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Turbulence without inertia
NEWTONIAN: inertial turbulence VISCOELASTIC: elastic turbulence
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Good for mixing . ..
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... bad for processing
DISTORTION OF A POLYMER MELT EMERGING FROM A CAPILLARY TUBE

Kalika & Denn, J. Rheol. ‘87

CURVILINEAR FLOWS: purely elastic instabilities
Larson, Shagfeh, Muller, J. Fluid Mech. '90

RECTILINEAR FLOWS: nho modal instabilities
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Transition in Newtonian fluids
e LINEAR HYDRODYNAMIC STABILITY: unstable normal modes
x successful in: Benard Convection, Taylor-Couette flow, etc.

* fails In: wall-bounded shear flows (channels, pipes, boundary layers)

e DIFFICULTY #1
Inability to predict: Reynolds number for the onset of turbulence (Re.)

much before instability

Experimental onset of turbulence:
no sharp value for Re.

e DIFFICULTY #2

Inability to predict: flow structures observed at transition
(except in carefully controlled experiments)



LINEAR STABILITY:

* For Re > Re. = exp. growing normal modes
corresponding e-functions }

(TS-waves) := exp. growing flow structures

Matsubara & Alfredsson, J. Fluid Mech. 01



e FAILURE OF LINEAR HYDRODYNAMIC STABILITY
caused by high flow sensitivity

* large transient responses
* large noise amplification
* small stability margins

TO COUNTER THIS SENSITIVITY: must account for modeling imperfections

TRANSITION = STABILITY <+ RECEPTIVITY + ROBUSTNESS
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flow unmodeled
disturbances dynamics




Tools for quantifying sensitivity

e INPUT-OUTPUT ANALYSIS: spatio-temporal frequency responses

Free-stream turbulence
d { Surface roughness Fluctuating }

Neglected nonlinearities velocity field
Linearized Dynamics
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IMPLICATIONS FOR:

transition: insight into mechanisms

control: control-oriented modeling




Transient growth analysis

e STUDY TRANSIENT BEHAVIOR OF FLUCTUATIONS’ ENERGY
Farrell, Butler, Gustavsson, Henningson, Reddy, Trefethen, etc.
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i E-VALUES: misleading measure of transient response
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Non-modal amplification
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of disturbances
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Ensemble average energy density
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Spanwise wavenumber
streamwise
streaks

e Dominance of streamwise elongated structures
streamwise streaks!
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Influence of Re: streamwise-constant model
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Amplification mechanism in flows with high Re
e HIGHEST AMPLIFICATION: (ds, d3) — u

‘glorified vortex viscous
diffusion’ tilting dissipation
dso . (U . V2 U
Bs O——(iwl — A71A2)1 Re Acp (iwl — A)~! Cu
ds
Bs

i AMPLIFICATION MECHANISM: vortex tilting or lift-up
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Linear analyses: Input-output vs. Stability

AMPLIFICATION:

v =Hd
singular values of H

typical structures cross-sectional dynamics

STABILITY:

'lﬁt:A'l,b

e-values of A

2D models

14



Oldroyd-B fluids

HOOKEAN SPRING:
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(Re/We)uy = —Re(u-V)ju — Vp + fAu+(1-8)V-7 + d
0 =V-u
T = —T7 + Vu + (Vu)T i We(T-Vu + (Vu)T-T B (11°V)T)
VISCOSITY RATIO: 8 = solvent viscosity
total viscosity
WEISSENBERG NUMBER: e . _lluid relaxation time

characteristic flow time




e TRANSIENT GROWTH ANALYSIS

Sureshkumar et al., JNNFM ’99; Atalik & Keunings, JNNFM °02;
Kupferman, JNNFM '05; Doering et al., JNNFM °06; Renardy, JNNFM 09

e INPUT-OUTPUT ANALYSIS
d

Equations of motion

ps Polymer equations

importance of streamwise elongated structures

Hoda, Jovanovi¢, Kumar, J. Fluid Mech. 08
Hoda, Jovanovi¢, Kumar, J. Fluid Mech. '09
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Inertialess channel flow: streamwise-constant model

0= —-Vp+ fAu+(1-)V-T7 +d
0 = V-u
T, = —7 + Vu + (Vu)! + We(r-Vu+ (Vu)! -7 — (u-V)7)
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Inertialess Oldroyd-B vs. Inertial Newtonian
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OLDROYD-B w/0O INERTIA: Weissenberg number & Polymer Stretching
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NEWTONIAN WITH INERTIA: Reynolds humber & Vortex Tilting

Jovanovi¢ & Kumar, Phys. Fluids ’10

Jovanovi¢ & Kumar 10, (submitted)



19

Spatial frequency responses

amplification
(dg,dg) p > U

INERTIAL NEWTONIAN: E(k,; Re) = Re? f(k,)
INERTIALESS OLDROYD-B: E(k.; We,8) = We2g(k.) (1 —8)°/8

vortex tilting: f(k,) polymer stretching: ¢(k.)
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Dominant flow patterns
e FREQUENCY RESPONSE PEAKS

i streamwise vortices and streaks

Inertial Newtonian: Inertialess Oldroyd-B:
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color plots:  streamwise velocity

e CHANNEL CROSS-SECTION VIEW: , ,
contour lines: stream-function



Outlook

e WISH LIST

= direct numerical simulations of stochastically forced flows
track ‘linear’ and ‘nonlinear’ stages of disturbance development

*x secondary sensitivity analysis
study influence of streamwise-varying disturbances on streaks

e Challenge: relative roles of flow sensitivity and nonlinearity

/ flow

disturbances | streamwise-varying linearized | fluctuations
1 dynamics around streaks

>

streak quadratic
evolution | interactions |
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