Nonmodal amplification of disturbances in inertialess flows of viscoelastic fluids

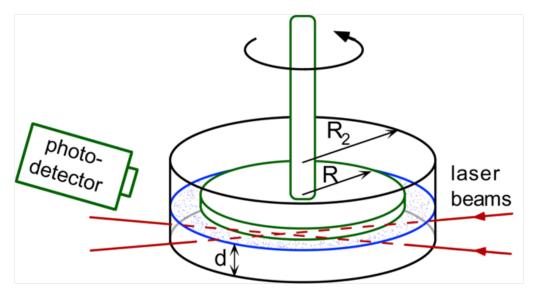
Mihailo Jovanović

www.umn.edu/~mihailo

Turbulence without inertia

NEWTONIAN: inertial turbulence

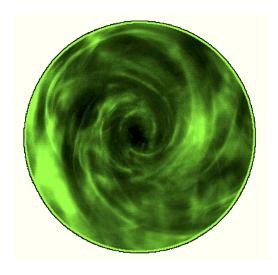
VISCOELASTIC: elastic turbulence



Groisman & Steinberg, Nature '00

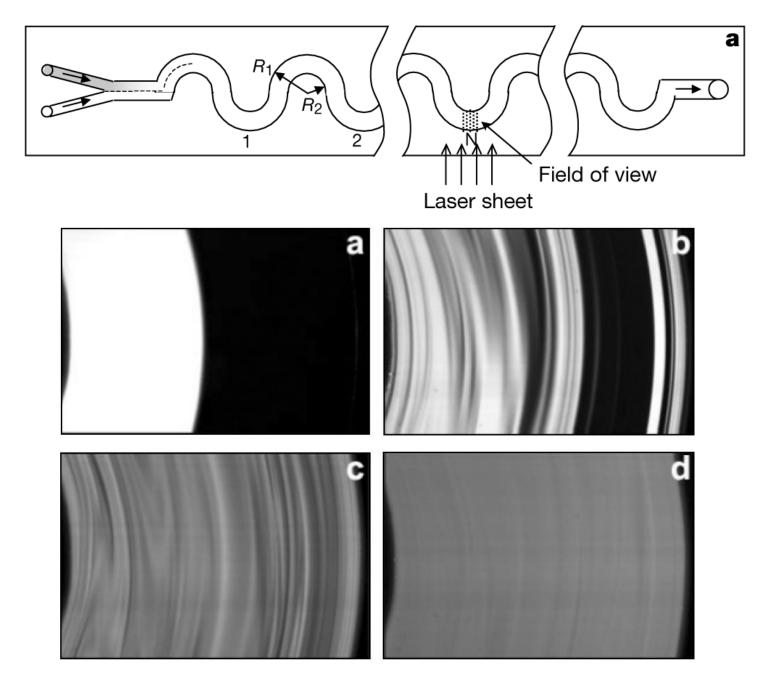
NEWTONIAN:

VISCOELASTIC:



FLOW RESISTANCE: increased 20 times!

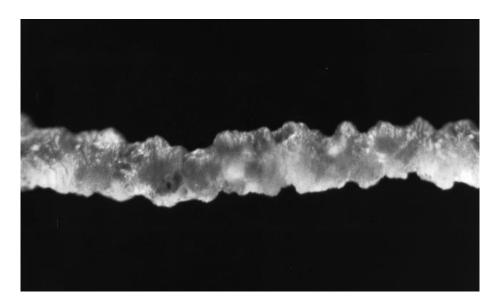
Good for mixing ...



Groisman & Steinberg, Nature '01

... bad for processing

DISTORTION OF A POLYMER MELT EMERGING FROM A CAPILLARY TUBE

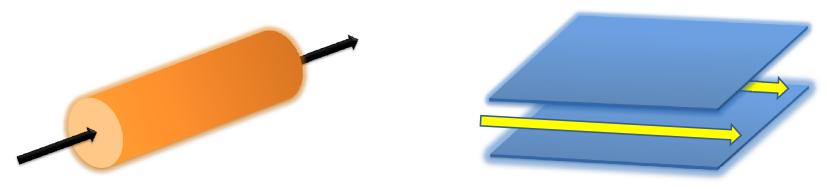


Kalika & Denn, J. Rheol. '87

CURVILINEAR FLOWS: purely elastic instabilities

Larson, Shaqfeh, Muller, J. Fluid Mech. '90

RECTILINEAR FLOWS: no modal instabilities



Transition in Newtonian fluids

- LINEAR HYDRODYNAMIC STABILITY: unstable normal modes
 - * successful in: Benard Convection, Taylor-Couette flow, etc.
 - * fails in: wall-bounded shear flows (channels, pipes, boundary layers)

DIFFIGULTY #1

Inability to predict: Reynolds number for the onset of turbulence (Re_c)

Experimental onset of turbulence: $\begin{cases} & \text{much before instability} \\ & \text{no sharp value for } Re_c \end{cases}$

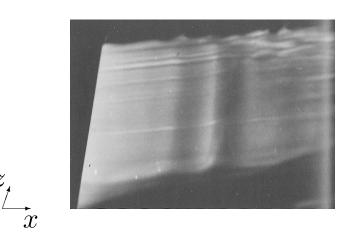
DIFFICULTY #2

Inability to predict: flow structures observed at transition

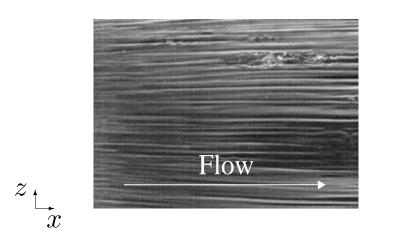
(except in carefully controlled experiments)

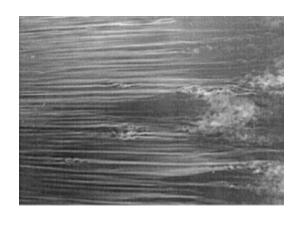
LINEAR STABILITY:

 \star For $Re \geq Re_c \Rightarrow \text{exp. growing normal modes}$ corresponding e-functions $\left\{ \text{TS-waves} \right\} := \text{exp. growing flow structures}$



EXPERIMENTS: streaky boundary layers and turbulent spots





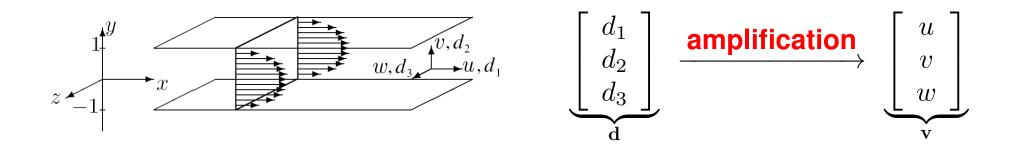
Matsubara & Alfredsson, J. Fluid Mech. '01

- FAILURE OF LINEAR HYDRODYNAMIC STABILITY caused by high flow sensitivity
 - ⋆ large transient responses
 - ★ large noise amplification
 - ⋆ small stability margins

TO COUNTER THIS SENSITIVITY: must account for modeling imperfections

Tools for quantifying sensitivity

• INPUT-OUTPUT ANALYSIS: spatio-temporal frequency responses



IMPLICATIONS FOR:

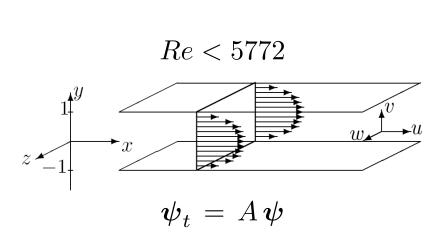
transition: insight into mechanisms

control: control-oriented modeling

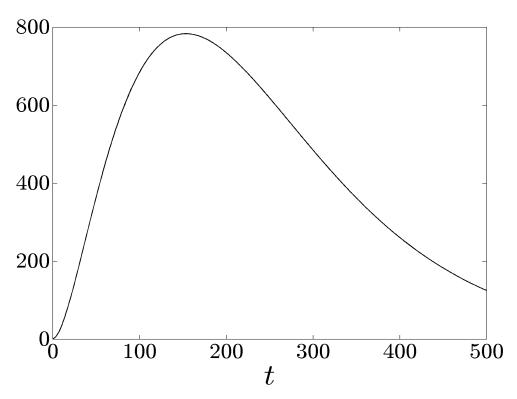
Transient growth analysis

• STUDY TRANSIENT BEHAVIOR OF FLUCTUATIONS' ENERGY

Farrell, Butler, Gustavsson, Henningson, Reddy, Trefethen, etc.



kinetic energy:

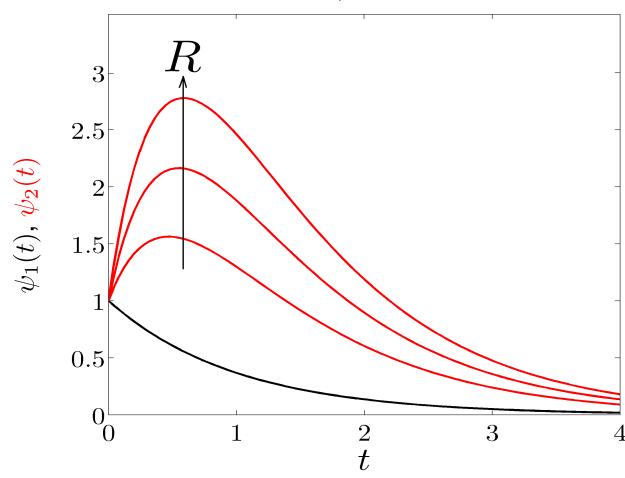


E-VALUES: misleading measure of transient response

A toy example

$$\begin{bmatrix} \dot{\psi}_1 \\ \dot{\psi}_2 \end{bmatrix} = \begin{bmatrix} -\lambda_1 & \mathbf{0} \\ R & -\lambda_2 \end{bmatrix} \begin{bmatrix} \psi_1 \\ \psi_2 \end{bmatrix}, \quad \lambda_1, \lambda_2 > 0$$

$$\lambda_1 = 1, \lambda_2 = 2$$
:



Non-modal amplification of disturbances

$$\begin{bmatrix} \dot{\psi}_1 \\ \dot{\psi}_2 \end{bmatrix} = \begin{bmatrix} -\lambda_1 & 0 \\ R & -\lambda_2 \end{bmatrix} \begin{bmatrix} \psi_1 \\ \psi_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} d$$

$$\begin{array}{c|c}
d & \overline{1} & \psi_1 \\
\hline
s + \lambda_1 & R
\end{array}
\qquad
\begin{array}{c|c}
\overline{1} & \psi_2 \\
\hline
s + \lambda_2 & R
\end{array}$$

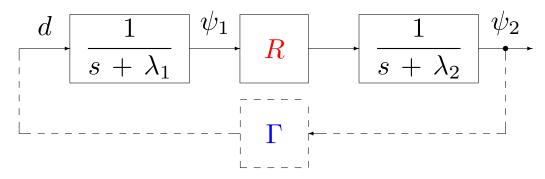
WORST CASE AMPLIFICATION

$$\max \frac{\text{energy of } \psi_2}{\text{energy of } d} = \max_{\omega} |H(\mathrm{i}\omega)|^2 = \frac{R^2}{(\lambda_1 \lambda_2)^2} \left| \frac{1}{2\pi} \int_{-\infty}^{\infty} |H(\mathrm{i}\omega)|^2 \, \mathrm{d}\omega \right| = \frac{R^2}{\lambda_1 \lambda_2 (\lambda_1 + \lambda_2)}$$

VARIANCE AMPLIFICATION

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} |H(i\omega)|^2 d\omega = \frac{R^2}{\lambda_1 \lambda_2 (\lambda_1 + \lambda_2)}$$

ROBUSTNESS



modeling uncertainty

(can be nonlinear or time-varying)

small-gain theorem:

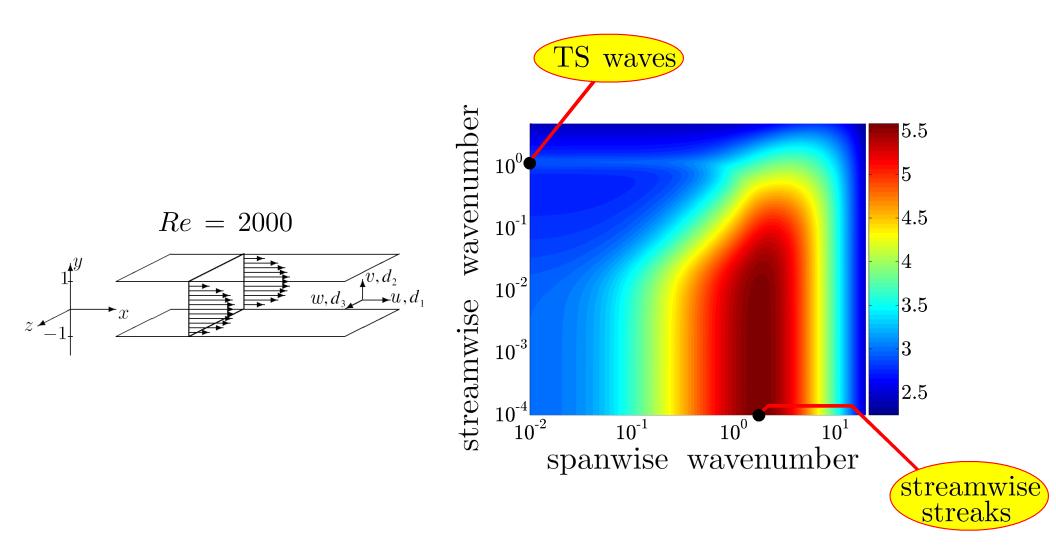
stability for all Γ with

$$\max_{\omega} |\Gamma(\mathrm{i}\omega)| \leq \gamma$$

$$\updownarrow$$

$$\gamma < \lambda_1 \lambda_2 / R$$

Ensemble average energy density

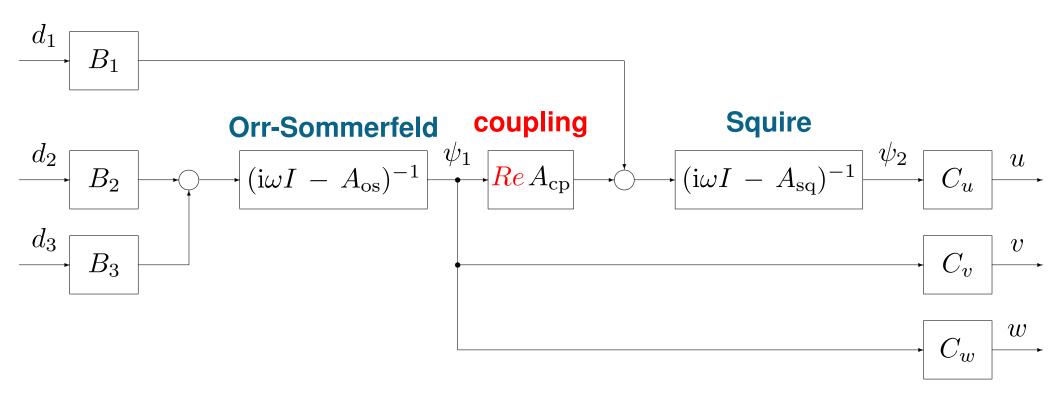


• Dominance of streamwise elongated structures streamwise streaks!

Influence of Re: streamwise-constant model

$$\begin{bmatrix} \psi_{1t} \\ \psi_{2t} \end{bmatrix} = \begin{bmatrix} A_{\text{os}} & 0 \\ Re A_{\text{cp}} & A_{\text{sq}} \end{bmatrix} \begin{bmatrix} \psi_1 \\ \psi_2 \end{bmatrix} + \begin{bmatrix} 0 & B_2 & B_3 \\ B_1 & 0 & 0 \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$$

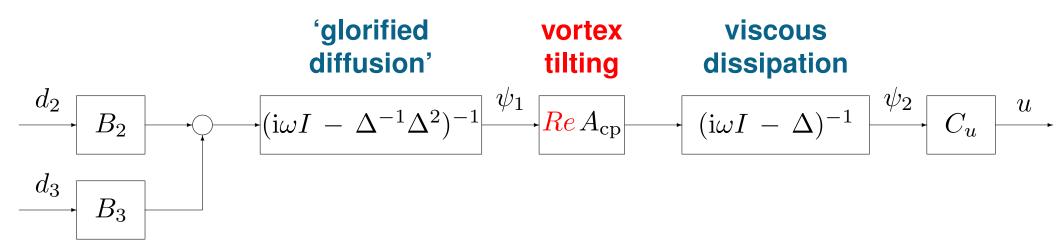
$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} 0 & C_u \\ C_v & 0 \\ C_w & 0 \end{bmatrix} \begin{bmatrix} \psi_1 \\ \psi_2 \end{bmatrix}$$



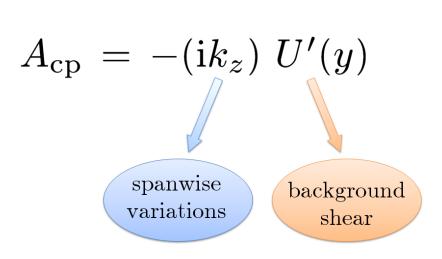
Jovanović & Bamieh, J. Fluid Mech. '05

Amplification mechanism in flows with high Re

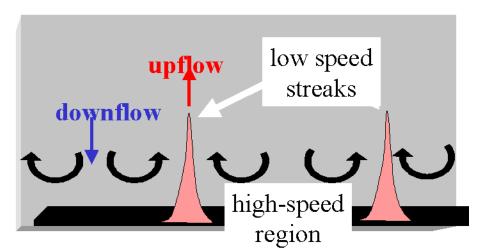
• HIGHEST AMPLIFICATION: $(d_2, d_3) \rightarrow u$



AMPLIFICATION MECHANISM: vortex tilting or lift-up



wall-normal direction



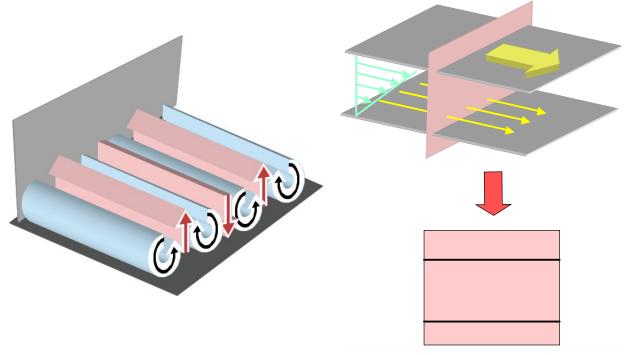
spanwise direction

Linear analyses: Input-output vs. Stability

AMPLIFICATION:

 $\mathbf{v} = H \mathbf{d}$

singular values of H

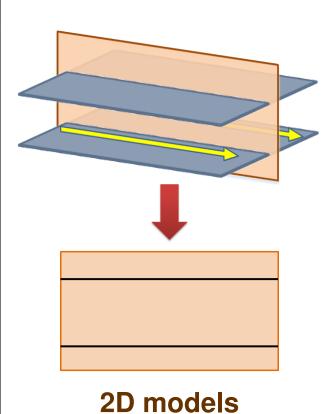


typical structures cross-sectional dynamics

STABILITY:

 $\psi_t = A \psi$

e-values of A



Oldroyd-B fluids

HOOKEAN SPRING:

$$(Re/We)\mathbf{u}_{t} = -Re(\mathbf{u} \cdot \nabla)\mathbf{u} - \nabla p + \beta \Delta \mathbf{u} + (1-\beta)\nabla \cdot \boldsymbol{\tau} + \mathbf{d}$$

$$0 = \nabla \cdot \mathbf{u}$$

$$\boldsymbol{\tau}_{t} = -\boldsymbol{\tau} + \nabla \mathbf{u} + (\nabla \mathbf{u})^{T} + We(\boldsymbol{\tau} \cdot \nabla \mathbf{u} + (\nabla \mathbf{u})^{T} \cdot \boldsymbol{\tau} - (\mathbf{u} \cdot \nabla)\boldsymbol{\tau})$$

VISCOSITY RATIO:

$$\beta := \frac{\text{solvent viscosity}}{\text{total viscosity}}$$

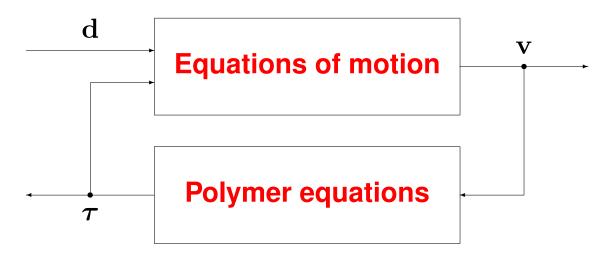
Weissenberg number: We:=

$$We := \frac{\text{fluid relaxation time}}{\text{characteristic flow time}}$$

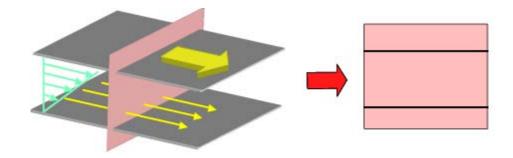
TRANSIENT GROWTH ANALYSIS

Sureshkumar *et al.*, *JNNFM '99*; Atalik & Keunings, *JNNFM '02*; Kupferman, *JNNFM '05*; Doering *et al.*, *JNNFM '06*; Renardy, *JNNFM '09*

INPUT-OUTPUT ANALYSIS

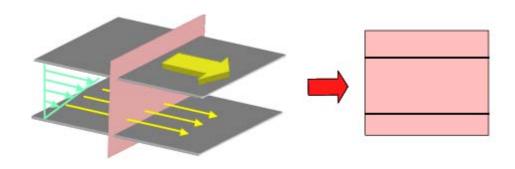


importance of streamwise elongated structures



Hoda, Jovanović, Kumar, *J. Fluid Mech. '08* Hoda, Jovanović, Kumar, *J. Fluid Mech. '09*

Inertialess channel flow: streamwise-constant model

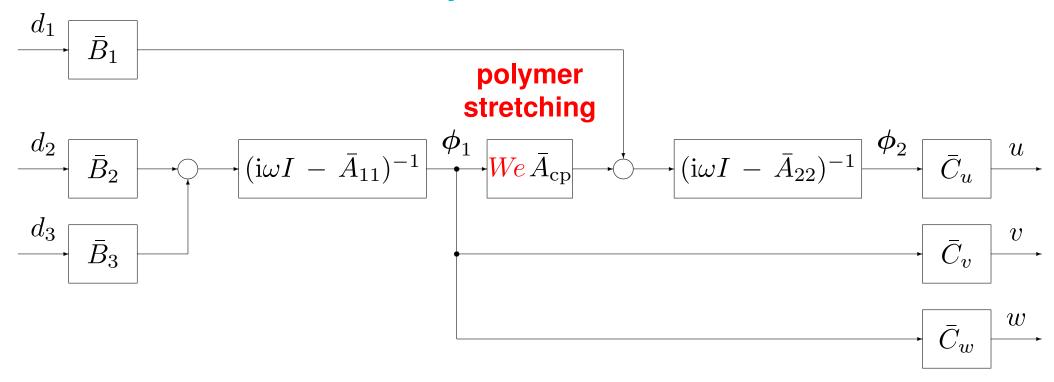


$$0 = -\nabla p + \beta \Delta \mathbf{u} + (\mathbf{1} - \beta) \nabla \cdot \boldsymbol{\tau} + \mathbf{d}$$

$$0 = \nabla \cdot \mathbf{u}$$

$$\boldsymbol{\tau}_t = -\boldsymbol{\tau} + \nabla \mathbf{u} + (\nabla \mathbf{u})^T + We \left(\boldsymbol{\tau} \cdot \nabla \mathbf{u} + (\nabla \mathbf{u})^T \cdot \boldsymbol{\tau} - (\mathbf{u} \cdot \nabla) \boldsymbol{\tau}\right)$$

Inertialess Oldroyd-B vs. Inertial Newtonian



OLDROYD-B W/O INERTIA: Weissenberg number & Polymer Stretching

 \approx

NEWTONIAN WITH INERTIA: Reynolds number & Vortex Tilting

Jovanović & Kumar, *Phys. Fluids '10*Jovanović & Kumar '10, (submitted)

Spatial frequency responses

$$(d_2, d_3) \xrightarrow{\text{amplification}} u$$

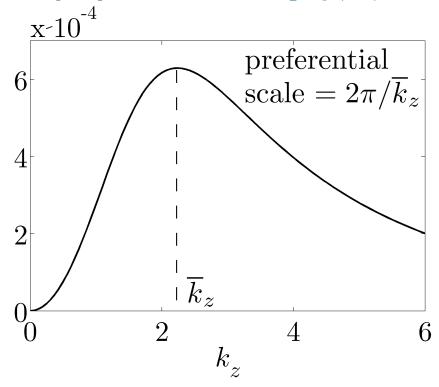
Inertial Newtonian: $E(k_z; Re) = Re^2 f(k_z)$

INERTIALESS OLDROYD-B: $E(k_z; We, \beta) = We^2 g(k_z) (1-\beta)^2/\beta$

vortex tilting: $f(k_z)$

$\begin{array}{c|c} x-10^{-5} \\ \hline 4 & & & \\ \hline 2 & & & \\ \hline 0 & &$

polymer stretching: $g(k_z)$

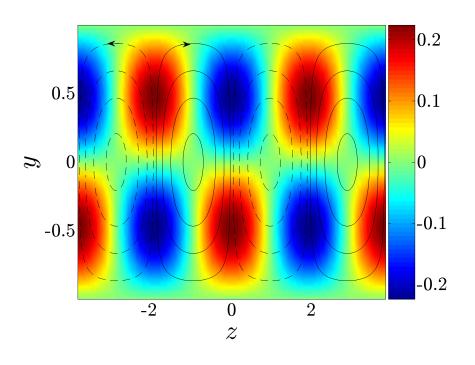


Dominant flow patterns

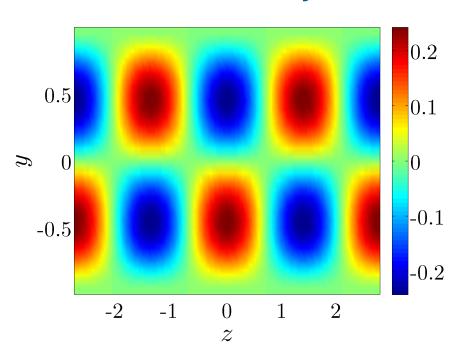
FREQUENCY RESPONSE PEAKS

streamwise vortices and streaks

Inertial Newtonian:



Inertialess Oldroyd-B:



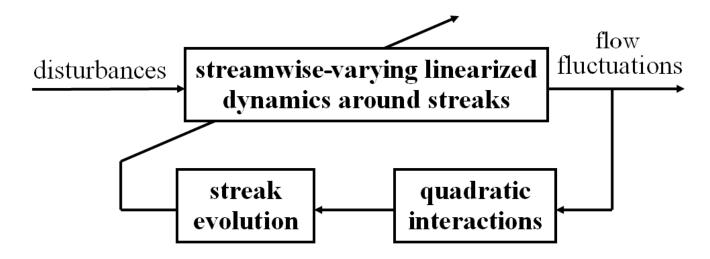
• CHANNEL CROSS-SECTION VIEW:

contour lines: stream-function

Outlook

- WISH LIST
 - * direct numerical simulations of stochastically forced flows track 'linear' and 'nonlinear' stages of disturbance development
 - * secondary sensitivity analysis
 study influence of streamwise-varying disturbances on streaks

Challenge: relative roles of flow sensitivity and nonlinearity



Acknowledgments

COLLABORATORS:

Satish Kumar (CEMS, U of M) Nazish Hoda (ExxonMobil) Binh Lieu (ECE, U of M)

SUPPORT:

NSF CAREER Award CMMI-06-44793

COMPUTING RESOURCES:

Minnesota Supercomputing Institute