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We will begin by giving the following definitions:

Definition 1. [Group] A group is a set G with a binary operation
(.) : G x G — G defined which has the following properties.

1. (a.b).c = a.(b.c); associativity property.

2. There exists an element e in GG such that a.e = e.a = a foralla inG. e is
called the identity.

3. Forevery a in G there exists an element a~! in G such that
a.a ' =a"1l.a=-e.a" ! is called the inverse of a.

Definition 2. [Subgroup] /f H is a subset of a group GG the H is a subgroup
if H is a group with the binary operation inherited from G.



Lemma 1. H is a subgroup of the group G if the identity element e is in H, a
belongs to H implies a~! is in H and a and b belong to H implies a.b belongs
fo H.

Lemma 2. A group G has a unique identity element. Also, every element in
G has a unique inverse.

Definition 3. [Abelian group] A group G is an abelian group if for any two
elements in G, a.b = b.a.

Definition 4. [Homomorphism] Let G and H be two groups. ¢ : G — H is a
homomorphism between the two groups if p(a.b) = ¢(a).¢(b), for all a,b in G.

Lemma 3. A homomorphism ¢ : G — H sends identity of G to the identity of
H and sends inverses to inverses.

Definition 5. [Isomorphism] An isomorphism is a homomorphism which is
one to one and onto.



Definition 6. [Fields] A field K is a set that has the operations of addition
(+) : K x K — K and multiplication (.) : K x K — K defined such that

1. multiplication distributes over addition

a.(b+c) =a.b+ a.c,

2. K Is an abelian group under addition with identity written as 0 for addition.

3. K\{0} is an abelian group under multiplication with identity being 1.

Lemma 4. /finafield K elements a # 0 and b # 0 then ab # 0.



Vector Space

Definition 7. A setV with two operations addition (+) : V xV — V and
scalar multiplication (.) : V x K — V, where K is a field defined is a vector

space over the field K if

1. V is an abelian group under addition.
2. multiplication distributes over addition

a.(b+c) =a.a+ a.b, foralla in K, foralla,binV.

The elements of the field K are often called as scalars. The vector space is
called a real vector space if the field K = R and the vector space is called a
complex vector space if the field K = C.



Definition 8. [Algebra] V a vector space is an algebra if it has an operation
vector multiplication (-) : V x V. — V defined such that this operation
distributes over vector addition.

Definition 9. [Units] /f A is an algebra then x in A is an unit if there exists
someyin Asuchthatx-y=y-x=1.

Lemma 5. If A is an algebra with an associative vector multiplication and U
Is the set of units in A then U is a group under vector multiplication.

From now on we will restrict the field to be either the set of real numbers R or
the set of complex numbers C. Thus when we say K we mean either R or C.



Normed Vector Space

Definition 10. A normed linear space is a vector space X with a function
||| : X — R defined such that

1. ||z|| > 0 and ||z|| = 0 ifand only if x = 0.

2. ||ax|| = |a| ||z|| for any scalar o and vector x in X.

. o+ yll < [l=]] + [lyll.



Convergence in a Normed Vector Space

Definition 11. [Convergence] LetV be vector space with a norm ||.||
defined. Suppose v,, is a sequence in 'V, then v,, converges to somev € V, if
v, —v|| = 0 @asn — oo.



Cauchy Sequence

Definition 12. A sequence v,, in a normed vector space V is said to be
cauchy if given e > 0, there exists an integer N such that if n,m > N then
|vn — v < €.

Lemma 6. Every Convergent sequence is Cauchy.



Complete Normed Space; Banach Space

Definition 13. A normed vector space in which every Cauchy sequence is
convergent, is called complete vector Space.



Pre-Hilbert Space

Definition 14. A vector space with inner product < .,. > defined.



Orthogonal Vectors

Definition 15. In a Pre-Hilbert Space, two vectors x and y said to be
orthogonal if < x,y >= 0, (x L y). Moreover, if < x,x >=1and < y,y >=1,
then x and y are called orthonormal vectors.



Cauchy-Schwartz Inequality

Lemma 7. [Cauchy-Schwartz inequality] : For all x,vy in a Pre-Hilbert space
| < x,y > | <||z|||ly]|. Furthermore, the equality holds iff either y = 0 or
x = Ay where )\ is a scalar.



Continuity of Inner Product

Theorem 1. Letx, € H and y,, € H be sequences in a pre-Hilbert space H
such that

|xn — ]| = 0asn — o
and

< h,y, >—>< h,y > forallh € H and ||y.|| < M for all n.

(Thus x,, — = In norm topology and vy,, — vy In the weak-star topology.) Then

< Tp,Yn >—<2,Y > .



Proof: Note that

| < Ty Y > — < T,y > |

< TpyYn > — < T,Yp >+ < T,yp > — < T,y > |
<xn_xayn>+<xayn_y>|

< Ty — T,y > |+ <xyyn—y > |

< Tp—TyYn > | H | < Tyyn —y > |

Zn — z||[|ynll + | < 2,90 —y > |

T —x||M 4+ | <2y —y > |

VANIVANR VAN VAN

Given € > 0 choose N such that n > N implies that
|zn — 2| < 557 and | < z,y, —y > | < 5. Thus given € > 0 there exists a N
such that n > N implies that

| < Tpyyn > — < x,y > | < e



The following lemma is a special case of the above theorem:

Lemma 8. In a Pre-Hilbert Space H, suppose v,, and w,, are sequences in

H converging to v and w respectively (¢ H). Then, < v,,w, > — <uv,w >
asn — oQ.

Proof: Follows easily from the fact that if
|wy, —w|| = 0 =< h,w, >>< h,w >

and that ||w,,|| is uniformly bounded. '



Hilbert Space

Definition 16. Let H be a Pre-Hilbert Space with inner product < .,. >
defined. Then let ||z| = /< x,x > defines the norm. If H together with the
norm is Complete Space, then H is a Hilbert Space.




Some Resulis

Lemma9. AsetSC {X,|.||} is closed iff it contains all its limit points.

Theorem 2. Every finite dimensional vector space is closed.



Pre-Hilbert Space Theorem

Theorem 3. Let H be a pre-Hilbert space and let M be a subspace of H.
Then formg € M

|z — mg|| < ||z —m|| forallm e M if and only if (x — mg) L M.

Proof: (<) Suppose my € M is such that (z — mqg) L. M. Then forany m € M
it follows that

|z — m + mg — mgl|?

|z — m||?
= [[(z = mo) + (m — mo)||?

= [l = mo)||* + [I(m — mo)|*

> [l —mol”



The third equality holds because because (z —mg) € M-+ and (m —mg) € M.

(=) Let ||z — mgl| < ||z — m|| for all m € M. Suppose x — mq & M. Then
there exists m, € M with ||m;|| =1 and

< x—mg,my >=0 > 0.

Let m := mg + dmy. It follows that

<r—m,r—m> <x—mg—0my, T —mg—omg >
= ||z — mo||* + 6% < mi,m1 > =26 < x — mg, my >

= ||z — mo||* + 6% — 254

<l = moll®



Note that m € M. This contradicts the hypothesis and thus 6 = 0.



Classical Projection Theorem

Theorem 4. Let H be a Hilbert space and M a closed subspace of H.
Consider the following problem

u = inf{|lz —m|, m € M},

where x € H. Then, there exists a unique vector my € M such that
|z — mol|| = u, thatis,

— inf ||z —
mo a’rg{nigMH:v m||}

Furthermore, a necessary and sufficient condition for mq being the unique
minimizing vector is
(x —mg) L M.

Proof: Note that only the existence of mq needs to be proven. The rest of the
proof follows from Theorem




If z € M, then mg = x and theorem is proven. Suppose = ¢ M. Then for any
n € N. there exists m,, € M such that u < ||z — m,,|| < u + L. Thus there exist
a sequence {m;}*, € M such that ||z — m,|| converges to M as n — oo. From

the parallelogram Iaw for any integer ¢ and j,
[(my — ) + (2 = ma)|* + [[(my — 2) — (z —my)||* = 2[|m; — || +2[|m; — 2>
This implies that

Imy = mall* + [[my +my = 23)* = 2|lmy; — z||* + 2[m; — z|*.

Thus




Note that 9+ : € M, and therefore

From (1) we have

Imy —mil|* < 2llmy — l|* + 2[m; — zf|* - 4p*.

Given any ¢ > 0, let N be a large positive integer such that for all n > N,
2
| — my|]? < p?+ <. If 4,5 > N then,

2 2

€ €
[ —mall* < 20 + 5+ 2p% + 5 — 4.

This implies
Imy —ms||* < €.



It follows that
[mj —myl] < e

Thus, m,, forms a Cauchy Sequence. And, since M is a closed subspace of
Hilbert Space (which is complete), m,, is a converging sequence (due to
completeness) with the limit point inside M (due to closedness). Thus there
exists a mo € M, such that

|m.,, —mg|| — 0asn — oo.
Since, ||(x — my) — (x — mg)|| = [|mn — mol|| we have

(x —my) — (x —mgp) as n — 0

From the continuity of norm, ||(x — m,,)|| converges to ||(z — m)||. Since, a
converging sequence has a unique limit point, we have

p= ||z —me].



This proves the theorem



Direct Sum

Definition 17. A vector space X is said to be the direct sum of two
subspaces M and N if every vector x € X has a unique representation of the
formx = m +n, where m € M andn € N. The notation X = M ® N Is used
fo denote that X is a direct sum of M and N.



Relationships between a space and its perp space

Theorem 5. Let S and T be subsets of a Hilbert Space H, then

1. S+ is a closed subspace.
2. 8 cstt

3. IfScTthenT+ c S+
4., S+++ =35+

Proof: (1) Let p,, be a sequence in S+ with p,, — p. Let s be an element in S.
As p,, € S+, it follows that

< s, pn, >= 0, for all n.



Thus
lim < s,p, >=0.

n— 00
Note that
| <s,p>|=|<s$,p—Pn+Dn>| = | <S$pn>+<8p—pn>|

< [ <spn> |4 <s,pn—p

< | <s,pn> |+ sl |lp— pnl forall n.

Taking limits we have that

| <s,p>|= lim |<s,p>|= lim | <s,p, > |+ lim ||s] [[p — pn| = 0.
n—00 n—o n—oo

As s is an arbitrary element in S it follows that p € S+. This proves (1).



(2) Let s be any element in s. Then for all elements p in S+ < s,p >= 0.
Therefore s € S*++. Thus S c S+-+. This proves (2).

(3) Let t* be an element in T+. Then it follows that < ¢,t- >=0forall t € T.

As S c T it follows that < ¢,t+ >=forall t € S. Thus t+ € S+. As t* is an
arbitrary element in 7 it follows that 7+ c S+. This proves (3). (4) will be
proven after establishing the next theorem.



Decomposition of a Hilbert space

Theorem 6. [f M is a closed linear subspace of a Hilbert space H, then

H=MaoM*+and M = M*+.

Proof: Let / be an element in H. From the classical projection theorem
(Theorem 4) it follows that there exists an element h,,, € M such that

iy, = arg{ inf |z —ml[}.

Furthermore, such an element is a unique element that satisfies
(h — hy,) € M*. Let h,, := h — h,,. Then clearly h = h,, + h,, with h,,, € M and
h, € M~.

Suppose h = h! 4+ h' is another decomposition with 4! < M and k!, ¢ M+.



Then it follows that h = h,,, + h,, = h;, + h,, and therefore
(h;n R hm) + (hzz o hn) = 0.

As, (b — h,,) € M and (h! — h,) € M- it follows that

0 = ||(h = hum) + (hay = ha)I* = [1(he, = he) |2 + ([ (R, — R 1.

Thus h! = h,, and h!, = h,,. Thus the decomposition h = h,,, + h,, iS unique.
This proves H = M & M.

In Theorem 5 we have established that A/ ¢ M+-+. Suppose M is closed. Let

p € M++. From the decomposition result established earlier p can be
decomposed as p = p,, + p,, With p,,, € M and p,, € M. It follows that

Pn =P — Pm,



and

I*

1Pnll? =< Py P >=< P = P, P >=< D, Pp > — < Py Pn >= 0.

This follows because < p,p,, >=0(asp € M++ and p,, € M) and
< D, Pn >=0(as p, € M+ and p,,, € M). Thus p,, = 0 and

P = Dm + Pn=Dpm € M.

Thus we have shown that any arbitrary element p € M-+ also belongs to M.
Therefore M++ c M. This proves the theorem. N



Minimum Norm Vector of a Linear Variety
(Restatement of the Projection Theorem)

Theorem 7. LetV be a linear variety defined by
V=zx+M={x+m|me M}

where M is a closed subspace of a Hilbert space H and x € H. For the
optimization problem

= inf [|v]l.
u= inf o
there exists a minimizing element vy € M. That is there exists vy € M~ such

that

— inf .
o a'rg{vlgv o]l }



Proof: Note that .
H = 1nf’UEVHUH

= inf,enm ||z + m|

= infenm ||z — m|

From the classical projection theorem there exists a minimizing element my to
the problem

inf ||z —m)||
meM

such that z — mg € M. The proof of the theorem follows by defining
v = x — mo and from

arginf |lv]|} = 2 —argy inf [lz—m|} =2 —mo = .



Invertibility of the Gram Matrix

Definition 18. [Gram Matrix] Gram matrix of set of vectors y1,vys . ..y, IS

given by :
<Yi,y1 > <Yi,Yy2> - <Y,Yn >
< Yo, Y1 > < Yo, Y > o < Yo, Up >
G(y1,Ya - Yn) = y2;y1 y25y2 y25yn
<yn7y1> <ynay2> <ynvyn>

Lemma 10. G(y1,y2-.-yn) IS invertible if and only if the vectors y1,ys . . . yn
are linearly independent.

Proof:



Minimum Norm Vector that Satisfies a Set of Linear

Equalities
Theorem 8. Let H be a Hilbert space andy;, i =1,...,n be a set of linearly
independent vectors in H. Let
po= inf |[z|]
subject to

<z, Y1 > =

<T,Ys > = C9

<T,Yp > = Cp.

Then there exists x to the above problem that is

g = arg{inf{||z|| | < z,y; >=c;,i=1...,n}}



where x Is a linear combination of vy,

Lo = Z Biyi
i=0

with (3; satisfy following normal

b1 C1

C
GT(yla Y2 ... yn) 5:2 — :2
Bn Cn

Proof: Let

span{yi,...,yn} and
{re H <z,y; >=c¢;,i=1,...,n}.

w <
|



It is evident that

YJ_
S

{re H <x,y;, >=0,i=1,...,n.} and therefore
z+Y+

where 7 is any element that belongs to S.

It is evident that

po = inf{||z|]| | <z,ys >=c;, 1 =1,...,n}
infyeg |||

where S is the linear variety S =z + Y+ (note that Y is a closed subspace).
From Theorem 7 it follows that there exists a minimizing solution =y € (Y ).
Y being a finite dimensional vector space is closed (see Theorem ~.) Thus

from Theorem 6 it follows that zy € Y-+ =Y. Thus z, is a linear combination



of the vectors y; with
ro = Z Biyi-
1=1

Also, xog € S and thereforeforall j =1,...,n
mn n
¢j =< x0,y; >=< Y _Biy; >= > B <yi,y; > .
1=1 1=1

This set of relations is equivalent to the matrix equation G 3 = c. This proves
the theorem. N



Hilbert Space of Random Variables

Let (2, F, P) be a probability space. Let H be the the set of random variables
with finite variance. H is endowed with an inner product < X,Y >= E(XY).
H together with the inner product is a Hilbert Space. Let H™ denote random
vectors with dimension n.

Note that we are not endowing any Hilbert Space structure to H™. The only
Hilbert space we will be interested in is the scalar Hilbert space H.



Estimation

Consider two random vectors 3 € H™ and y € H™. where

The problem is to estimate the unknown random vector 3 from the
measurements y. What is desired is a function 5 = f(y) which provides the
estimate of 5. Note that y is a random vector and as such we desire a
mapping f that maps the m dimensional random variable to a n dimensional
random vector. Thus a mapping from H™ to H" is sought. Note that once an
appropriate mapping f is determined for a particular realization of the random
vector y = y! we can obtain the estimate for that realization as f(y').

It needs to be emphasized that a mapping f : H™ — H" is sought as an
estimate of 3. If the function f is restricted to be a linear function then the goal
IS to obtain a /inear estimate of 3 given y.

Furthermore the estimate is termed unbiased if the function f is restricted

A

such that E(3) = ().



The estimate f; is said to be a minimum variance estimate if in the allowable
class of mappings S

fo=arg | inf B{(5~ )78~ )}



Minimum-variance Estimate of X based on Y.

Let X and Y be two random variables. The following problem is of interest:

p = inf B{(X — )%}

Theorem 9. Let X andY be two random variables. Then

E(X|Y) = arg ir}fE{(X — F(Y)?}] .

Proof: The proof provided is not rigorous; however, it conveys the main idea.
Let

p= inf B{(X ~ f(V))?).



Let M = {m = f(Y) : m has finite variance}. Note that every element of S is
a random variable m : 2 — R obtained by m = f oY where f : R — R and
Y :Q — R. M is a subspace of the Hilbert space H. Thus we have

— inf ||X —m]2.
L WifelMH mH2

From the classical projection theorem (see Theorem 4) any mq which satisfies
(X —mg) L M is the minimizer. Note that

<X -EX|Y), f(Y)> = E[(X - EXI[Y))f(Y)]

EXf(Y)] - E[E(X]Y)f(Y)]

= EXf(Y)] - EE(f(Y)X]Y)]
= 0.

Thus, E(X|Y) is the vector that is perpendicular to all other vectors in M.



Thus the theorem follows from the classical projection theorem. H

Note that identities like

EXf(Y)]

EE(f(Y)X]Y)]

can be proven by assuming the pdf's p, ,(z,v), Py (z|y), p(y) and p(x) to
represent the joint pdf of the random variables X and Y, the conditional pdf of
X given Y, the marginal pdf of Y and the marginal pdf of X respectively.



Using this notation we have
EXfY)] = [ [zf(y)psy(z,y)dedy
= [ J2f(y)pz)y(zy)p(y)dady
= [ (xS ()pepy(zly)de) p(y)dy
= JE(fW)X]Y = y)p(y)dy

= E[E(f(Y)X|Y)]

Similarly other such identities can be proven.

In the case where X and Y are jointly Gaussian one can show that £(XY) is

a linear function of the Gaussian variable Y.

It was seen that



e The minimum-variance estimate of X basedon Y is F(X|Y).

e In the case when X and Y have a jointly Gaussian distribution £(X|Y) is
linear in Y given by R,,R,''Y.

Without further knowledge of the joint pdf of X and Y it is not possible to
evaluate F(X|Y). Thus typically the minimum variance estimate is difficult to
obtain. However, it is relatively straightforward to obtain a minimum-variance
linear estimate of X based on Y as is seen by the theorem below.



Review of Gaussian Variables

Definition 19. [Gaussian random vector] The random n dimensional
vector X is said to Gaussian (normal) if it has a pdf described by

px(x) = ! ea;p{—l[a: — mx]TRgl[:U — my]}.

\/(QW)n‘Rﬂ 2

Theorem 10. The random vector X with pdf

px(x) = ! exp{—l[a: —mx]TRajl[:L' — my]}.

\/(27T)n‘Rx| 2

has the mean m, and the covariance R,. Thus

Ex(X) =m, and Ex([x — mg][x — mg]") = Ra.



Characteristic Functions: Generating higher order moments

Definition 20. /f X is a n dimensional random vector then the characteristic
function ¢x (-) is defined as a scalar function as below

o) = B = [ [ g e

Theorem 11.

E[xi1$i2 .« o QC,L'm] =

1[ O™ Px (1) ]

jm &uzl(?,uzl ce (9,Lbzm =0

Proof: Note that
Ox(p) = / exp(ju’ ) fx (x)dz.



Therefore it follows that

%flm = a,fz-l ([exp(ip"z) fx(x)dx])
= J 821 (exp(j D iy piwi) fx (v))dz
= [ jaiexp(5d 0 i) fx(x))dx

Differentiating the above expression with respect to z;, we obtain

2
gmi—%% = a0 (Jgzieap(iu ) fx (v)dz])
= [imigi(eap(Xiy piwi) fx (x))de
— fj233i11‘7;261’p<2?:1 ]szz)fX(x))dx

Proceeding in a similar manner one can show that



0" px (1)
Otbiy Oty - - - Oty

1=1

The theorem follows by evaluating above at ;1 = 0.



Characteristic Functions of a sum of two independent
random vectors

Theorem 12. LetZ = X +Y where X, Y are two n dimensional random
vectors that are independent. Then

bz (1) = dx (1) Py (1)

Proof:

Note that
b7(n) = Bl 7] = Bl X = plen Xl Y]
and as X and Y are independent it follows that

E[e/* Xelt' Y] = Bl X|E[e" Y] = ¢x (1) ().



This proves the theorem.



Characteristic function of a Gaussian random vector

Theorem 13. The characteristic function of a n dimensional random vector
X that has mean . and variance R with a pdf given by

px(r) = ————eap{~5 [z — "R~z ~ m]}

Vv (2m)"| R

ox(p) = bt

IS



Linear Transformation of a Gaussian vector is Gaussian

Theorem 14. Let X be a n dimensional random vector with mean m, and
covariance R,.. Let A € R™*™. ThenY = AX is a m dimensional random
vector that is Gaussian with mean m,, and covariance R,, where

m, = Am, and R, = AR, R".

Proof: The characteristic function of Y is given by

by (1) = E[e* Y] = B[ AX] = E[e/AW'X] = ¢ (ATp)

exp{jpt Am, — suAR, AT 11}

which is the characteristic function of a Gaussian vector with mean Am., and
variance AR, A”T.

This completes the proof. |



Jointly Gaussian Variables

Definition 21. [Jointly Gaussian] Suppose X andY are two random

vectors of dimension n and m respectively. Let 7 .= bean-+m

X
Y
dimensional random vector formed by stacking X andY . X andY are said to
jointly Gaussian if Z is a Gaussian random vector of dimension n + m.

Theorem 15. Let X andY be jointly Gaussian n and m dimensional random
vectors with means m,, and m,, respectively and covariances R, and R,
respectively. Let A € RP*™ and B € RP*™. ThenZ = AX + BY isap
dimensional random vector is Gaussian with mean

m, = Am, + Bm, and R, = AR, A" + AR,,B" + BR,, A" + BR,B".

Proof:



Let U = [ if ] . As X and Y are jointly Gaussian, it follows that U is

My

Gaussian with mean m,, = [
My

] and covariance

Note that Z = AX + BY = [ A B } U. Therefore from Theorem it follows

N~

H

that Z has the mean given by Hm,, = Am, + Bm, and covariance
HR,HT = [ A B'-R‘” By A
“ L | Rys Ry Bt
o | R.AT 4+ R,, BT
= 45 R, AT + R,B”

= AR,AT + AR,,BT + BR,, AT + BR,BT.



This proves the theorem.



Marginals from jointly Gaussian pdf

Theorem 16. Suppose Z is a random vector of dimension n + m with a pdf
given as

pa(z) = [(2m)tm?

z—m.,. 1°
.e:cp{—%[ B x]

R, Ry ]1 [ T — My ]}
Ry, Ry Y — my '

where Z iIs partitioned as Z = if ] with X andY an and m dimensional

random vectors respectively. Then




and

1 1
py (y) = exp{—=ly — my|" R, [y — m,]}.
Vv (2m)™| R, 2 no ’
Proof: Note that X = [ I 0 ]Z. Therefore it follows from Theorem 14 that
A

the mean of X is given by
Am, = m,

and the covariance is given by

AR AT = R,.

A similar derivation can be done to obtain the pdf of the random variable Y.
N

Theorem 17. [f X andY are independent Gaussian vectors then they are
jointly Gaussian.



Proof: Note that if X and Y are Gaussian random vectors with dimensions n
and m with pdfs given by

and

Py () 633p{_§[?/ — my]TRy_l[y - my]}

\/(QW)n‘Rzﬁ



then the joint pdf

pX,Y(CC, y) —

px(z)py (y)

\/m p{——[[L‘ — mx]TR [ My}

¢<2w>m|R| exp{—3ly —my]" R,y —my]}

1
\/(27T)”|Rx|(27f) | Ry .
e:z:p{——[x —mg)T R x — my] — 5y — my]Tjol[y — my}

1
V (2m) " Ry || Ry |

exp{—3 [ (@=mz)" (y—my)" ] [ ?;1 OR;1 ] [x_mx

A" ~/

1
\/<27T>n+m | R:|

conlf - m - m? R E )




which is a Gaussian distribution with covariance R, and mean m., = [ Z“’ ] :
Yy



Uncorrelated implies independence for jointly Gaussian
vectors

Definition 22. X andY two random vectors of dimensions n and m are
uncorrelated if E[(X — m,)(Y — m,)’] = 0 where m, = E[X] and m, = E[Y].

Theorem 18. Suppose X andY are jointly Gaussian random vectors such
that X andY are not correlated. Then X andY are independent.

Proof: If X and Y are not correlated then R, = R,, = 0. Note that

R, O
R= 0" b, |

and |R,| = |R;||R,|. The Gaussian distribution of Z := [ é(

] IS given by (with



pz(z) = [(2m)" IRV eap{—4z — zn] TRz — 2]}

—[@m) M2 R, 1) 2m) 2 Ry 2]
.e:vp{—%[a: —mg P R — my] — %[y — my]TRy_l[y — myl}

= [2m) 2| R, |12 reap{—5 [z — mg]T Ry [z — my]}
exp{—3ly — my]" Ry — my]}

= px(z)py(y)

The theorem is proven as pz(z) = px.v(x,y).



Conditional pdf for jointly Gaussian
vectors/Minimum-variance Estimation for Jointly Gaussian
Variable

Theorem 19. Suppose X andY are jointly Gaussian random vectors that
are n and m dimensional respectively. with the joint distribution given as

pxy(z,y) = [(27r)<”+m)/2|Rz‘1/2]—T1
ex _1[$_mx] R—llﬁ—mx] |
p{ 2 y _ my z y . my }

where



Then the conditional pdf

1
271‘)”|Rx|y|

1 _
exp{—§[$ — 777’:)[;|y]TZ%gr;|z[CIj — mx|y]}

pX|Y($‘y) = \/(

where

Mgy = My + Ray Ry, (y —my) and Ry, = Ry — Ryy R 'Ry,

Also the solution to the problem

my + Ryy Ry (y —my) = a?“g{irj}f[E (X = FO)(X = F)]}



Proof: Note that

R—l _ Rx ny -
= RT R,

where A = R, — R, R, 'R, is the Schur complement of R, in R.



It also follows that

’Rz|_1 —
_ Rz_1|
AL 0
- L‘K 0 R;1>|‘T‘
B ANBE |
- 0 Ry—l
= AR
— A|_1 ‘Ry|_1
From Thoerem it follows that
(v) 1 (1l — my )Ry — my)}
py(y) = exPL—3lY — — My
\/(27T)m|Ry’ 2 ! Y

and from Bayes rule we have



pX|Y($’3J)
_ px,y(xay)
Py (Y)

V(2T Ry
(v/2m)(ntm)| R,

T
.e:cp{—% [ y—m, ] R;! [ y—m, ] —|-§[y—my]TRy1[y—my]}

V @m) MRy
(v/2m) (M) | ARy

T
1 L — My T — My 1 B T >—1 B
.e:cp;{ 5 [ y—m, ] LDT[ y—m, ] + 51y —my|" R [y —my]}

(v/2m) (A
exp{—3[zT — (my + Roy R,y — my))TIA e — (my + Roy Ry My — my))]}

This proves the first part of the theorem. Equation > follows from Theorem



and the fact that £(X|Y") = m,,.



Estimation with static linear Gaussian models

Theorem 20. Suppose x and v are n and m dimensional random vectors
respectively that are jointly Gaussian with means m, and 0 respectively and
covariances P, and R, that are uncorrelated. Suppose

z=Hx+v
where H € R™*™,

Then the conditional pdf p,. is Gaussian with mean

Malz = My + [PoHY[HP,H" + R,z — Hm,]

and covariance

P,.,=P,— [P,H'|[HP,H" + R, 'HP,.



Note that
My, = My + K|z — Hm,| and Py, = P, — KHP,.

Proof: Note that as = and v are jointly Gaussian, it follows that [ i ] IS

Gaussian. As any linear transformation of a Gaussian vector is Gaussian it

follows that
x| | I O T
o= )=k T

is Gaussian with mean

with covariance

s o_[1 0)[P 0O I HT]1 [P, PHT
w=|lH 1||0 R,||0 I |~ | HP, HP,HT+R, |



From Theorem 19 it follows that the pdf p,|.(z|z) has mean

my + Ry Rz —m,)

My 2
my + P,HY(HP,HY + R,) (2 — Hmy,)

and the variance

P.+P.H'HP.H' + Rv)_lHP:E '

This proves the theorem.



Minimum-variance Linear Estimate of X based on Y.

Theorem 21. Let X andY be random vectors with dimensions m and n
respectively. Let

p= inf E[|X—X|3], (3)
X=KY

where ||.||2 is the two norm in R™. Further assume that R,,, = E(YY1) is
invertible. Then the minimizing solution to the optimization problem (7) is
given by

X'=EXYDEYYT)"'Y = RyyR,'Y.

Proof: Note that

§ = inf S E[(X; — X;)?]
subject to

XZ:kTY,z:l,,m



where

K =

Note that the above problem can be découp_led into m optimization problems.
The optimization variables X; apd k; do not influence the terms in the
objective or the constraints on X; and k; if i # j. Motivated by this we define

subject to

X; = kY.
where the optimization variables are k; and X;. Let

M = span {Y1,Y5,... Y, }.



Let
Y = [V1,..., Y]t

Thus M is a finite dimensional subspace of H the Hilbert space of scalar
random variables. Note that

1 = inf || X — X;||
subject to
Xi e M.
where
1Z||g =V E(Z?).

From the classical projection theorem (Theorem 4) it follows that there exists
XY € M that achieves the minimum and (X — X°) € M. Therefore there
exists scalars af such that
20 =3 aty,
/=1



with

A

<X;,—-X;,Y;>y = Oforalj=1,....,n
= <X3,Y;>y = <X,Y;>y forallj=1,...,n
= <>V, Y, >y = <X, Y;>g foralj=1,...,n

= S (ab<Y,Y;>y) = <X,Y;>y foralj=1,...,n.



Recasting above in a matrix form we have

<Y.,Yi1> <Y, Yi7> --- <Yn Y > Oé,jL-l < X, y1 >H

<Y.,Yo> <Y.Yo> .. <Y, Y5> o | | <Xiy2>m

<Y1,.Y,,> <Y.Y,> --- <Y, Y,.> o < Xi,UYm >H
Thus

o; = [E(YYD)]'E(X;Y)
and

XO=[al,...,a™Y =alY = E(X;, YD [EXYYT)] Y.

1



This implies that

EX YDEXYYD] Y
X0 = E = BE(XYD[EYY!) Y.

EX. YD) EXYYT) Y

Thus )
X" = R.yR,'Y.
This proves the theorem. N

Corollary 1. X© js the minimum variance linear estimate (mvie) of X based
onY derived in Theorem ~1 if and only if

E[(X — XY T] =o.

Proof: Note that each element X0 of the X° belongs to M where
M = span {Yi,...,Y,,} whereas (X? — X;) € M. Therefore it follows from



Theorem 4 that X? is a mvle if and only if
E[(X°-X,)Y;] =< X?—X;,Y; >=0foralli=1,...,mand forallj = 1,...,m.
Therefore X0 is a mvle if and only if

E[(X - XY T] =o.



Properties of Minimum-variance Linear Estimates

Theorem 22. The following statements hold:

1. Thp minimun] variance linear estimate of '’ X withT" € RP*™ based onY is
' X° where X° is the minimum variance linear estimate of X based onY.

2. Let X° be the minimum variance linear estimate of X based onY. Then

P2XY s the linear estimate based on'Y minimizing E[(X — X)TP(X — X)]
where P € R™*™ is any positive definite matrix.

Proof: (1) Let Z = T"X. Note that
E[(Z -TXOYT) = E[lX — XOYT] =TE[(X — XO)YT] = 0.

From Corollary 1 it follows that T X is the minimum variance linear estimate of
Z =TIX basedonY.



(2) Note that

w = inf E:(X—X)TP(X_X)]

X=KY
— infe_,., E[(P2X — P2X)T(P2X — PzX)]
— inf . . E[(P%X—X’)T(P%X—X’)]
X'=PIKY

A

= infg,_ . E[(P3X — X)T(PEX — X')]

N|—=

The above problem is to obtain the minimum variance linear estimate of PiX
which from part (1) of the theorem is given by PzX?.

This proves the theorem. N



Minimum-variance Linear Estimate

Theorem 23. Let
y=Wp(+e

where

e W € R™*™ |s a known matrix

e (3 is an n-dimensional random vector with E(33%) = R > 0.

e The vector ¢ is a m dimensional random vector with E(ee!) = Q > 0.
o E(eBt) =0.

Then the minimum variance linear estimate of 3 based on y is given by

B=RWITWRWT +Q) ly=wWTQ~'w + R H)"'wTQ 1y



and the error covariance is given by

P :=E[(f-B3)(8-P)T] = R—RWT(WRWT+Q)"'WR=WTQ 'W+R™ 1.

Note that
P_l/é _ WTQ—ly

that does not depend on R the covariance of .

Proof: From Theorem we have

B =EBy")E(yy") 'y



with
E@By") = EBB' W+

= E[BB"W'] + E[Be']
= RW?
E(yy") = E[(WB+e)(WB+e)']
= EWBBT + WBel + e3TWT + eeT]
= WE[BB' W' + Elee’ | = WRW' +Q
Therefore we have

B =RWT(WRWT + Q) y.
Note that one can show that

RWH(WRW' + Q)™ =(W'Q'W+ R H)™'WQ™"



by pre-multiplying by (W"'Q~"W + R~') and postmultiplying by
(WRWT + Q)= that shows that 3 = (W1Q~'W + R=1H)=1wTQ—1y.



The error covariance matrix is given by

E[(8 - 8)(8—5)"]

E

El

BB"

B(B—B)T]— E[B(B— B)T]

6(5 — B)T:, because B@ e M and (6] — BJ) c ML

| - E[86T] = E[86T] — E[(B - B + B)B7]

| - E[(8 - 5)8"] - E[5")

—0— B35

R— RWT(WRWT +Q)"'WR

wiQ=—tw + rR~H)~ 1.



The last identity follows by using the matrix identity
(A1 — 1412142_211421)_1 = Al_ll + A1_11A12(A22 — A21A1_11A12)_1A22A1_11

and Identlfylng A = R_l, A = —WT, Ay = W, Agy = Q This proves the
theorem. |



Combining Estimators
Theorem 24. Suppose
Ya = Waﬁ + Vq andyb — Waﬁ + vy

where v, and v, are uncorrelated (E(vav{) =0) and

Elvevl] = Qq., and Elvyvl] = Q. Suppose 3, is the mvle of 3 based on y,
and (3, is the mvle of 3 based on vy, with error covariance matrices P, and P,
respectively. Then the mvle of 3 based on

=

P_lé = Pc:lﬁa+Pb_16b

is given by

where
P—l — Pa_l _|_Pb—1 . R—l



with P the associated error covariance matrix of beta..

Proof:

Note that from Theorem it follows that

P8, = WIQ, s and P By = W/'Qy s

a

with
Plt=wlo;'w,+ R and P ' =W;Q;, "W, + R

Its also follows that
N —1
P_lﬁ _ ”rTQ—ly — [ ”rg ”rbT } [ (?a 0 ] [ Ya ] .

Therefore



P13 WIQ yy + WEQ; 'y

— Pa_lﬁa + Pb_lﬂb-

Note that it follows from Theorem that

Pt = W'QT'W4+ R
L0 W,
— T T a a
- L g |
= (WIQ;'Wa+ RN+ (W) Q, "Wy +R™")—R™!
P l+pP ' —RL

This proves the theorem.

Remark: Note that the new estimate is a linear combination of the estimates
B, and (G, with the weights proportional to the inverse of the error covariance



matrices; if P, is large compared to P, then 3, contributes lesser towards the
new estimate when compared to j3;.



Minimum Variance Linear Unbiased Estimator
(Gauss-Markov Estimators)

Let ¢ be a m dimensional random vector with E(ee!) = Q and E[e) = 0.
Further let

y=WgG+e

where 5 € R" and W € R™>". Note that 3 is a deterministic quantity that is
unknown. What is desired is an linear estimator 5 of 5 based on y such that

E[(] = /. The property of the estimator that E[3] = 3 is termed as the
unbiased property.

Note that as /3 has to be linear it has the form Ky for some K € R™>™. Also



note the following

E[3] — Qforall 8 € R"
& ElKy) = pforall g € R”
& EKWpB+¢ = pgforall g€ R”
< KWpR+ FEle] = pgforall e R”
& KWg — Qpforall g e R™
& KW = I

Note that the performance of the estimator will be measured by the measure

18- A3 = ElI6— Kyl3
— E[|6- KWH- K|

B[ Kel

Ele' KT K¢

E[Trace|Keel K11

Trace|KElee! | K]

Trace[ KQK']




where we have used the constraint on K that KW = I and the fact that

vty = Tracelzxl].

Thus we are interested in the problem outlined in the following theorem

Theorem 25. Consider the following problem:
i = inf{Trace[ KQK"'||KW = I}.
The solution to the above problem is given by
K= 'wwtQ‘w)~ 1.

Proof: Let
K' = ki ka ... k)



where k; is the i*" column of K. Note that

Note that
Tracel KQK'] =) (KQK™); ZkTQk
=1

Also



KW = [Kwy Kwy ... KW, =1
< Kuw; = e;foralli=1...n
ki w;
T,
& ?2% = eforalli=1...n
& klw, = ¢ foralli=1,...,nandj=1,...,n

where ¢; is the it unit vector.

Thus the optimization problem can be written as

W= lﬂf{z k?Qk@|k?w3 = 51']' for all 1,7 =1,... ,n}.

1=1

As the optimization over k; is decoupled from that of &; the solution to the



above problem can be found by solving
i = inf{k; Qk;|k] w; = d;; forall j =1,...,n}.
We define the inner product on R" as
<a,y>=alQy.

In the above inner product the solution to u; can be found by solving the
problem
{mf{HkZH | < ki,Q_le >= (57;3' for a”] = 1,...,71}.

Appealing to Theorem ¢ it follows that there exists an optimal solution %, ; to
the above optimization such that &, ; € span{Q~'w,} with
< kO,i) Q‘le >= 51‘]' forall j =1,...,n.



Thus there exist constants «; ; forall i =1, ..., n such that

mn
—1
ko,i:E &i,lQ wy
=1

such that

mn
< Zai,lQ_lwl,Q_le >=¢;;forallj=1,...

=1
] that is

n

Z[wa_lQQ_lwl]Qi7l — (57;3' for all 7=1,...

=1

Thus



n

Z[UJJTQ_LUJ[]CVZ‘,Z = 57;]' for all 17=1,...,n.
=1

Thus
’ijQ_1WOéZ' = 5@']’ forall ;7 =1,...,n

where «; is a column vector. This implies that
WTQ_1WCYZ' — €

and therefore
a; = (WEQ W) e,
Note that
koi= Q' Wa,

and therefore
koi = Q 'WWLTQ W) e, forall i



and therefore
Kl =lkot ... ko] =Q ' WWIQ W) 1.

Thus

The following theorem summarizes the discussion on minimum variance
unbiased estimators (mvue).

Theorem 26. Let

y=Wp3+e
where 3 ¢ R*, W € R™*" E(¢) = 0 and E(ee!) = Q where Q is invertible.
Then the minimum variance unbiased linear estimate of 3 based on y is given
by beta that satisfies

B=WrQ W)~ 'wrQ 1y
and

El(B-B) (8- 8" =WTQ W)™



Proof: Note that the Gauss-markov estimator is given by
B _ Koy _ (WTQ_1W)_1WTQ_1
with K, defined in the proof of Theorem 25. Also

E[(ﬁ o Koy) (6 o Koy)T]

E[K,eel K]
(WTQ™IW)"'WTQ Q"W (WTQ~1W)~)
_ (WTQ_1W)_1

E[(B8-8)(B-5)"]

This proves the theorem.



The State Space Model

The following is the state space model of the system.

Tit1 = Fx+ G,
Yi Hix; + v;

We will assume that

e u; and u; are not correlated if ¢ # j.
e v; and v; are not correlated if ¢ # j.
e u,; and v; are not correlated if 7 # j.

e ¢ is not correlated with u; and v;.



The statistics are further described by the following equation:

Zo ; 0 0 Ip 0

Comments

e z,,Yy;,u; and v; are assumed to be n, m,p and m dimensional random
vectors.

e H denotes the Hilbert space of random variables with the inner product
defined as < «, 6 >= E(af). This is the only Hilbert space on stochastic
entities we will employ.



e By any span of random vectors (possibly of different dimensions) is meant
a component wise span which is a subspace of the scalar Hilbert space H.
For example:

Span {ZC(), Ui,y .- . ,U,j_l}
is defined to be

span {zo(1),...,zo(n),ui1(1),...,ui(p), u2(1),...,u —1)(p)} C H.



Properties of the Model

Lemma 11. For the model described by Equations (+) and () the following
hold:

1. (Uncorrelatedness property of states and inputs)

Fnar) 2 0 fi% @

2. (Uncorrelatedness property of outputs and inputs)

E(viy;") = O}JSZ_L )
E(uiy®) = 5
E(viyi") = R 8)



Proof:

(1) Let j < i. From Equation (4) it follows that
x; € Span{zo, ui,...,uj_1};

Note that x( is uncorrelated with u; and u; is uncorrelated with u;, ug ... w1
(see (9)). (note that : Initial state and inputs are of different dimensions, here
span means component wise span; see the comment earlier) and therefore x
is uncorrelated to u; thatis E(u;z}) = 0.

Also v; is uncorrelated with xy and u; are correlated only for same time index
(See ( )) E( U; l‘j* ) =0 forj <i an thus E( U; CIZ’j* ) = 0.

(2) Again note that
S Span{xO, U, Ug, . . . ,Uj_l}.



E(xov;*)=0forall¢, E(u; v;*)=0foralli # j,and y; = H;x; + v;. Thus if
j <i—1then E(u;y;) = 0and E(v;, y;) = 0.

Also note that

E( Uyq yi*) — E( U (Hfiﬂfi)*)_'_E( Ui Vi )
= FBE(u;ziH;")+S;
— S,
E(viy;) = E(viz;)H] + E(vwy) = R

This proves the lemma.



Notation
e By any span of random vectors (possibly of different dimensions) is meant

a component wise span which is a subspace of the scalar Hilbert space H.
For example:

Span {ZEQ, (VAT 7uj—1}
is defined to be

span {zo(1),...,zo(n),u1(1),...,ui(p),u2(1),...,uj — 1)(p)} C H.

e Suppose M is a closed subspace of the scalar Hilbert space H and z € H
Is a random variable. We define the projection of z onto M by

Prag(2) = arg{ inf ||z —ml|} = arg{ inf E[(z—m)?}.

Note that from the classical projection theorem (Theorem 4), Projas(2) is



guaranteed to exist with the property that

Z:=2— Pry(z) e M+

e Suppose z is a ¢ dimensional random vector z = (z(1), ..
projection of z onto the closed subspace M is defined as

I P?“Mz(l)

Pray(z) = | Trmz(2)

i }DTAiz(Q) il

.,2(q))*. Then the

that is Py, (z) is the componentwise projection of z onto M.

Associated with this projection is the error vector:

~

Z:=2z— Pry(z).



It is evident from Theorem 4 that every element of z € M.

e In the context of the model ( 4). Let M; := span {yo,...,y,}. Then the
projection of a random vector z onto M is denoted by ;. That is

Z|j = Per zZ.

Associated with this projection is the error vector:

It is evident from Theorem 4 that every element of z; € M;".

e Using the above notation we have

z;; = the projection of the state at time instant i onto
Mj = $§pan {y(), A ,yj}



T;; = The associated error vector.

e We will also use the notation

A

Lj = Lj|i—1-

Thus z; is the projection of x; onto the past : — 1 measurements. z; will
denote the associated error vector.



Innovations

Note that
gz|j — PTMj(ZUi)a

M; ={yo,---,y;}.

The innovation sequence is defined by
A A
€ = Yi — Yili—1-
Theorem 27. The innovation sequence is white, that is:

Proof: Note that:
€; © span {y07 Y1, - 7yz}



as e; = y; — ¥iji—1 and 9,1 € M;_1 = span {yo,...,Yi—1}-

From classical projection theorem (Theorem 4) it follows that for all
k=1,2,...,i—1
E( (yi — 9iji—1) (yx)™ ) = 0.
This implies that
E(e;ypy*)=0forall k < i
which in turn implies that

E(e e )=0forall k <1

This proves the theorem.

Lemma 12.

M; = span{yo,...,y;} = span{eg,...,e;}.

Proof: Left to the reader.



Measurement Model with Innovations as Input

In the discussion below we will obtain a state space representation where the
Input is the sequence ¢; and the output is the measurement sequence y;.
Thus we will develop a model to obtain causally the measurement sequence
from the innovation sequence.

Lemma 13. For the state space model (<) with the statistics described by (5)

we have
Tip1; = Filji—1 + Kpe;
T e (9)
Yi — sz7,|z—1 + €;
where
Kpﬂ; = E( Li4+1 67;* )Re,i_l.
Proof: From
Tit1 = Fwi+ G,
yi = Hizi+v



we have

Tit1li = PTSpan(yanla---ayj)(xi+1)
= Prspan(eo,el,...,ej)(sz'+1)

= Prspan(eo)(fci—kl) ...t Prspan(ei)<xi+1)

From Theorem we have that

Prspan(ej)(xi—l—l) — E(%H@;)E(@je;)_lej-



Thus

L1

=0
i—1

Y E(wiy1e")E(eje;" ) ej+ E( w1 e )Rei e
j=0

Tiv1)i—1 + E(@it1 € )Re,z_iez




Also it follows from Theorem and Lemma 1 that

Tit1lic1 = (Faxi)ji—1 + (Gawg)ji—a

= Fiti-1 + Giugpi—1

= FiTii—1
Thus it follows that
Ty = Fidg—1 + Kpe;
Vi = Yiji—1t e = HiZy1 + e

This proves the lemma.



Innovation Model with Measurements as Input

Now we obtain a state space representation where the input is the sequence
y; and the output is the innovation sequence e;. Thus we will obtain a state
space model to obtain causally the innovation sequence from the
measurements.

Lemma 14. For the state space model (4) with the statistics described by ()

we have
':%i—|—1|’i — Fp,’iﬁjﬂ’i—l + Kp@yz (1 O)
€i = —HiZyi—1 +yi
where
Kp7i = E( Li+1 61'* )Re’i_l
and

Fpi .= Fz — szHz



Proof:

T, = Firg—1 + Kpe;
= Fz£z|z—1 + sz‘ [y’t — ?)i|7j—1]
= Fiyi1+ Kp,lyi — Hiy)i1]
Letting
we have
Tiv1i = LFpTiji—1 + Kpyi
ei = Yi— Yili—1 = Yi — HiZij1

= —HiZii—1+ Y



Note that we have defined #; := %;;_;. Thus

Tiv1 = Fz,+ Kpe;
yi = Hizi+e;
ei = —Hizit+y

This proves the lemma.

Thus if we determine K, and R.. we can obtain a causal and causally
invertible model for the process y; as follows,



Li+1 — szjz_l'szez

yi = Hizi+e
Tiv1 = Fpa+ Kpy;
ei = —Hizit+y
Original Model:
riv1 = Fux+ G,

yi = Hizi+wv



Define

Using

we have

11,41

State Recursions

Ti+1 = Fix; + G,

E( i1 ™)
FILE + GiQiG;



State Estimate Recursions

Define:

i =FE(z; z])
Using Lemma 12 we have
Siv1 = S Ff+ K, R, K
220 = 0



Define

It follows that

Error Covariance Recursions

P; = FE 53@'|z'—1 :Ef';ﬁ_l ) with
53@'|z'—1 = Xy 531'|z'—1
=. 571
P; = E((x—12;) (x —2;)")
II; — >,
Py = Ilipr — 24

€'V p;



K, and R, in terms of P

R.; iIn terms of P;: Note that

R,

1

E( €; 61‘* )
H,P;H' + R;

K,; in terms of P;: Note that

€ = Yi—Yiji—-1
Hir; +v; — Hixgi_4
Hi(x; — xi5-1) + vi
H;z; +v;



E(riy1e”) = FE(xie”)+GE(u;e™)
= FFE(x;ie”)+GE(u; e*)
= FE(xz; @ )H! + FE( z; v;*)
+GE(u; 2 VHF + GiE(u; v*)
= ELE( (% +4;) & )H + GE(u; @ )H + G;S;
= F,PH! + G,;S; because z; 1 u,

Thus
Kpi = E($i+16:)R_l

e,

= (FszHz* + G@S1>Re_,3



Innovation Recursions

Theorem 28.

Tiv1 = Fx;+ Gy
yi = Hix;i+v;
with the statistics
u; 53 - Qidi;  Sidij
E( U; J S:ém RZ%
Lo
L0 1 i 0 0




The innovation sequence e; can be generated recursively as described below:

€ = yi—@i|z’—1

29 = 0

c0 = Yo
Tip1); = Firji—1 + Kpée;
K, = (FiPF'+G;S;) R,
R.., = H;PH; + R,

Pyw = FPF +GQ:G; — R, K,



where

P o= E(# &)
jz — Ly jjz
P = 1l

Proof: Follows from the development before.



Filter State Recursions

Theorem 29. Consider

Tit1 = Fiwi+ G,
yi = Hixi+v;
with the statistics
— - i u ] -
E( V; , LUJ ) = S;kéw dezj 0 0
70 | 10 0 0 IIp 0

The filtered sequence x; can be generated recursively as described below:

Tiv1 = Fpx+ Kpuy;

o = 0



K, = (FPF;+GiS)R.,

Pi_|_1 = FiPin-* + GiQiG; o ReiK;z'
where
P = E(; 7))
T; = Ti— Ty
PO — 1_[O

Proof: Follows from the development before.



Time and measurement update formalism for Kalman Filter
Measurement Update Step

Theorem 30. Consider the state-space model

Tiv1 = Fxi+ G,
Yi Hizi + v

where the estimate ; = &;;_; is available and also the related
error-covariance P; := P;;_; = E|(x; — x;;—1)(x; — x;,-1)"]. Suppose a new
measurement y; is obtained. Then the updated estimate of x; and the updated
error covariance is given by

Z@m = ZT;+ Kf,z'ez'a Kf,z‘ c= PiHerRe_,;;l
Pii = llwi—&qill* = P — PiH; R HiPi



Proof: Note that

:%z|z = Pr yli = Prsp(eo,...,ei)xi
PTsp(eq,....ei1)Ti T PTsp(ey) Ti
= .Cffz'|7;_1—|— < X €e; > R;zlez

sp(Y0,---,Yi

Note that

e; = Yi — Yiji—1 = Hri +v; — (HZj)i-1 + o1 = H(w — 245-1) +vi = HT; + v

o & = &

E|z;e’]

i (T + Ziji—1)e]]

zief] + ElZ;);-16]]

Zi(HZ; +v)*| + Bl -1 (HT; + v;)"]
i H ™

|
o



where as %; € span{yo,...,y;—1} and Z; € [sp{yo,...,yi—1}]" we have
E[fizfj] =0 and E[f{(},ﬂ = E[(ZIZ‘Z — @Z)’U,ﬂ — E[ZEZ’Uﬂ — E[CIA?ZU,T] — 0. This proves

that
jjz|z — i’z + Kf,iei, Kf,z = PZHZ*R;}
Note that
El(wi —zii) (@i —2ia)"] = El(wi =2 — Kyei) (@i — T — Ky ei)"]
= E[(Z; — Kyqe;) (T — Kjpqei)"]

E[.CT?ZQNZZ] — E[i:zef]K}i,z — Kf,ZE[GzZINZ;k]

—|—Kf’zE[626:]K}k7Z

= P,— PH;R_;H;P;— PH;R_;H;P;
+P,H;R;'R.;R_;H;P,

= P,— PH;R_;H;P,

where we have used

1






Time Update Step

Theorem 31. Consider the state-space model

Tit1 = Fiwi+ G,
Yi Hix; + v;

where the estimate i; = &;; and the related error-covariance
P;; = El(x; — %;;)(x; — %;);)"| are available. Then the estimate of z;,, and
the error covariance P;_,; can be obtained as

Tit1li = Filty; + Giliyys, 15 := SiR_ e
Py =Py = @i — Zig1pill® = BEPyuFy + Gi(Qi — SiR_;S7) Gy
—FiK¢,;5]G; — Gz'SiK*’iFi*



Proof: Note that

Uili = Prapiyg,...,y,) Wi
Prsp(eo ..... e;) Ui

Prsp(eg ..... e;_ Z)uz—i—Pre U
1
Prepyo,..., _ui + Eluef R e

€’L

Note that

Elu;e’] Elu;(HT; + v;)%]
wi(wi — ;)] = Eluvy]

= Fluw!] =5,

Note that E|u,;2}] = E|u;z}] =0as 2; € sp{yo,--.,yi—1} and x; and y;, j <
are no correlated with u;.

The error covariance update can be obtained easily and left to the reader. =



e Proof: Note that

XilN = Pr YL Prsp(eo,...,eN)xi
PTSP(GO,---,ei—l)x'i + PTSP(eiaei—l-l"‘eN)xi

~ N _
Xjli—1 T Zj:i E(Xiejk)Re,jlej-

sp(Y0,-- YN

and
e; = Yj—jj—1 = Hjwitvj—(Hdjj-1+vj5-1) = Hj(x;—25)-1)+v; = HjZ;+v;.

E[xie;] = E|(z; + c?;m_l)e;'f]
= Elz,(H;T; +v;)"] + E&);-1(H;T; + v;)"]
= FE[z27]H; + BT + B2 127 H; + E|2);-1v]]
= PyH!
where since i; € span{eo,...,e;_1} and &, € [sp{eq,...,e;_1}]* for j >




e Also from Tit1 = F;x; + G;u; and .”lA?Z'_|_1 = Fx; + Kpiei we have
Tit1 = Bz + Giuy — Kpv;.

From this recursion equation, we can derive that for j > i

j—1
T o= Gp(1, )&+ Y ¢p(i — 11— 1)(Gru — Kpv)
=1
= Py = E(@2;) = E(&:%7)¢,(J,1) = Pig,(J, 1)

since E(z;u;) = 0 and E(z;0) = 0 for I > i because 2, = z; — z; and z; is
in sp(yo, -+ ,yi—1). Therefore

N
By =&+ P o5, 1) Hy R, e

j=i



Now &;y = & + P; 3,1, ¢3(j, i) H; R 'e;, Therefore

Tyn = T— P ) ép(G,0)Hj R e,
= N N
= Py = E@d}) - P ¢3(,)HjR E(e;#]) — > E(wie}) R Higp (i, )
N 71=1 J=1
+P; Y 65, i) Hy R, E(ejef) Ry, Higp(1,9) P
e N N
— P=2P Y GG 0 Ry Hydy (i) P+ P 0p(i ) H R Hdy
]{[:z' 71=1
= Pyn = Pi—P)  ¢5(5,9)H; R, H;pp(5,4) P

j=i






Convex Analysis

e One of the most important concepts in optimization is that of convexity. It
can be said that the only true global optimization results involve convexity in
one way or another.

e Establishing that a problem is equivalent to a finite dimensional convex
optimization is often considered as solving the problem. This viewpoint is
further reinforced due to efficient software packages available for convex
programming.



Convex Sets

Figure 1: In a convex set a chord joining any two elements of the set lies inside
the set.

Definition 23. [Convex sets] A subset () of a vector space X is said to be



convex if for any two elements ¢, and cy in Q2 and for a real number A with
0 < A <1 the element Ac; + (1 — )y € ) (see Figure 7). The set{} is
assumed to be convex.



Convex Sets, convex combinations and cones

Definition 24. [Convex combination] A vector of the form >, _, Apxy,
where Ay, =1and \, >0 forallk =1,...,n is a convex combination of
the vectors x1, ..., x,,.

Definition 25. [Cones] A subset C of a vector space X is a cone if for every
non-negative o in R and c in C, ac € C.

A subset C of a vector space is a convex cone if C' is convex and is also a
cone.

Definition 26. [Positive cones] A convex cone P in a vector space X Is a
positive convex cone if a relation’ >’ is defined on X based on P such that for
elementsxandyin X, x>y ifx —y € P. We write x > 0 if x € int(P).
Similarly x <y ifx—y € —P:= N andx < 0 ifx € int(N). Given a vector
space X with positive cone P the positive cone in X* , P? is defined as

P :={z" e X* :<x,2* >>0forall z € P}.



Example 1. Consider the real number system R. The set
P :={x : x is nonnegative},

defines a cone in R. It also induces a relation > on R where for any two
elements x andy in R, x > y if and only if x — y € P. The convex cone P with
the relation > defines a positive cone on R.



Minimum Distance to a closed convex set

Theorem 32. Suppose K is a closed convex subset of a Hilbert space H.
Let z be an element in H. Then kg satisfies

|z — kol| < ||z — k|| forallk € K

if and only if

<x—kok—ko><O0forallk e K.

Proof: (=) Suppose ky € K is such that

|z — kol < ||lz — k|| for all k € K



. Then

<r—k,xz—Fk> <xr—ko+ko—kx—ko+ko—k>

<x—ky,x—ko>+2<x—kokog—k>+<kog—Fk,ko—k
HLU—ko||2—|—Hk—k0|‘2—2<$—k0,k—k0>
0.

IV

(«<=)Suppose there exists a k£ € K such that
<x—kok—ky>=¢>0.

Let
ko = ak + (1 —a)ko and f(a) = ||z — ka|*.



Note that
fla) = <x—ak—(1—-a)ky,x—ak—(1—a)ky>
= <x—ko—alk—Fky),xr—ko— alk—ky) >
= <z—kp,x—ko>-2a<z—kopk—ky>+a?<k—kyk—ky>

= ||z — kol||* — 2ce + ?||k — kq|?

and therefore

df () = —2e <0
da |,_g '

Thus in a small neighbourhood of zero f(«) < f(0). Thus there exists a
0 <a<landak, € K such that

|z — kall* = f(e) < f(0) = [lz — kol|*.



This proves the theorem.

Theorem 33. Suppose K is a closed convex subset of a Hilbert space H.
Let x be an element in H and consider the following optimization problem:

p=inf{||lx — k|| : k € K}.

Then there exists a ko € K such that ||z — ko|| = p that is there exists a
minimizing solution. Furthermore, k, satisfies

|z — kol| < ||z — k|| forallk € K

if and only if
<x—kok—ko><O0forallk e K.

Proof: If x € K, then ky = x and theorem is proven. Suppose = ¢ K. Then for
any n € N. there exists k,, € M such that u < ||z — k,|| < p+ +. Thus there



exist a sequence {k;}°, € K such that ||« — k,|| converges to  as n — co.
From the parallelogram law, for any integer ¢ and j,

I(kj — @) + (2 = ki) |I* + [[(k; — 2) = (2 = k) |I* = 2[|k; — 2* + 2{[k; — |
This implies that
ey = Fall* + ks + Ky — 2] = 2[|k; — x||* + 2||k; — 2"

Thus

kj + ki
Iy — Kill* = 2|lkj — || + 2||k; — =||* — 4[| 1% (11)

Note that “F™ ¢ K, and therefore

k: + k;
L



From (1 1) we have

lkej — kall* < 2l|k; — l|* + 2[|k; — z]|* — 4p”.

Given any € > 0, let IV be a large positive integer such that for all n > N,
2
|z — kn||? < p?+ <. Ifi,j > N then,

62 62
Iy = Rill® < 207 + 5 + 207 + o — 4pr”.
This implies
Ik — kil < €2,
It follows that
Ik — kil < e

Thus, k,, forms a Cauchy Sequence. And, since K is a closed subset of
Hilbert Space (which is complete), k,, is a converging sequence (due to



completeness) with the limit point inside K (due to closedness). Thus there
exists a kg € M, such that

|k, — kol| — 0 @as n — oo.
Since, ||(x — k,) — (x — ko)|| = ||kn — ko|| we have
(x — kyp) — (xr — kg) @asn — o

From the continuity of norm, ||(z — k,,)|| converges to ||(z — ko)||. Since, a
converging sequence has a unique limit point, we have

p= |z — ko||.

This proves the theorem



Separation of Disjoint Convex Sets
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e
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L= {x <x,x">=c}

Figure 2: Separation of R? into half spaces by a line L.

Consider the vector space R?. The equation of a line (see Figure 2) in R? is



given by
miT1 + Mok = C,
where m1, mo and ¢ are constants. The graph of a line is given by the set

L = {(z1,22)|mix1 + maoxs = c},
which can be written as
L={rc R <x,2*>=c}, (12)

where x* = (m1, m2). Note that if mo = 0 then we have a vertical line. We now
generalize the concept of a line in R? to normed vector spaces. The line L
defined earlier is a hyperplane in R?.

Definition 27. H is a hyperplane in a Hilbert Space X if and only if there
exists a nonzero linear function x* : X — R such that

H:={x :<z,z* >=c},



where c € R.

For the purposes of the discussion below we will assume that ¢, m; and mo
which describe the line L in Figure 12 are all nonnegative. The results for
other cases will be similar. Consider the region A in Figure 12 which is the
region “below” the line L. As illustrated earlier,

o L ={z:<x,a*>=c}wherexz* = (mq,ms).

e Consider any point x = (x1, x2) in region A. Such a point lies “below” the
line L. Thus if ' = (x1, z5) denotes the point on the line L which has the
same first coordinate as that of x then z, > x5. As 2’ is on the line L it
follows that < 2/, x* >= mix1 + mox}, = c. As my > 0 it follows that
< x,x* >=mix1 + moxo < mixy + moxh = c. Thus we have shown that for
every point x in the region A, < xz,z* >< c.

e |In a similar manner it can be established that if < x, z* >< c then z lies
“velow” the line L, thatis z € A.



e Thus the region A is given by the set {z :< z,2* >< ¢} which is termed the
negative half space of L.

e In an analogous manner it can be shown that the region B (which is the
region “above” the line L) is described by {x :< x,2* >> c}. This set is
termed the positive half space of L.

Thus the line L separates R? into two halves; a positive and a negative half.

We generalize the concept of half spaces for an arbitrary normed vector
space.



Half spaces

Definition 28. [Half spaces] Let(X,||-||x) be a normed linear space and
let x* : X — R be a bounded linear function on X. Let

S = {re X <zt ><cl,
Sy = {re X <z,z*><cl,
S3; = {re X :<zz*>>cl,
Sy = {rxre X <zx*>>cl.

Then S, is an open negative half space, Ss is a closed negative half space, S5
is an open positive half space and S, is a closed positive half space.



Separation of convex sets in 12°.

‘ L={x:<xx"> =c}

Figure 3: Separation of of convex sets in R?.

It is intuitively clear that in R? if two convex sets C; and C, do not intersect
then there exists a line in R? which separates the two sets (see Figure 3). In



other words there exists z* in (R?)* and a constant ¢ in R such that C, lies on
the positive half space of the line L = {z| < z,2* >= ¢} and (s lies in the
negative half space of L. That is

Ch CHx:<x,2* > > c},

and
Co C{x <z, > <c}.

The main focus of this section is to generalize this result to disjoint convex
sets in a general normed vector space.



Separation of point and a closed convex set

Theorem 34. Let K be a closed convex subset of a Hilbert space H. Let

x € H be such that x ¢ K. Then there exists a hyperplane that separates the
point x from the set K. That is there exist an element x* € H with ||z*|| = 1
such that

<k uz" ><<ux,x*> forallk € K.

Proof: Let
p=inf{||lz — k|| : k € K}.
From 23 there exists ko € K such that
|z — ko|| =pand <x — ko, k — ko ><0forall k € K. Note that . > 0.

Indeed, if © = 0 then ||z — kg|| = © = 0 and thus = = k¢ € K that contradicts
the fact that x € K. Thus u > 0.

Let
% r — ]C()

x" = :
lz = Kol




Note that forall £k € K

<kz >-<z,x*> = <k—x,2%>

[o— k||<k x — ko >

= (< k- ko+k0—x:z:—ko>)
= oo (< @ = Ko,k — ko > —[lz — kol|?)
< 0.

Thus
<kz"> < <z,2"> forallk e K.



A closed convex set characterized in terms of hyperplanes

Theorem 35. [/f K is a closed convex set of a Hilbert space then K is equal
fo the intersection of all the closed half-spaces that contain it.

Proof: Let the set A be a set such that Sy, A € A is a half-space that contains
K and A characterizes all such sets. Let

S — m)\GAS)\.

Suppose k € K. Thenk € S) forevery A€ Aas S, D K. Thusk € S.

Suppose h ¢ K. Then from Theorem =4 it follows that there exists a half
space S, that contains K but does not contain h. Thus h € S. This proves the
theorem.



Aside: Banach-Alaoglu resulit

Lemma 15. Let H be a separable Hilbert space. Consider
B={x"e H: |z < M}.
Then for every sequence x*k and x € H there exists a subsequence z;,,

<z, @, >—<T,TT >,

Proof: Let x € H be arbitrary. For this given x and any n
| < x> | < lzflflz"nl < lf[ M
Thus the real numbers

<xz,x; > {r € Rlr| < ||z||M}.



Thus r,(z) =< x,x} > is a sequence of real numbers that lies in a closed and
bounded set. From a result in Real Analysis we can conclude that there exists
a real number r(x) and a subsequence of r,,, (x) such that

. (T) = r(z) € R.

Suppose = and y are two elements in H. We will now show that
r(z+1y) =r(z)+r(y) and r(ax) = ar(x). Let ny be a common subsequence
such that

rng(®) = f(2), T, (y) — r(y) @and ry, (z +y) — r(z +y).

Clearly
I (@) + 1, (y) = (@) +r(y).
Also, as
T (2 +Y) — r(z+y)
=<z +y,z, > — r(r+y)
=<z, z;, >+ <yx, > — 7r(Tt+Y)
= 7, () + T, (y) — r(z+y)



Thus we have
P (T) + 10y (y) — r(z+y)and

Py (@) + 70y (Y) r(z) +7(y).

From the uniqueness of the limit point it follows that

r(x+y) =r)+ry).

Similarly one can show that
r(ax) = a(x).

Thus r is a linear function on H. Also, for any x in H

(@) = | lim <aaf, > < lim | <25, > ] < allah, < |2 M

k— o0

Thus r is a linear function that has uniform bound M. Thus there exists an
x* € H such that
r(x) =<ax,x" >



that satisfies the property that for every x € H there exists a subsequence z;,
such that
< a:,:z;j;k >—< x>,



Separation of a point and the interior of a convex set

Theorem 36. Let K be a convex subset of a Hilbert Space H. Let x € H and
x & int(H). Then there exists an element x* € H such that x* # 0 and

<k z"><<ux,2*> forallk € K.

Proof: We will prove this result only for separable Hilbert spaces. Let cl(K)
be the closure of the convex set K. If = € cl(K) then we obtain the result from
Theorem =4. Suppose z € cl(K). As x ¢ int(K), k € bd(K). Thus there exists
a sequence z,, € H with z,, & cl(K) such that ||x,, — z|| — 0. From Theorem
there exists a,, € H with ||a,|| = 1 such that a,, separates z,, and cl(K). That is

< k,a, ><< xp,a, > forall k € cl(K).

Note that
an, € B* :={z* € H : ||z*|| < 1}.



From Lemma there exists an a € B* such that
< h,a, >—< h,a> forall h € H.
Note that from Theorem | we have

lim <ax,,a, >=<xz,a > .

n—aoo

Thus
<k,a, > < < zp,a,> foralln, forallk e K
= lim <k,a,> < lim <ux,,a, >, forall k
n—oo n—0o
= <k, a> < <ux,a>, forallk e K

Note that a # 0 and thus a characterizes the hyperplane that separates int(K)
and z € bd(K).






Eidelheit Separation

Theorem 37. Let K, and K, be convex subsets of a Hilbert space H with
int(K1) # {} andint(K1) N Ko = {}. Then there is a hyperplane separating
K7 and K». That is there exists x* € H, x* # 0 such that

< ki,z" ><< ko, x* > forallk, € K; and ky € K>.

Proof: Let K = K; — K5. Then int(K) # {} and 0 € int(K). From
Theorem =6 there exists a hyperplane characterized by x* £ 0 such that

<k z"><O0forall k£ € K.

That is
< ki —ko,z" ><O0forall k; € Ky and k; € K.

Thus
< ki, z" ><< ko, x* > forall k; € K; and ky € K>.



This proves the theorem.



Convex maps
A

Ma )+ (1-VM)ADb)

f(x)
f(a)g

Fiha & (1-1)b) |

: a P
a ha+(I-Mb X

Figure 4: A convex function.

Definition 29. [Convex maps] Let X be a vector space and Z be a vector
space with positive cone P A mapping, G : X — Z is convex if



Gtz + (1 —t)y) < tG(z) + (1 —t)G(y) forall z,y in X and t with0 <t < 1 and
is strictly convex if G(tx + (1 — t)y) < tG(z) + (1 — t)G(y) forall x # y in X
andt with0 <t < 1.



Epigraph

Definition 30. [Epigraph] Let f : 2 — R be a real valued function where 2
Is a subset of a vector space X. The epigraph of f over () is a subset [f, 2] of
R x X defined by

£, Q] ={(r,w) e Rx X :2€Q, f(x) <r}.

Lemma 16. Let f : Q — R be a real valued function where ) is a convex
subset of a vector space X. Then f is convex if and only if | f, 2] is convex.

Proof:Left to the reader. H



Convex Optimization

The problem that is the subject of the rest of the chapter is the following

problem.
poo= inf f(z)
subject to
x € (),

where f : ) — R is a convex function on a convex subset €2 of a vector space
X. Such a problem is called a convex optimization problem.



Local minimum is global minimum

Lemma 17. Let f: (X, |.|x) — R be a convex function and letw be a
convex subset of X. If there exists a neighbourhood N in Q) of wy where

wo € Q such that for allw € N, f(wg) < f(w) then f(wg) < f(w) for all w in $2
(that is every local minimum is a global minimum).

Proof:Let w be any element of Q2. Let 0 < A <1 be such that

r:=Awo+ (1 —MNwbein N. Then f(wy) < f(z) < Af(wp) + (1 — X)) f(w). This
implies that f(wg) < f(w). As w is an arbitrary element of 2 we have
established the lemma. |



Uniqueness of the optimal solution

Lemma 18. Let () be a convex subset of a Banach space X and f : 2 — R
be strictly convex. If there exists an x( € ) such that

f(zo) = inf f(x),

xeld

(that is f achieves its minimum on §2) then the minimizer is unique.

Proof:Let m = melg f(x). Let 1,22 € Q be such that f(x1) = f(x2) = m. Let

0 < A < 1. From convexity of 2 we have Ax1 + (1 — \)xy € Q2. From strict
convexity of f we have that if x; # x5 then
fAxy+ (1 = Naxg) < Af(x1) + (1 — X) f(z2) = m which is a contradiction.
Therefore 1 = 5. This proves the lemma.



Varying the constraint level

Many convex optimization problems have the following structure

w(z) = inf f(x)
subject to
x € ) (13)

g(z) < 2,

where f: Q) — R, g : X — Z are convex maps with €2 a convex subset of the
vector space X and Z a normed vector space with a positive cone P. The
condition g(z) < z is to be interpreted with respect to the positive cone P of
the vector space ~Z.

Lemma 19. The function w is convex.



Proof:Let z; and 2z, be elementsin Z and let 0 < XA < 1 be any constant. Then

w(Az

+(1

_)\)

22)

IN

I

inf{f(z):x€Q,g9(x) <Az1 + (1 — \)zo}
inf{f(z):x=Ax1+ (1 — Nzg,z1 € Q, 25 € Q,

( )S)\Zl“’(l— )22}

inf{Af(x1) + (1 = A) f(w2), 1 € Q, 22 € Q,
g(x) <Az + (1 — A)z2}

inf{\f(x;

;1:_) + (1= X)f(x2),x1 € Q, 29 € Q,

9(w1) < 21, 9(22) < 22}
Aw(z1) + (1 — MNw(z2).

The second equality is true because for any given \ with 0 < X < 1 the set
Q={x:z=Xr;1+ (1 — Nz, x1 € Q, x5 € Q}. The first inequality is true
because f is a convex map. The second inequality is true because the set
{(azl,xg) e x0: g()\ilfl + (1 — )\)1’2) < )\2’1 + (1 — )\)22} D) {(5131,2132) c Q) xQ:
g(x1) < z1,9(x2) < 22}, which follows from the convexity of g. This proves the

lemma.



Lemma 20. Let z; and z, be elements in Z such that z; < z, with respect to
the convex cone P. Then w(z3) < w(z1).

Proof:Follows immediately from the relation
{reQ:g(x)<z}tD{reQ:g(r) <z}, if 21 < 2. N



Kuhn-Tucker Theorem

o

Z

L={x:<xx"> '=hK(x§}

Figure 5: lllutstration of w(z).



Consider the convex optimization problem

w(z) = inf f(x)
subject to
x € ()

g(x) < z.

We will obtain information about w(0) by analyzing w(z). We have shown that
w(z) is a decreasing function of z (see Lemma ~0) and that it is a convex
function (see Lemma 19). It can be visualized as illustrated in Figure 5. As
w(z) is a decreasing function it is evident that the tangent to the curve at
(0,w(0)) has a negative slope (see Figure 5). Thus the tangent can be
characterized by a line L with the equation:

w(z)+ < z, 2" >=c,

where z* > 0. Also, note that if we change the coordinates such that L
becomes the horizontal axis and its perpendicular the vertical axis with the



origin at (0, w(0)) (see Figure 5) then the function w(z) achieves its minimum
at the new origin. In the new cordinate system the vertical cordinate of the
curve w(z) is given by the distance of (z,w(z)) from the line L. This distance is
given by

w(z)+ < z,z*> —c

&) ==

Thus s(z) achieves its minimum at z = 0. This implies that

w(0)

rzrgg{w(z)Jr < z,z">}

rzréig{inf{f(x) cx € Qg(x) <z} 4+ < z,2" >}
inf{f(x)+ < z,2">x€Q,z€ Z g(x) <z}
inf{f(x)+ < g(x),z" > e,z Z g(x) <z}
inf{f(x)+ < g(x),z" >z € Q}.

VIV

The first inequality is true because z* > 0 and g(z) < z. The second inequality



is true becausethe {xr € Q: 2z € Z,g(x) < z} C {x € Q}. Itis also true that

w(0) inf{f(z)+ < z,2">x€Q,z€ Z g(x) <z}

inf{f(x)+ < g(x), 2" > = € Q},

IA I

because g(x) < g(x) is true for every x € Q2. Thus we have

w(0) =inf{f(z)+ < z,2" >:x € Q}.

Note that the above equation states that a constrained optimization problem
given by the problem statement of w(0) can be converted to an unconstrained
optimization problem as given by the right hand side of the above equation.
We make these arguments more precise in the rest of this subsection.
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Lemma 21. Let(X,|| ||x), and (Z,]||-||z), be normed vector spaces with )
a convex subset of X. Let P be a positive convex cone defined in Z. Let Z*
denote the dual space of Z with the postive cone P® associated with P. Let



f : Q — R be a real valued convex functional and g : X — Z be a convex
mapping. Define
wo = 1inf{f(z): g(x) <0, z € Q}. (14)

Suppose there exists x1 € 2 such that g(x1) < 0 and and suppose ., Is finite.
Then, there exist z; > 0 such that

po = inf{ f(z)+ < g(z), 25 >: = € Q}. (15)

Furthermore, if there exists xq such that g(xy) < 0 and ug = f(xo) then

< g(xo), 25 >=0 (16)

Proof:We will say that an element z in 2 is feasible if g(x) < 0. Define A, (see
Figure ©) a subset of Z x R by

A :={(z,r): there exists x € (2 such that g(x) < z and f(z) <r},



and B (see Figure ©) another subset of Z x R by
B :=—P x (—oo, ol :={(2,7) : —z € Pand r < pugp}.

We will assume that the norm on Z x R is the product norm induced by the
norms on Z and R. Note that in this norm int(B) # {} (let pg € int(—P); then
(po, o — 1) € int(B)). We will show that int(B) N A = {}.

Suppose (z,r) € int(B) N A. Then there exists = in € such that f(x) < r and
g(x) < z.Also z € —Pand r < ug. Therefore, f(x) <r < ugand g(x) < z <0.
This implies that «x is feasible and f(x) is strictly less than o which contradicts
the definition of no. Therefore, int(B) N A ={}.

Applying Eidelheit’s separation result (see Corollary ??) to A and B (note that
A and B are convex) we know that there exists a nonzero element
(z*,8) € (Z x R)* = Z* x R (see Theorem ??) and k£ € R such that

< z,z2">+sr>kforall (z,7) € Aand (17)



<z, z">+sr <kforall (z,r) € B. (18)

We will now show that s > 0. As (0,r) for » < pg is in B it follows from
inequality (72) that sr < k for all » < pg. This implies that s > 0 (otherwise by
letting » — —oo we see that & = oo which is not possible because inequality
(17) holds).

We will now show that s > 0. Suppose that s = 0. Then from inequality (17) we
have

< g(xy), 2" >> k, (19)
because (g(x1), f(x1)) belongs to A. Also, from inequality (12) we have that

<z 2z ><k, (20)

for all z € —P. In particular as 0 € —P we have k£ > 0. Suppose for some
ze€—P, <z z">>0. Thenwe have < az,z* >=a < z,2* >— oo as



a — oo. Howeveras Pisaconeand a > 0, az € —P if z € —P. Therefore
<az,z*>< k< xif z€ —P. Thus we have a contradiction and therefore

<z z ' ><O0forallze —Pandk > 0. (21)

As —g(z1) € int(P) we have that there exists an € > 0 in R such that ||z||z <€
implies that —g(x1) + z € P. Therefore, from (2 1) we have that

< g(zy) — 2z,2* ><0if ||z]| z < e which implies that < g(z1), 2" ><< z,2* > if
|z]|z < e. From inequality (19) we have 0 < k << g(x1), 2* ><< z, 2" > if
|2||z < e. This implies that for any z € Z, < z,2* >> 0. For any nonzero z € Z,

€2

<
Er

and therefore < H;ﬁz, z* >> 0. Thisimplies thatforany z € Z, < z,z* > > 0.

As Z is a vector space (which implies — < z, z* > > 0) it follows that
< z,z*>=0forall z € Z. Thus z* = 0. This contradicts (z, s) # (0,0) and

therefore, s > 0.




Let 2§ = %* Dividing inequality (17) by s we have

k
< z,z5>+r>—forall (z,7) € Aand (22)
S

dividing inequality (1) by s we have
§ k
< zzy>+r<—forall (z,r) € B. (23)

S

In particular, as (z, up) € B for all z € —P it follows from inequality (22) that
. k
< 2,25 >< g—,uo forall z € —P.

This implies that < z, z; > < 0for all z € —P. Indeed, if for some
21 € —P, < z1,25 > > 0then < az, 2* >— oo as a — oo which contradicts



the fact that < az1, z* > Is bounded above by % — 1o. Thus we conclude that
25 € P9,

Also, as (g(x), f(x)) for z € Qis in A it follows from (22) that

< g(x), 25 > +f(x) > g for all z € 2 and (24)

as (0, ug) € B it folllows from (23) that

o < K forall (z,r) € B. (25)
S

From inequalities (24) and (25) we conclude that

inf{< g(x), 25 > +f(z) : z € Q} > po. (26)



Suppose x € 2 and g(x) < 0 (i.e. = is feasible), then

flx)+ <g(z), 25 >< f(z), (27)

because z; € P®. Therefore, we have
inf{f(z)+ < g(x),25 > x€Q} < inf{f(x)+ < g(x),z25 >
cx € Q,g(x) <0}
< inf{f(x):2€Q9(x) <0} = po.

The first inequality is true because 2 D {x € Q,g(x) < 0} and the second
inequality follows from (27).

It follows from inequality (26) that

po = inf{ f(x)+ < g(x), 25 >: z € Q}. (28)



Let zg be such that zo € 2 and g(xp) < 0 and f(xg) = po. Then

f(zo) = po < f(xo)+ < g(x0), 20 > < f(T0) = pio-

The first inequality follows from equation (2+) and the second inequality is true
because 2z} € P® and g(xg) < 0. This proves that < g(x), 25 >= 0. H

Theorem 38. Let X be a Banach space, €2 be a convex subset of X, Y be a
finite dimensional normed space, Z be a normed space with positive cone P
Let Z* denote the dual space of Z with a positive cone P®. Let f : ) — R be a
real valued convex functional, g : X — Z be a convex mapping, H : X — Y be
an affine linear map and 0 € int({y € Y : H(x) =y for some x € Q}). Define

po = inf{f(x): g(x) <0, H(z) =0, x € Q}. (29)

Suppose there exists 1 € Q2 such that g(x1) < 0 and H(z1) = 0 and suppose



o 1S finite. Then, there exist z; > 0 and y; such that

po = inf{f(x)+ < g(x),z5 >+ < H(x),y >: x € Q}. (30)

Proof:Let
M :={x: x€Q, H(z)=0}.
Applying Lemma 21 to ©2; we know that there exists 2§ € P® such that
po = inf{f(z)+ < g(x), 25 > x € Q1 }. (31)
Consider the convex subset,
H(Q):={yeY : y= H(x) for some z € 2}
of Y. For y € H((2) define

k(y) :==inf{f(z)+ < g(z),25 > 2 €Q, H(z) =y}



We now show that k is convex. Suppose y,y’ € H(2) and x, 2’ are such that
H(x) =yand H(z') = 4. Suppose, 0 < A < 1. We have,

A(f(x)+ < g(x),z5 >)+ A=) (f(@)+ < g(2),z5 >) = fAr+ (1 - A)z') + <
gAx+ (1 —=N)a'),z5 >> k(Ay + (1 — N)y'). (the first inequality follows from the
convexity of f and ¢g. The second inequality is true because

H(M\x+ (1 —=X)z') = Ay + (1 — \)y’.) Taking infimum on the left hand side we
obtain M\k(y) + (1 — Mk(y') > k(Ay + (1 — A)y’). This proves that k is a convex
function.

We now show that & : H(2) — R (i.e. we show that k(y) > —oo for all

y € H(Q)). As, 0 € int[H(Q2)] we know that there exists an ¢ > 0 such that
if ||ly|| < etheny e H(Q). Take any y € H(2) such that y # 0. Choose A, y’
such that

A= and —\y.
7177 ek
This implies that y' € H (). Let, 3 = %H We have

(1-08)y + py=0.



Therefore, from convexity of the function & we have

Bk(y) + (1 = B)k(y") = k(0) = po.

Note that 1o > —oc by assumption. Therefore, k(y) > —oo. Note, that for all
y € H(Q2), k(y) < oo. This proves that £ is a real valued function.

Let [k, H(2)] be defined as given below
[k, HQ)] :=={(r,y) e RX Y 1y € H(Q), k(y) <r}.

We first show that [k, H (€2)] has nonempty interior. As, k is a real valued
convex function on the finite-dimensional convex set H[(2] and 0 € int[H ()]
we have from from Lemma ?? that k is continuous at 0. Let o = k£(0) + 2 and
choose ¢ such that 0 < ¢/ < 1. As, k is continuous at 0 we know that there
exists & > 0 such that y € H(Q2) and ||y|| < 0 implies that

[k(y) — k(0)] < ¢



This means that if y € H(Q2) and ||y|| < § then
k(y) < k(0)+€ <k(0)+1<ry— %

Therefore, for all y € H(Q2) with ||y|| < d we have k(y) < ro — % This implies

that for all (r,y) € R x Y such that |r — rg| < %,y € H(Q) and ||y|| < o we have
k(y) < r. This proves that (rg,0) € int(|k, H(Q)]).

It is clear that (k(0),0) € R x Y is not in the interior of [k, H({2)]. Using,
Corollary ?? we know that there exists (s, y*) # (0,0) € R x Y* such that for
all (r,y) € |k, H(?)] the following is true

<y, y" >+rs><0,y" > +k(0)s = sup. (32)

In particular, rs > sug for all » > po (note that (r,0) € [k, H(Q?)] for all » > py).
This means that s > 0.



Suppose, s = 0. We have from (22) that < y,y* >> 0forall y € H(Q2). As,
0 € int|H ()] it follows that there exists an ¢ € R such that ||y|| < e implies
that < y,y* >> 0 and < —y,y* >> 0. This implies that if ||y|| < e then

< y,y* >= 0. But, then for any y € Y one can choose a positive constant «
such that ||ay|| < € and therefore < ay, y* >= 0. This implies that

(s,y™) = (0,0) which is not possible. Therefore, we conclude that s > 0.

Let y5 = y*/s. From (52) we have,
< y,yo > +r > po, forall (r,y) € [k, H()]. (33)
This implies that for all y € H(2),
< ¥,y > +k(y) = po, (34)
(This is because (k(y),y) € [k, H(Q)]). Therefore, for all z € Q,

< H(z),yy > +[f(x)+ < g(x), 25 >=> po (35)



which implies that
inf{f(z)+ < g(x), 20 > + < H(x),ys >: @ € Q} = po. (36)
But if x € Q is such that H(x) = 0 then

flo)+ < g(z), 25 > fla)+ <g(z), 20 > + < H(z),y5 >

inf{f(z)+ < g(x),25 >+ < H(x),y; >: = €}
Ho-
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Taking infimum on the left hand side of the above inequality over all z € Q2
which satisfy H(x) = 0 (that is infimum over all x € 2;) we have,

po = inf{f(x)+ < g(x), 25 >+ < H(x),yi > x € Q}. (37)

This proves the lemma. u



Primal Problem

Consider the problem
po = inf{f(x): g(x) <0, H(z) =0, = € Q}. (38)

The above problem is often called the as the Primal problem.



Lagrangian

Consider the primal problem

po = inf{f(x): g(x) <0, H(z) =0, = € Q}.

Associated with the above problem one can define the Lagrangian

L(z,z"y) == f(2)+ < g(z),2" >+ < H(z),y > (39)

where z* is the dual variable associated with the constraint g(z) < 0 and y is
the dual variable associated with the constraint H(x) = 0 for the primal
problem. x is the primal variable.



The saddle point characterization: Existence in the Convex
Case

Consider the problem setup in Theorem =& and assume that x is such that
vo = arglinf {f(z) : G(x) < 0, H(z) = 0}

Then there exists a z; > 0 such that

L(xo,2%,y) < L(xo, 25,y) < L(x,25,y) forallz € Q,2" >0andy € Y. (40)

Proof: Proof: Let z; > 0, y be the dual variables as obtained in Theorem



Then from Theorem it follows that

< g(xo), 25> = 0
g(zo) < 0
H(.CE()) = 0
infoeq{f(z): G(z) <0,H(x) =0} = infyecqL(x,2,y)

Thus

}rl(fxe)a{f (z) : G(z) <0,H(z) =0}
f(x§)+ < g(xo), 25 >+ < H(xg),y >
L(xo,zs,y).

L(ac, Zék, y) > infxEQ L($, 287 y)



Also note that

f(xo)+ < g(x0), 2" >+ < H(x0),y)
—|f(wo)+ < g(z0), 25 > + < H(z0),y)
< g(xg), 2* >

0forall z* > 0as g(xg) <0

L(xg, 2*,y) — L(xo, 25, 9Y)

IA



The saddle point characterization: Sufficiency of optimality

We need the following lemma to establish the optimality from the existence of
a saddle point.

Lemma 22. Suppose Z is a Hilbert space with a cone P defined such that P
is closed. Let P® be the dual cone that is

P :=1{z*e Z| <z2">>0forall = € P}.
Suppose z € Z is such that

<z z">>0forall z* > 0.

Then
z > 0.

Proof: Suppose z ¢ P. Then as P is closed there exists a hyperplane that
strictly separates z and P (see Theorem 24). That is there exists z* # 0 and k



such that
<z, 2" >< k<< p,z*> forallp € P.

This implies that

<z,z"><k< in]fj<p,z* >< 0.
pe

Note that it has to be true that z* > 0. Otherwise suppose p; € P be such that
< p1,z" >=a < 0. Then note that < apy, z* >= —aa — —o0 as o — oo. Note
that ap; € P for all o > 0 and this will contradict that < p, z* > is lower
bounded by k.

Thus we have found a z* > 0 such that
<z,z"><0

that contradicts the hypothesis on z. Thus z > 0.



Theorem 39. Let f: Q0 — R where () is a subset of a vector space X. Let

g : Q) — Z where Z is a normed vector space with positive cone P defined that
is nonempty and closed. Suppose there exists a xy € Q2 and z§ € P® such
that the Lagrangian possesses a saddle point at xg, 2§, y; that is

L(xo, 2*,y") < L(xo, 25, 45) < L(x, 2z5,y5) forallz € Q, 2 > 0andy™ €Y.

Then x is the optimal solution to the primal

to = inf {f(z) : g(z) < 0, H(z) = 0}.

Proof: Note that

L(xg, 2*,y*) — L(xo, 25,y5) < Oforallz* >0, andy* €Y



Thus

< g(xg), 2" — 25 >+ < H(xg),y" —ys >< forall z* >0, andy* €Y (41)

By setting y* = y; above we have

< g(xg), 2* — 28 > < forallz* >0
= < g(xo), (27 +25)— 2> < Oforallz; >0
= < g(xo), 27 > < Oforall 2 >0
= < —g(xg), 2" > > Oforall z* > 0.

From Lemma 22 as the positive cone P is closed it follows that —g(xp) > 0
that is g(xp) < 0. Also be setting z* =0 in

< g(xp), 2" —25> < forallzx >0



we have
< g(zg), 25 >> 0.
As g(xzp) < 0and z§ > 0 it follows that

< g(zg), 25 >= 0.

By setting z* = 2§ and y* = y7 + y§ In 41 we have

< H(xg),y7 > < Oforally; €Y
= < H(xg),—y; > < OforallyfeYas —yjeYifyi €Y
= < H(xg),y; > = Oforally; €Y
= < H(zo),H(zo) > = 0as H(zy) €Y.

Thus we have shown that
g(xg) <0, H(xg) =0and < g(xzg), 25 > + < H(zp),y; >= 0. Note that if



x1 € () Is a feasible solution to the problem
inf{f(z):x€Q,g(x) <0, H(x) =0}

then z; € Q, g(z1) < 0and H(z;) = 0. We also have

'V
o

L(CEl,ZS,yS) T L(-Toyzékayék)
= flx1)+ < g(x1),28)+ < H(z1),y5 >

—[f(zo)+ < g(wo), 20)+ < H(xo),y5 >] = 0
= f(x1)+ < g(z1),25) — f(xo) = flz1) — f(z0) >0
asg(x1) < and z§ >0
. f(z1) = f(=o)
Thus

zro = arg|inf{f(x) : z € Q,9(x) <0, H(x) = 0}].



Dual Interpretation

Consider the primal problem:
w(z) = inf {f(x) : glx) < 2},

We have shown that

e w: Z — Ris adecreasing function of the variable z € Z that has a cone P
defined. Thus w(zs) < w(z1) if 22 > 2z1. Thus it can be assumed that the
"slope” of the curve w(z) is negative at any point z.

e w(z) is a convex function of z if f and g are convex functions.



L(z5) = {(r,2)|r+ < z,2* >= go(z(’g)}\ (0, ¢(25))

.

B L L LT
. . )

/ (0, 0(21))

L(z]) = {(r, 2)|r+ < 2z,2* >= ¢(27)}

Figure 7: Shows supporting hyperplane to the epigraph of w(z). Note that the
tangents to the curve w(z) are all negative from the fact that w is a decreasing
function. Also we are ruling out vertical hyperplanes. Thus each hyperplane
can be described by (1, z*) with z* > 0. Furthermore, each hyperplane has a
y intercept of p(z*) where L(z*) = {(r,2)|r+ < z,2* >= p(z*)} describes the
hyperplane. Also note that the maximum of these intercepts is w(0). Thus one
can postulate for convex problems that w(0) = max +>¢ ©(2*).



The dual problem is defined on by first evaluating the dual function defined on
the positive dual cone P® given by

o(z*) == inf{L(x,2") :x € Q} = égg{f(x)Jr < g(x),z" >}

Theorem 40. Letz* € P® andy* € Y. Then

p(z") = ;rellﬁ{w(z)+ < z,z2" >} (42)

where I is the domain of the function w : 7 — R that is
[':={z: there exists x € ) such that G(z) < z}.



Proof: Let z* > 0and z € I". Then

p(2*) = inf{ f(z)+ < g(z),2* >}

|IRVARVAN

and thus

e(2") < inf{w(z)+ < z,2" >.

zel

Suppose z; € ), let z; = g(x1). Then

f(z1)+ < g(z1),2* >

1V IV

Thus

inf{f(z)+ < z1,2* >: g(x) < 21, 21 = g(x1), x € Q}
inf{f(z)+ < 21,2* >: g(x) < 2z, €}
w(z1)+ < 21,2* >



flz)+ < gl), 2" >= inffw(z)+ < 2,27 >}

Therefore

e(z") =inf{f(z)+ < g(x),z" > 2 € Q} > ;glﬂ{w(z)+ < z,z" >}

Consider the hyperplane defined by

in R x Z. Consider the set

A:={(r,z) e RxT|r >w(z)}



which is the epigraph [w, I'] of the function w. Then clearly for all elements
(r,z1) € A we have

r4+ < 21,27 >> w(z)+ < 21,2° >> igfl;{w(z)—l— < z,2" >1 = (7).

Thus A is contained in the positive half space of the hyperplane
< (1, 2), (1,2%) >= (2%).

It is also fairly clear that indeed < (r, z), (1, 2*) >= ¢(2*) describes a
supporting hyperplane as this hyperplane comes arbitrarily close to the
epigraph of w(z) given by [w, T].

The above features of the hyperplane described by < (r, z), (1, 2*) >= p(z*) is
illustrated in Figure /. Note that the < (7, 2), (1, 2*) >= ¢(z*) has a vertical

intercept equal to ¢(z*). Furthermore, it is evident from the Figure that w(0) is
the maximum of these intercepts. Thus one can postulate for convex problems



that
max ¢(z") = w(0) = inf{f(x) : x € Q,g(x) < 0}.

z*>0

We will prove this next. It is interesting to note that Theorem 40 does not need
convexity and thus the dual problem always provides a lower bound to the
primal.

Theorem 41. Consider the setup of Theorem <0 that has no requirements
on convexity. Then

sup z* > 0p(2*) < w(0) =inf{f(x) : x € Q,g(x) < 0}.

Proof: From Theorem 40 we have that for any z* > 0

p(2*) = ;relié{w(z)—i— < z,2" >} <w(0).



Thus

sup ¢(z%) < w(0).
z*>0

Now we prove that

max ¢(z*) = w(0) =inf{f(x) : z € Q,g(x) <0}

z*>0

for the convex case.



Lagrange Duality Result

The KKT theorem states that for convex optimization problems the optimal
primal value can be obtained via the following dual problem:

sk
Jmax (2", y).

The following is a Lagrange duality theorem.

Theorem 42. [Kuhn-Tucker-Lagrange duality] Let X be a Banach space, ()
be a convex subset of X, Y be a finite dimensional normed space, Z be a
normed space with positive cone P. Let Z* denote the dual space of Z with a
positive cone P®. Let f : Q) — R be a real valued convex functional,

g: X — Z be a convex mapping, H : X — Y be an affine linear map and

0 € int|range(H)|. Define

po == inf{f(x): g(x) <0, H(x) =0, x € Q}. (43)



Suppose there exists x1 € 2 such that g(x1) < 0 and H(z1) = 0 and suppose
Lo IS finite. Then,

o = max{p(z",y) : 2° 2 0, 2* € Z*, y € Y}, (44)

where p(z*, y):=inf{f(zx)+ < g(x),z" >+ < H(x),y >: x € Q } and the
maximum is achieved for some z5 > 0, z; € Z*, yo € Y.

Furthermore if the infimum in (43) is achieved by some x € €2 then
< g(®o), 20 > + < H(wo),yo >= 0, (49)
and xg minimaizes

flx)+ < g(x), 25 >+ < H(xz),yo >, over all x € (. (46)



Proof:Given any z* > 0, y € Y we have

inf {f(2)+ < g(z), 2" >
+ < H(x),y >} < xirelg{f(llf)—l- <g(x),z" >+ < H(z),y >
2 g(z) <0, H(z) = 0}
inf {f(w) : g(z) <0, H(x) =0}
= Mo-

Therefore it follows that max{y(z*,y) : z2* >0, y € Y }< po. From Lemma
we know that there exists 2§ € Z*, 25 > 0, yo € Y such that uy = ¢(25, o).
This proves (44).

Suppose there exists xg € Q, H(xg) =0, g(zo) < 0and ug = f(xg) then

o = ¢(25, Yo) < f(@o)+ < g(wo), 25 > + < H(xo),yo >< f(xo) = pio.
Therefore we have < g(xg), 2§ > + < H(zg),yo >= 0 and

po = f(xo)+ < g(xo), 25 > + < H(zg),yo >. This proves the theorem. N



Sensitivity

Corollary 2. [Sensitivity] Let X,Y, Z, f, H, g,{) be as in Theorem
be the solution to the problem

minimize f(x)

subject tox € Q, H(x) =0, g(z) < 29
with (z5,vyo) as the dual solution. Let x1 be the solution to the problem

minimize f(x)

subject tox € Q, H(x) =0, g(z) < 21
with (z},y1) as the dual solution. Then,

< 21— 20,21 > < fxg) — f(z1) << 21— 20,25 > .

. Let xo

(47)



Proof:From Theorem 4~ we know that for any = € 2,

f(xo)+ < g(x0) — 20,25 > + < H(x0),yo >
< f@)+ <g(@) — 20,20 > + < H(z),y0 > .

In particular we have

f(@o)+ < g(wo) — 20,25 > + < H(x0),y0 >
< flz1)+ < g(z1) — 20,25 > + < H(z1),90 > .

From Theorem 42 we know that < g(xg) — 20, 25 > + < H(xg),yo >= 0 and
H(z1) = 0. This implies

f(ajo) — f(il?l) << g(xl) — Zo,ZEI; > << 21 — 20, ZE’; > .

A similar argument gives the other inequality. This proves the corollary. H



