Dynamics and control of wall-bounded shear flows

Mihailo Jovanović

www.umn.edu/~mihailo

- The early stages of transition
 - initiated by high flow sensitivity
- Controlling the onset of turbulence
 - * simulation-free design for reducing sensitivity

Key issue:

high flow sensitivity

Transition to turbulence

- EXPERIMENTAL ONSET OF TURBULENCE
 - * much before instability
 - * depends on experimental conditions

- BYPASS TRANSITION
 - ★ triggered by high flow sensitivity

large transient responses
large noise amplification
small stability margins

Farrell, Ioannou, Henningson, Schmid, Trefethen, Kim, Luchini, Bewley, Bamieh, ...

Input-output analysis

- TOOL FOR QUANTIFYING SENSITIVITY
 - **★** spatio-temporal frequency responses

 $\mathbf{d} \left\{ egin{array}{l} \text{free-stream turbulence} \\ \text{surface roughness} \end{array}
ight.$

Linearized Dynamics

fluctuating velocity field v

IMPLICATIONS FOR:

transition: insight into mechanisms

control: control-oriented modeling

Response to stochastic forcing

forcing:

white in t and y

harmonic in x and z

$$\mathbf{d}(x, y, z, t) = \hat{\mathbf{d}}(k_x, y, k_z, t) e^{ik_x x} e^{ik_z z}$$

$$\hat{m{\psi}}_t = \mathbf{A}(k_x, k_z) \, \hat{m{\psi}} + \hat{\mathbf{d}}$$
20 simulations

Variance amplification

channel flow with Re = 2000:

 Dominance of streamwise elongated structures streamwise streaks!

Farrell & Ioannou, Phys. Fluids A '93

Bamieh & Dahleh, Phys. Fluids '01

Jovanović & Bamieh, J. Fluid Mech. '05

Amplification mechanism

$$\begin{bmatrix} v_t \\ \eta_t \end{bmatrix} = \begin{bmatrix} A_{\rm os} & 0 \\ Re A_{\rm cp} & A_{\rm sq} \end{bmatrix} \begin{bmatrix} v \\ \eta \end{bmatrix}$$

- STREAMWISE-CONSTANT MODEL
 - \star dynamics of normal vorticity η

vortex tilting or lift-up

FLOW CONTROL

- Objective
 - * controlling the onset of turbulence
- Transition initiated by
 - high flow sensitivity
- Control strategy
 - * reduce flow sensitivity

Moarref & Jovanović, J. Fluid Mech. '10

Lieu, Moarref, Jovanović, J. Fluid Mech. '10

Sensor-free flow control

geometry modifications	surface oscillations	body forces
riblets	transverse oscillations	oscillatory forces
super-hydrophobic surfaces		traveling waves

shark skin lotus leaf

COMMON THEME: PDEs with spatially or temporally periodic coefficients

Blowing and suction along the walls

BOUNDARY CONDITION:
$$V(y=\pm 1) = \mp \alpha \cos(\omega_x(x-ct))$$

NOMINAL VELOCITY:
$$(U(\bar{x},y),\ V(\bar{x},y),\ 0)$$

steady in a traveling wave frame

periodic in $\bar{x} := x - ct$

Min, Kang, Speyer, Kim, J. Fluid Mech. '06

 \Rightarrow

SUSTAINED SUB-LAMINAR DRAG

CHALLENGE

selection of wave parameters

• THIS TALK

- * cost of control
- * onset of turbulence

- Desired effects of control
 - * skin-friction \
 - ⋆ net efficiency /
 - ★ fluctuations' energy \

SKIN-FRICTION ANALYSIS

relative to laminar flow:

UPSTREAM: reduce skin-friction ✓

DOWNSTREAM: increase skin-friction

Min, Kang, Speyer, Kim, J. Fluid Mech. '06

Hæpffner & Fukagata, J. Fluid Mech. '09

Net efficiency

RELATIVE TO uncontrolled

turbulent flow

Moarref & Jovanović, J. Fluid Mech. '10

Velocity fluctuations: DNS preview

Lieu, Moarref, Jovanović, J. Fluid Mech. '10

Fluctuations' dynamics: controlled flow

EVOLUTION MODEL: linearization around $(U(\bar{x},y),\ V(\bar{x},y),\ 0)$

 \star periodic coefficients in $\bar{x} := x - ct$

$$egin{array}{lll} oldsymbol{\psi}_t &=& oldsymbol{\mathbf{A}} \, oldsymbol{\psi} &+& oldsymbol{\mathbf{B}} \, oldsymbol{\mathbf{d}} \ \mathbf{v} &=& oldsymbol{\mathbf{C}} \, oldsymbol{\psi} \end{array}$$

CONTROL OBJECTIVE: amplification reduction

Simulation-free approach to determining energy density

Moarref & Jovanović, J. Fluid Mech. '10

effect of small wave amplitude:

 $(\theta, k_z) \rightsquigarrow \text{spatial wavenumbers}$

Variance amplification: controlled flow with Re = 2000

explicit formula:

energy density with control energy density w/o control

$$\approx 1 + \alpha^2 g_2(\theta, k_z; \omega_x, c)$$

Recap

CONTROLLING THE ONSET OF TURBULENCE

facts revealed by perturbation analysis:

UPSTREAM: reduce skin-friction ✓ promote amplification

DOWNSTREAM: increase skin-friction reduce amplification ✓

Moarref & Jovanović, J. Fluid Mech. '10

DNS results: avoidance/promotion of turbulence

small initial energy

(flow with no control stays laminar)

upstream: promotes turbulence

Lieu, Moarref, Jovanović, J. Fluid Mech. '10

NO turbulence:

DOWNSTREAM moderate initial energy

turbulence:

UPSTREAM moderate initial energy

LESSONS, OPPORTUNITIES, CHALLENGES

Summary: Early stages of transition

STABILITY	AMPLIFICATION	
$oldsymbol{\psi}_t = \mathbf{A} oldsymbol{\psi}$	$\mathbf{v} = \mathbf{H} \mathbf{d}$	
e-values of A	singular values of H	

- OPPORTUNITIES AND CHALLENGES
 - **★ Complex fluids**
 - * Complex geometries
 - * Later stages of transition
 - * Control-oriented modeling of turbulent flows

COMPLEX FLUIDS

* dynamics of viscoelastic fluids

- ★ Lieu, Jovanović, Kumar, J. Fluid Mech. '13
- * Jovanović & Kumar, J. Non-Newtonian Fluid Mech. '11
- * Jovanović & Kumar, Phys. Fluids '10
- * Hoda, Jovanović, Kumar, J. Fluid Mech. '08, '09

- COMPLEX GEOMETRIES
 - * iterative schemes for computing singular values
- LATER STAGES OF TRANSITION
 - * challenge: relative roles of flow sensitivity and nonlinearity

Waleffe, Phys. Fluids '97

Farrell, Ioannou, Gayme

CONTROL-ORIENTED MODELING OF TURBULENT FLOWS

Control-oriented modeling of turbulent flows

MOTIVATION

⋆ forcing statistics influence performance of flow estimators

Chevalier, Hoepffner, Bewley, Henningson, J. Fluid Mech. '06

* embed observed statistical features in control-oriented models

- PROPOSED APPROACH
 - * view second-order statistics as data for an inverse problem

- KEY QUESTIONS
 - **★ Can we identify statistics of forcing to reproduce available statistics?**
 - * Can this be done by white in-time stochastic process?

Jovanović & Bamieh, IEEE CDC '01

- OUR CONTRIBUTION
 - * systematic way of turbulence modeling as an inverse problem

Input-output analysis of turbulent flows

• STREAMWISE CONSTANT FLUCTUATIONS

del Álamo & Jiménez, JFM '06 Cossu & coworkers

channel-wide streaks

near-wall streaks

RESOLVENT ANALYSIS

McKeon, Sharma, Moarref

Response to stochastic forcing

stochastic input d

$$\dot{x} = Ax + Bd$$

stochastic output x

LYAPUNOV EQUATION

 \star propagates white correlation of d into colored statistics of x

$$AX + XA^* = -BWB^*$$

 \star colored-in-time d

$$AX + XA^* = -(BH^* + HB^*)$$

white forcing: H = (1/2) B W

discrete-time dynamics: $x_{t+1} = A x_t + B d_t$

$$x_{t+1} = A x_t + B d_t$$

white-in-time forcing: $\langle d_t d_{\tau}^* \rangle = W \delta_{t-\tau}$

$$\langle d_t d_{\tau}^* \rangle = W \delta_{t-\tau}$$

LYAPUNOV EQUATION

$$X_{t+1} := \langle x_{t+1} x_{t+1}^* \rangle$$

$$= \langle (A x_t + B d_t) (x_t^* A^* + d_t^* B^*) \rangle$$

$$= A \langle x_t x_t^* \rangle A^* + B \langle d_t d_t^* \rangle B^*$$

$$= A X_t A^* + B W B^*$$

* continuous-time version

$$\frac{\mathrm{d}\,X_t}{\mathrm{d}\,t} = A\,X_t + X_t\,A^* + B\,WB^*$$

An example

• Response of a boundary layer to free-stream turbulence

Turbulent channel flow

- KEY OBSERVATION
 - * white-in-time forcing: too restrictive

$$\lambda_i (A X_{\rm dns} + X_{\rm dns} A^*)$$

Jovanović & Georgiou, APS '10

Problem setup

- PROBLEM DATA
 - \star dynamical generator A
 - * partial second-order statistics

 $\mathcal{L}(X_{\mathrm{dns}})$

- UNKNOWNS
 - \star unavailable statistics of x
 - $\star \ \, \text{disturbance dynamics} \left\{ \begin{array}{l} \text{input matrix } B \\ \text{input power spectrum} \end{array} \right.$

Inverse problem

CONVEX OPTIMIZATION PROBLEM

minimize
$$\|Q\|_*$$
 subject to $AX + XA^* + Q = 0$ $\mathcal{L}(X) - \mathcal{L}(X_{\mathrm{dns}}) = 0$ $X \succeq 0$

* nuclear norm: proxy for rank minimization

$$||Q||_* := \sum \sigma_i(Q)$$

Fazel, Boyd, Hindi, Recht, Parrilo, Candès, Chandrasekaran, ...

Zare, Jovanović, Georgiou, ACC '14; CTR SP '14

One-point correlations

normal stresses

shear stress

- Direct Numerical Simulations -
 - Solution to Inverse Problem

Two point correlations

 $R_{\tau} = 180$; $k_x = 2.5$, $k_z = 7$

Colored-in-time forcing

key result:

filter design using

linearized dynamics completed correlations

Verification in stochastic simulations

Direct Numerical Simulations -

Linear Stochastic Simulations o

New class of stochastically-forced closure models?

Acknowledgments

Rashad Moarref Caltech

Binh Lieu Seagate

Armin Zare U of M

Tryphon Georgiou Bassam Bamieh U of M

UCSB

SUPPORT

NSF CAREER Award CMMI-06-44793

NSF Award CMMI-13-63266

U of M Informatics Institute Transdisciplinary Faculty Fellowship

CTR Summer Programs '06, '10, '12, '14

COMPUTING RESOURCES

Minnesota Supercomputing Institute