, arXiv:1412.3399
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Filter design

filter linear system
——| 2= Afz+ Buw d &t = Az + Bd
d = Crz+w y = Cx

» White-in-time input
E (w(t)) w*(t2)) = Q(t; — ta)
= filter dynamics
A = A + BCy

1
Cy = (H* - 5QB*) X

22/32



e LINEAR SYSTEM WITH FILTER
|l T |0 A+ BC || 2 B|"

- te ]
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e LINEAR SYSTEM WITH FILTER
HERE A IHEHE
xXr
/- ten]]
x coordinate transformation

HEEHIE

» reduced-order representation

q 0 A ]l a]

y:[co}m}

[ﬂ :[A+B@<m%'j'+{€}w
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Low-rank modification

white colored
noise noise linearized
w ] filter 7| dynamics

colored input:

T = Az + Bd
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Low-rank modification

white colored
noise noise linearized
> fi > . >
w filter P dynamics T

colored input: & = Az + Bd

white
noise modified
- >
w dynamics x

low-rank modification: & = (A + BCf)z + Bw
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APPLICATION TO FLUIDS

please see Armin’s poster for additional info
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Turbulent channel flow

output covariance: Yy v
¢(k) = lim E(v(tk)v'(tk) 1 /
— 00 u

—
v = [uv w]f . —,1,”/ I w//

horizontal wavenumbers

-
|

known elements of ¢ (k)

N N
‘1)11\ \‘I’m\ D3
A 0
A = [ AH A s | e
12 29 22\ 23
AN
D3
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e KEY OBSERVATION

» white-in-time input: too restrictive

i (AXLs + XpsA¥)

09
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Q
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Jovanovi¢ & Georgiou, APS DFD 10
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One-point correlations

normal stresses shear stress

0.5 1

Nonlinear simulations —

N
™~

Solution to inverse problem ©
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Importance of physics

e COVARIANCE COMPLETION PROBLEM

— logdet (X A
mu}l{_mzuze ogdet (X) + v|[|Z]«

)

subjectto AX + X A" + Z =0 physics
(CXC%),; = Gy forgiven i, available data
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Two-point correlations

nonlinear simulations covariance completion

%107

05 >
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physics helps!



Challenges

e THEORETICAL
* conditions for exact recovery

* convergence rate of AMA with BB step-size initialization

e ALGORITHMIC

* alternative rank approximations
(e.g., iterative re-weighting, matrix factorization)

* improving scalability

e APPLICATION
* development of turbulence closure models

* design of flow estimators/controllers
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Summary
e CUSTOMIZED ALGORITHMS FOR COVARIANCE COMPLETION
* ADMM vs AMA

* AMA works as a proximal gradient on the dual problem
e THEORETICAL AND ALGORITHMIC DEVELOPMENTS

* Chen, Jovanovic, Georgiou, IEEE CDC ’13

% Zare, Chen, Jovanovi¢, Georgiou, arXiv:1412.3399
e APPLICATION TO TURBULENT FLOWS

* Zare, Jovanovi¢, Georgiou, ACC '14

* Zare, Jovanovi¢, Georgiou, 2014 Summer Program, CTR Stanford




