Convex optimization in a Hilbert space setting.

Closed convex set: \(\forall \mathbf{x} \in \mathcal{X} \) is a convex set

\[\forall \mathbf{k}_1, \mathbf{k}_2 \in \mathcal{L}, \quad 0 \leq \alpha \leq 1 \]

\[\mathbf{k} = \alpha \mathbf{k}_1 + (1-\alpha) \mathbf{k}_2 \in \mathcal{L}. \]

Suppose \(\mathcal{M} \) is a subspace then

\[\mu = \inf_{\mathbf{m} \in \mathcal{M}} \| \mathbf{x} - \mathbf{m} \| \]

we have shown that \(\exists \mathbf{m} \in \mathcal{M} \) s.t.

\[\| \mathbf{x} - \mathbf{m} \| \leq \| \mathbf{x} - \mathbf{m} \| \quad \forall \mathbf{m} \in \mathcal{M} \]

and \(\mathbf{m} \) has the above property if and only if \((\mathbf{x} - \mathbf{m}) \perp \mathcal{M} \).

Note that \(\mathcal{M} \) a subspace is also a convex set.
Suppose \(k \in K \) is such that \(\|x - k\| \leq \|x - k'\| + k \in K \).

Subspace \(M \)
\[
(x - m) \perp M.
\]
\[
\langle x - m, m - m' \rangle = 0
\]
\(\forall m \in M. \)

Theorem: Let \(K \) be a convex set and suppose \(x \in H \) and \(K \subseteq H \) where \(H \) is a Hilbert space. Then \(k \in K \) satisfies
\[
\|x - k\| \leq \|x - k'\| + k \in K
\]

if and only if
\[
\langle x - k, k - k' \rangle \leq 0 \quad k \in K.
\]

Proof: Suppose \(k \in K \) is such that
\[
\langle x - k, k - k' \rangle \leq 0 \quad k \in K
\]

Then,
\[
\|x - k\|^2 = \langle x - k, x - k \rangle = \langle x - k, x - k + k - k \rangle
\]
\[
= \langle x - k, x - k \rangle + \langle x - k, k - k \rangle
\]
\[
+ \langle k - k, x - k \rangle + \langle k - k, k - k \rangle
\]

\[
\quad + \langle k - k, k - k \rangle
\]
\[\begin{align*}
&= \| x - k_0 \|^2 - 2 \langle x - k_0, k - k_0 \rangle \\
&\quad + \| k - k_0 \|^2 \\
\implies &\quad \| x - k \|^2 - \| x - k_0 \|^2 = \| k - k_0 \|^2 - 2 \langle x - k_0, k - k_0 \rangle \\
\implies &\quad \| x - k \|^2 > \| x - k_0 \|^2, \quad \forall \: k \in K.
\end{align*} \]

Suppose \(\exists \: k \in K \) s.t.
\[\langle x - k_0, k - k_0 \rangle = \varepsilon > 0. \]

Then, note that
\[k' = (1 - \alpha) k_0 + \alpha \: k \in K \quad \forall \: \alpha \in (0, 1) \]
\[f(\alpha) = \| x - k' \|^2 = \langle x - (1 - \alpha) k_0 - \alpha k, x - (1 - \alpha) k_0 - \alpha k \rangle \]
\[= \langle x - k_0 + \alpha (k_0 - k), x - k_0 + \alpha (k_0 - k) \rangle \]
\[= \langle x - k_0, x - k_0 \rangle + \alpha \langle k_0 - k, k_0 - k \rangle \]
\[+ \alpha \langle k_0 - k, x - k_0 \rangle + \alpha^2 \langle k_0 - k, k_0 - k \rangle \]
\[= \| x - k_0 \|^2 - 2 \alpha \langle x - k_0, k - k_0 \rangle \\
\quad + \alpha^2 \| k - k_0 \|^2 \]
\[f(\alpha) = \| x - k_0 \|^2 - 2 \alpha \varepsilon + \alpha^2 \| k - k_0 \|^2 \]
\[\frac{d f(\alpha)}{d \alpha} \bigg|_{\alpha = 0} = -2 \varepsilon. \]

\[\therefore \quad 0 < \alpha < 1 \quad \text{s.t.} \quad f(\alpha) < f(0) \]
\[\Rightarrow \quad 0 < \alpha < 1 \quad \text{s.t.} \quad \| x - k \|^2 < \| x - k_0 \|^2 \]
Thus, if \(k \in K \) s.t. \(\|x - k\| < \|x - k_0\| \)
\(\iff k_0 \) is not the closest to \(x \) in \(K \).

Theorem: Consider the problem

\[
\mu = \inf_{k \in K} \|x - k\|
\]

where \(x \in H \), \(K \subset H \) is a **Hilbert Space** and \(K \) a **closed convex subset of** \(H \).

Then, if \(k_0 \in K \) s.t.

\[
\|x - k_0\| = \mu
\]

such a \(k_0 \) satisfies

\[
\langle x - k_0, k - k_0 \rangle \leq 0 \quad \forall k \in K.
\]

Proof:

\[
\mu = \inf_{k \in K} \|x - k\|
\]

Then given any \(\eta > 0 \) \(\exists k_0 \in K \) s.t.

\[
0 \leq \|x - k_0\| \leq \mu + \eta.
\]

It's clear that \(\lim_{n \to \infty} \|x - k_n\| = \mu \).

Therefore, \(\mu \) Parallelization identity provides the following.

\[
\|x - k_0\| = \|x - k_0\|^2 + \|x - k_n + (x - k_n)\|^2
\]
\[= 2 \| x - k \|^2 + 2 \| x - k_f \|^2 \]

\[\implies \| k_i - k \|^2 = 2 \| x - k \|^2 + 2 \| x - k_f \|^2 - 2 \| 2 x - (k_f + k_i) \|^2 \]

\[= 2 \| x - k \|^2 + 2 \| x - k_f \|^2 - 4 \| x - \frac{k_i + k_f}{2} \|^2 \]

Given \(\varepsilon > 0 \), choose \(N > 0 \) s.t. \(\varepsilon < \frac{\varepsilon}{N} \). Then if \(i, j > N \)

\[\| k_i - k_j \|^2 \leq 2 \left(\mu^2 + \varepsilon^2 \right) + 2 \left(\mu^2 + \varepsilon^2 \right) - 4 \mu^2 \]

\[= \varepsilon^2 \]

\[\implies \| k_i - k_f \| \leq \varepsilon \]

So, \([k_i]\) is a Cauchy sequence.

\(k_i \) is a Cauchy sequence in a Hilbert space \(H \). So, if \(k_0 \in H \) such that \(\| k_i - k_0 \| \to 0 \) as \(i \to \infty \).

Now, \(k_0 \in K \) because \(k_i \in K \) and \(K \) is closed.

\[\| x - k_0 \| = \| x - k_0 + k - k_0 \| \]

\[= \| x - k + k_0 - k_0 \| \]

\[\leq \| x - k \| + \| k_0 - k_0 \| \]

\[= \| x - k \| \leq \mu \]
\[\|x - k\|_1 \leq \frac{1}{\mu}\]

\[\|x - k\|_1 = \frac{1}{\mu}\]

(\(\|x - k\|_1 \geq \frac{1}{\mu}\) for some \(k_0 \in K\)).

we have shown that \(\exists k_0 \in K\) s.t.
\[\|x - k\|_1 \leq \|x - k\|_1 + \|k - k_0\|_1\]

\(<x - k_0, k - k_0> \leq 0 \quad \forall k \in K\).

Suppose \(\exists k' \in K\) s.t.
\[\|x - k'\|_1 \leq \|x - k_0\|_1 + \|k - k_0\|_1\]

\[k(\alpha) = \alpha k_1 + (1 - \alpha) k_0\]

\[\|x - k(\alpha)\|_1^2 = \|x - \alpha k_1 + (1 - \alpha) k_0\|_1^2\]

\[\|x - k(\alpha)\|_1^2 = \|x - (\alpha k_1 + (1 - \alpha) k_0)\|_1^2\]

\[\|x - k_1\|_1^2 = \|x - k_1 + k_0 - k_1\|_1^2\]

\[= \|x - k_0\|_1^2 + \|k_1 - k_0\|_1^2 + 2\langle x - k_0, k_1 - k_0\rangle\]

\[\mu^2 = \mu^2 + \|k_1 - k_0\|_1^2\]

\[-2 \langle x - k_0, k_1 - k_0\rangle\]

\[0 = \|k_1 - k_0\|_1^2 + 2\langle x - k_0, k_1 - k_0\rangle\]

\[\Rightarrow \varepsilon > 0, \quad k_1 = k_0\]

\[\Rightarrow \varepsilon = 0, \quad k_1 = k_0\]

\[\Rightarrow \varepsilon = 0, \quad k_1 = k_0\]

\[\Rightarrow \varepsilon = 0, \quad k_1 = k_0\]
uniqueness does hold

\[c_2 \parallel c_1 \]

\[2n - \nu, k - k_0 \leq 0 \quad \forall k \in k. \]
Then L is characterized by $x^* = (m_1, m_2)$ for some m_1, m_2 such that

$$L = \{ x \in \mathbb{R}^2 \mid \langle x, x^* \rangle = c \}$$

In other words

$$L = \{ x \in \mathbb{R}^2 \mid \langle (x_1, x_2), (m_1, m_2) \rangle = c \}$$

$$= \{ x \in \mathbb{R}^2 \mid m_1 x_1 + m_2 x_2 = c \}$$

$$L = \{ x \in \mathbb{R}^2 \mid \langle x, x^* \rangle = c \}$$

we will assume for the line L shown that $m_1 > 0, m_2 > 0$.

Half Spaces: x_2
Then \(A = \{ x \in \mathbb{R}^2 \mid \langle x, m \rangle \leq c \} \)
\(B = \{ x \in \mathbb{R}^2 \mid \langle x, m \rangle \geq c \} \)

\(-\)ve half space \((x_1, x_2) \)
\(+\)ve half space

Suppose \(\mathbf{x} = (x_1, x_2) \in A \)

Then \(x_2' > x_2 \)

\[m_1 x_1 + m_2 x_2' \leq m_1 x_1 + m_2 x_2 = c \]

\[m_1 x_1 + m_2 x_2 \leq c \]