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We will begin by giving the following definitions:

Definition 1. [Group] A group is a set G with a binary operation
(.) : G×G→ G defined which has the following properties.

1. (a.b).c = a.(b.c); associativity property.

2. There exists an element e in G such that a.e = e.a = a for all a in G. e is
called the identity.

3. For every a in G there exists an element a−1 in G such that
a.a−1 = a−1.a = e. a−1 is called the inverse of a.

Definition 2. [Subgroup] If H is a subset of a group G the H is a subgroup
if H is a group with the binary operation inherited from G.
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Lemma 1. H is a subgroup of the group G if the identity element e is in H, a
belongs to H implies a−1 is in H and a and b belong to H implies a.b belongs
to H.

Lemma 2. A group G has a unique identity element. Also, every element in
G has a unique inverse.

Definition 3. [Abelian group] A group G is an abelian group if for any two
elements in G, a.b = b.a.

Definition 4. [Homomorphism] Let G and H be two groups. φ : G→ H is a
homomorphism between the two groups if φ(a.b) = φ(a).φ(b), for all a, b in G.

Lemma 3. A homomorphism φ : G→ H sends identity of G to the identity of
H and sends inverses to inverses.

Definition 5. [Isomorphism] An isomorphism is a homomorphism which is
one to one and onto.
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Definition 6. [Fields] A field K is a set that has the operations of addition
(+) : K ×K → K and multiplication (.) : K ×K → K defined such that

1. multiplication distributes over addition

a.(b+ c) = a.b+ a.c,

2. K is an abelian group under addition with identity written as 0 for addition.

3. K\{0} is an abelian group under multiplication with identity being 1.

Lemma 4. If in a field K elements a 6= 0 and b 6= 0 then ab 6= 0.
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Vector Space

Definition 7. A set V with two operations addition (+) : V × V → V and
scalar multiplication (.) : V ×K → V, where K is a field defined is a vector
space over the field K if

1. V is an abelian group under addition.

2. multiplication distributes over addition

α.(b+ c) = α.a+ α.b, for all α in K, for all a, b in V.

The elements of the field K are often called as scalars. The vector space is
called a real vector space if the field K = R and the vector space is called a
complex vector space if the field K = C.
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Definition 8. [Algebra] V a vector space is an algebra if it has an operation
vector multiplication (·) : V × V → V defined such that this operation
distributes over vector addition.

Definition 9. [Units] If A is an algebra then x in A is an unit if there exists
some y in A such that x · y = y · x = 1.

Lemma 5. If A is an algebra with an associative vector multiplication and U
is the set of units in A then U is a group under vector multiplication.

From now on we will restrict the field to be either the set of real numbers R or
the set of complex numbers C. Thus when we say K we mean either R or C.
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Normed Vector Space

Definition 10. A normed linear space is a vector space X with a function
|| · || : X → R defined such that

1. ||x|| ≥ 0 and ||x|| = 0 if and only if x = 0.

2. ||αx|| = |α| ||x|| for any scalar α and vector x in X.

3. ||x+ y|| ≤ ||x||+ ||y||.
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Convergence in a Normed Vector Space

Definition 11. [Convergence] Let V be vector space with a norm ‖.‖
defined. Suppose vn is a sequence in V , then vn converges to some v ∈ V , if
‖vn − v‖ → 0 as n→∞.
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Cauchy Sequence

Definition 12. A sequence vn in a normed vector space V is said to be
cauchy if given ε > 0, there exists an integer N such that if n,m ≥ N then
‖vn − vm‖ ≤ ε.

Lemma 6. Every Convergent sequence is Cauchy.
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Complete Normed Space; Banach Space

Definition 13. A normed vector space in which every Cauchy sequence is
convergent, is called complete vector Space.
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Pre-Hilbert Space

Definition 14. A vector space with inner product < ., . > defined.
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Orthogonal Vectors

Definition 15. In a Pre-Hilbert Space, two vectors x and y said to be
orthogonal if < x, y >= 0, (x ⊥ y). Moreover, if < x, x >= 1 and < y, y >= 1,
then x and y are called orthonormal vectors.
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Cauchy-Schwartz Inequality

Lemma 7. [Cauchy-Schwartz inequality] : For all x, y in a Pre-Hilbert space
| < x, y > | ≤ ‖x‖‖y‖. Furthermore, the equality holds iff either y = 0 or
x = λy where λ is a scalar.
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Continuity of Inner Product

Theorem 1. Let xn ∈ H and yn ∈ H be sequences in a pre-Hilbert space H
such that

‖xn − x‖ → 0 as n→∞

and

< h, yn >→< h, y > for all h ∈ H and ‖yn‖ ≤M for all n.

(Thus xn → x in norm topology and yn → y in the weak-star topology.) Then

< xn, yn >→< x, y > .
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Proof: Note that

| < xn, yn > − < x, y > | = | < xn, yn > − < x, yn > + < x, yn > − < x, y > |
= | < xn − x, yn > + < x, yn − y > |
≤ | < xn − x, yn > |+ | < x, yn − y > |
≤ | < xn − x, yn > |+ | < x, yn − y > |
≤ ‖xn − x‖‖yn‖+ | < x, yn − y > |
≤ ‖xn − x‖M + | < x, yn − y > |

Given ε > 0 choose N such that n > N implies that
‖xn − x‖ ≤ ε

2M and | < x, yn − y > | ≤ ε
2. Thus given ε > 0 there exists a N

such that n ≥ N implies that

| < xn, yn > − < x, y > | ≤ ε.
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The following lemma is a special case of the above theorem:

Lemma 8. In a Pre-Hilbert Space H, suppose vn and wn are sequences in
H converging to v and w respectively (∈ H). Then, < vn, wn > → < v,w >
as n→∞.

Proof: Follows easily from the fact that if

‖wn − w‖ → 0⇒< h,wn >→< h,w >

and that ‖wn‖ is uniformly bounded.
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Hilbert Space

Definition 16. Let H be a Pre-Hilbert Space with inner product < ., . >
defined. Then let ‖x‖ =

√
< x, x > defines the norm. If H together with the

norm is Complete Space, then H is a Hilbert Space.
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Some Results

Lemma 9. A set S ⊂ {X, ‖.‖} is closed iff it contains all its limit points.

Theorem 2. Every finite dimensional vector space is closed.
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Pre-Hilbert Space Theorem

Theorem 3. Let H be a pre-Hilbert space and let M be a subspace of H.
Then for m0 ∈M

‖x−m0‖ ≤ ‖x−m‖ for all m ∈M if and only if (x−m0) ⊥M.

Proof: (⇐) Suppose m0 ∈M is such that (x−m0) ⊥M. Then for any m ∈M
it follows that

‖x−m‖2 = ‖x−m+m0 −m0‖2

= ‖(x−m0) + (m−m0)‖2

= ‖(x−m0)‖2 + ‖(m−m0)‖2

≥ ‖x−m0‖2
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The third equality holds because because (x−m0) ∈M⊥ and (m−m0) ∈M.

(⇒) Let ‖x−m0‖ ≤ ‖x−m‖ for all m ∈M. Suppose x−m0 6∈M⊥. Then
there exists m1 ∈M with ‖m1‖ = 1 and

< x−m0,m1 >= δ > 0.

Let m̃ := m0 + δm1. It follows that

< x− m̃, x− m̃ > = < x−m0 − δm1, x−m0 − δm1 >

= ‖x−m0‖2 + δ2 < m1,m1 > −2δ < x−m0,m1 >

= ‖x−m0‖2 + δ2 − 2δδ

< ‖x−m0‖2
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Note that m̃ ∈M. This contradicts the hypothesis and thus δ = 0.
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Classical Projection Theorem

Theorem 4. Let H be a Hilbert space and M a closed subspace of H.
Consider the following problem

µ = inf{‖x−m‖, m ∈M},
where x ∈ H. Then, there exists a unique vector m0 ∈M such that
‖x−m0‖ = µ, that is,

m0 = arg{ inf
m∈M

‖x−m‖}

Furthermore, a necessary and sufficient condition for m0 being the unique
minimizing vector is

(x−m0) ⊥M.

Proof: Note that only the existence of m0 needs to be proven. The rest of the
proof follows from Theorem 3.
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If x ∈M, then m0 = x and theorem is proven. Suppose x 6∈M. Then for any
n ∈ N. there exists mn ∈M such that µ ≤ ‖x−mn‖ ≤ µ+ 1

n. Thus there exist
a sequence {mi}∞i=0 ∈M such that ‖x−mn‖ converges to µ as n→∞. From
the parallelogram law, for any integer i and j,

‖(mj − x) + (x−mi)‖2 + ‖(mj − x)− (x−mi)‖2 = 2‖mj − x‖2 + 2‖mi − x‖2.

This implies that

‖mj −mi‖2 + ‖mj +mi − 2x‖2 = 2‖mj − x‖2 + 2‖mi − x‖2.

Thus

‖mj −mi‖2 = 2‖mj − x‖2 + 2‖mi − x‖2 − 4‖mj +mi

2
− x‖2. (1)
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Note that mj+mi

2 ∈M , and therefore

‖mj +mi

2
− x‖ ≥ µ.

From (1) we have

‖mj −mi‖2 ≤ 2‖mj − x‖2 + 2‖mi − x‖2 − 4µ2.

Given any ε > 0, let N be a large positive integer such that for all n ≥ N,
‖x−mn‖2 ≤ µ2 + ε2

4 . If i, j > N then,

‖mj −mi‖2 ≤ 2µ2 +
ε2

2
+ 2µ2 +

ε2

2
− 4µ2.

This implies
‖mj −mi‖2 ≤ ε2.
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It follows that
‖mj −mi‖ ≤ ε

Thus, mn forms a Cauchy Sequence. And, since M is a closed subspace of
Hilbert Space (which is complete), mn is a converging sequence (due to
completeness) with the limit point inside M (due to closedness). Thus there
exists a m0 ∈M , such that

‖mn −m0‖ → 0 as n→∞.

Since, ‖(x−mn)− (x−m0)‖ = ‖mn −m0‖ we have

(x−mn)→ (x−m0) as n→∞

From the continuity of norm, ‖(x−mn)‖ converges to ‖(x−m0)‖. Since, a
converging sequence has a unique limit point, we have

µ = ‖x−m0‖.
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This proves the theorem
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Direct Sum

Definition 17. A vector space X is said to be the direct sum of two
subspaces M and N if every vector x ∈ X has a unique representation of the
form x = m+ n, where m ∈M and n ∈ N. The notation X = M ⊕N is used
to denote that X is a direct sum of M and N.



27

Relationships between a space and its perp space

Theorem 5. Let S and T be subsets of a Hilbert Space H, then

1. S⊥ is a closed subspace.

2. S ⊂ S⊥⊥.

3. If S ⊂ T then T⊥ ⊂ S⊥.

4. S⊥⊥⊥ = S⊥.

Proof: (1) Let pn be a sequence in S⊥ with pn → p. Let s be an element in S.
As pn ∈ S⊥, it follows that

< s, pn >= 0, for all n.
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Thus
lim
n→∞

< s, pn >= 0.

Note that

| < s, p > | = | < s, p− pn + pn > | = | < s, pn > + < s, p− pn > |

≤ | < s, pn > |+ | < s, pn − p|

≤ | < s, pn > |+ ‖s‖ ‖p− pn‖ for all n.

Taking limits we have that

| < s, p > | = lim
n→∞

| < s, p > | = lim
n→∞

| < s, pn > |+ lim
n→∞

‖s‖ ‖p− pn‖ = 0.

As s is an arbitrary element in S it follows that p ∈ S⊥. This proves (1).
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(2) Let s be any element in s. Then for all elements p in S⊥ < s, p >= 0.
Therefore s ∈ S⊥⊥. Thus S ⊂ S⊥⊥. This proves (2).

(3) Let t⊥ be an element in T⊥. Then it follows that < t, t⊥ >= 0 for all t ∈ T.
As S ⊂ T it follows that < t, t⊥ >= for all t ∈ S. Thus t⊥ ∈ S⊥. As t⊥ is an
arbitrary element in T⊥ it follows that T⊥ ⊂ S⊥. This proves (3). (4) will be
proven after establishing the next theorem.
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Decomposition of a Hilbert space

Theorem 6. If M is a closed linear subspace of a Hilbert space H, then

H = M ⊕M⊥ and M = M⊥⊥.

Proof: Let h be an element in H. From the classical projection theorem
(Theorem 4) it follows that there exists an element hm ∈M such that

hm = arg{ inf
m∈M

‖x−m‖}.

Furthermore, such an element is a unique element that satisfies
(h− hm) ∈M⊥. Let hn := h− hm. Then clearly h = hm + hn with hm ∈M and
hn ∈M⊥.

Suppose h = h′m + h′n is another decomposition with h′m ∈M and h′n ∈M⊥.
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Then it follows that h = hm + hn = h′m + h′n and therefore

(h′m − hm) + (h′n − hn) = 0.

As, (h′m − hm) ∈M and (h′n − hn) ∈M⊥ it follows that

0 = ‖(h′m − hm) + (h′n − hn)‖2 = ‖(h′m − hm)‖2 + ‖(h′n − hn)‖2.

Thus h′m = hm and h′n = hn. Thus the decomposition h = hm + hn is unique.
This proves H = M ⊕M⊥.

In Theorem 5 we have established that M ⊂M⊥⊥. Suppose M is closed. Let
p ∈M⊥⊥. From the decomposition result established earlier p can be
decomposed as p = pm + pn with pm ∈M and pn ∈M⊥. It follows that

pn = p− pm,
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and

‖pn‖2 =< pn, pn >=< p− pm, pn >=< p, pn > − < pm, pn >= 0.

This follows because < p, pn >= 0 (as p ∈M⊥⊥ and pn ∈M⊥) and
< pm, pn >= 0 (as pn ∈M⊥ and pm ∈M ). Thus pn = 0 and

p = pm + pn = pm ∈M.

Thus we have shown that any arbitrary element p ∈M⊥⊥ also belongs to M.
Therefore M⊥⊥ ⊂M. This proves the theorem.
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Minimum Norm Vector of a Linear Variety
(Restatement of the Projection Theorem)

Theorem 7. Let V be a linear variety defined by

V = x+M = {x+m|m ∈M}

where M is a closed subspace of a Hilbert space H and x ∈ H. For the
optimization problem

µ = inf
v∈V
‖v‖.

there exists a minimizing element v0 ∈M⊥. That is there exists v0 ∈M⊥ such
that

v0 = arg{ inf
v∈V
‖v‖}.
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Proof: Note that
µ = infv∈V ‖v‖

= infm∈M ‖x+m‖

= infm∈M ‖x−m‖
From the classical projection theorem there exists a minimizing element m0 to
the problem

inf
m∈M

‖x−m‖

such that x−m0 ∈M⊥. The proof of the theorem follows by defining
v0 = x−m0 and from

arg{ inf
v∈V
‖v‖} = x− arg{ inf

m∈M
‖x−m‖} = x−m0 = v0.
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Invertibility of the Gram Matrix

Definition 18. [Gram Matrix] Gram matrix of set of vectors y1, y2 . . . yn is
given by :

G(y1, y2 . . . yn) =


< y1, y1 > < y1, y2 > · · · < y1, yn >
< y2, y1 > < y2, y2 > · · · < y2, yn >

... ... . . . ...
< yn, y1 > < yn, y2 > · · · < yn, yn >

 .

Lemma 10. G(y1, y2 . . . yn) is invertible if and only if the vectors y1, y2 . . . yn
are linearly independent.

Proof:
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Minimum Norm Vector that Satisfies a Set of Linear
Equalities

Theorem 8. Let H be a Hilbert space and yi, i = 1, . . . , n be a set of linearly
independent vectors in H. Let

µ = inf ‖x‖

subject to

< x, y1 > = c1
< x, y2 > = c2

...
< x, yn > = cn.

.

Then there exists x0 to the above problem that is

x0 = arg{inf{‖x‖ | < x, yi >= ci, i = 1 . . . , n}}
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where x0 is a linear combination of yi′s:

x0 =
n∑
i=0

βiyi

with βi satisfy following normal

GT (y1, y2 . . . yn)


β1

β2
...
βn


︸ ︷︷ ︸

:=β

=


c1
c2
...
cn


︸ ︷︷ ︸

:=c

.

Proof: Let
Y = span{y1, . . . , yn} and
S = {x ∈ H| < x, yi >= ci, i = 1, . . . , n}.
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It is evident that

Y ⊥ = {x ∈ H| < x, yi >= 0, i = 1, . . . , n.} and therefore
S = x+ Y ⊥

where x is any element that belongs to S.

It is evident that

µ = inf{‖x‖ | < x, yi >= ci, i = 1, . . . , n}
= infx∈S ‖x‖

where S is the linear variety S = x+ Y ⊥ (note that Y ⊥ is a closed subspace).
From Theorem 7 it follows that there exists a minimizing solution x0 ∈ (Y ⊥)⊥.
Y being a finite dimensional vector space is closed (see Theorem 2.) Thus
from Theorem 6 it follows that x0 ∈ Y ⊥⊥ = Y. Thus x0 is a linear combination
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of the vectors yi with

x0 =
n∑
i=1

βiyi.

Also, x0 ∈ S and therefore for all j = 1, . . . , n

cj =< x0, yj >=<
n∑
i=1

βiyi, yj >=
n∑
i=1

βi < yi, yj > .

This set of relations is equivalent to the matrix equation GTβ = c. This proves
the theorem.
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Hilbert Space of Random Variables
Let (Ω, F, P ) be a probability space. Let H be the the set of random variables
with finite variance. H is endowed with an inner product < X,Y >= E(XY ).
H together with the inner product is a Hilbert Space. Let Hn denote random
vectors with dimension n.

Note that we are not endowing any Hilbert Space structure to Hn. The only
Hilbert space we will be interested in is the scalar Hilbert space H.
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Estimation

Consider two random vectors β ∈ Hn and y ∈ Hm. where

The problem is to estimate the unknown random vector β from the
measurements y. What is desired is a function β̂ = f(y) which provides the
estimate of β. Note that y is a random vector and as such we desire a
mapping f that maps the m dimensional random variable to a n dimensional
random vector. Thus a mapping from Hm to Hn is sought. Note that once an
appropriate mapping f is determined for a particular realization of the random
vector y = y1 we can obtain the estimate for that realization as f(y1).

It needs to be emphasized that a mapping f : Hm → Hn is sought as an
estimate of β. If the function f is restricted to be a linear function then the goal
is to obtain a linear estimate of β given y.

Furthermore the estimate is termed unbiased if the function f is restricted
such that E(β̂) = (β).
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The estimate f0 is said to be a minimum variance estimate if in the allowable
class of mappings S

f0 = arg

[
inf
f∈S

E{(β − f)T (β − f)}
]
.
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Minimum-variance Estimate of X based on Y.

Let X and Y be two random variables. The following problem is of interest:

µ = inf
f
E{(X − f)2}.

Theorem 9. Let X and Y be two random variables. Then

E(X|Y ) = arg

[
inf
f
E{(X − f(Y ))2}

]
.

Proof: The proof provided is not rigorous; however, it conveys the main idea.
Let

µ = inf
f(Y )

E{(X − f(Y ))2}.
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Let M = {m = f(Y ) : m has finite variance}. Note that every element of S is
a random variable m : Ω→ R obtained by m = f ◦ Y where f : R→ R and
Y : Ω→ R. M is a subspace of the Hilbert space H. Thus we have

µ = inf
m∈M

‖X −m‖22.

From the classical projection theorem (see Theorem 4) any m0 which satisfies
(X −m0) ⊥M is the minimizer. Note that

< X − E(X|Y ), f(Y ) > = E[(X − E(X|Y ))f(Y )]

= E[Xf(Y )]− E[E(X|Y )f(Y )]

= E[Xf(Y )]− E[E(f(Y )X|Y )]

= 0.

Thus, E(X|Y ) is the vector that is perpendicular to all other vectors in M.
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Thus the theorem follows from the classical projection theorem.

Note that identities like

E[Xf(Y )] = E[E(f(Y )X|Y )]

can be proven by assuming the pdf’s px,y(x, y), px|y(x|y), p(y) and p(x) to
represent the joint pdf of the random variables X and Y, the conditional pdf of
X given Y, the marginal pdf of Y and the marginal pdf of X respectively.
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Using this notation we have

E[Xf(Y )] =
∫ ∫

xf(y)px,y(x, y)dxdy

=
∫ ∫

xf(y)px|y(x|y)p(y)dxdy

=
∫ (∫

xf(y)px|y(x|y)dx
)
p(y)dy

=
∫
E(f(y)X|Y = y)p(y)dy

= E[E(f(Y )X|Y )]

Similarly other such identities can be proven.

In the case where X and Y are jointly Gaussian one can show that E(X|Y ) is
a linear function of the Gaussian variable Y.

It was seen that
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• The minimum-variance estimate of X based on Y is E(X|Y ).

• In the case when X and Y have a jointly Gaussian distribution E(X|Y ) is
linear in Y given by RxyR−1

y Y.

Without further knowledge of the joint pdf of X and Y it is not possible to
evaluate E(X|Y ). Thus typically the minimum variance estimate is difficult to
obtain. However, it is relatively straightforward to obtain a minimum-variance
linear estimate of X based on Y as is seen by the theorem below.
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Review of Gaussian Variables

Definition 19. [Gaussian random vector] The random n dimensional
vector X is said to Gaussian (normal) if it has a pdf described by

pX(x) =
1√

(2π)n|Rx|
exp{−1

2
[x−mx]TR−1

x [x−mx]}.

Theorem 10. The random vector X with pdf

pX(x) =
1√

(2π)n|Rx|
exp{−1

2
[x−mx]TR−1

x [x−mx]}.

has the mean mx and the covariance Rx. Thus

EX(X) = mx and EX([x−mx][x−mx]T ) = Rx.
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Characteristic Functions: Generating higher order moments

Definition 20. If X is a n dimensional random vector then the characteristic
function φX(·) is defined as a scalar function as below

φX(µ) := EX[ejµ
Tx] =

∫ ∞
−∞

. . .

∫ ∞
−∞

ej
∑n
i=1 µixifX(x)dx1 . . . dxn.

Theorem 11.

E[xi1xi2 . . . xim] =
1
jm

[
∂mφX(µ)

∂µi1∂µi1 . . . ∂µim

]∣∣∣∣
µ=0

Proof: Note that

φX(µ) =
∫
exp(jµTx)fX(x)dx.
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Therefore it follows that

∂φX(µ)
∂xi1

= ∂
∂xi1

(∫
exp(jµTx)fX(x)dx]

)
=

∫
∂

∂xi1
(exp(j

∑n
i=1 µixi)fX(x))dx

=
∫
jxi1exp(j

∑n
i=1 µixi)fX(x))dx

Differentiating the above expression with respect to xi2 we obtain

∂2φX(µ)
∂xi1∂xi2

= ∂
∂xi2

(∫
jxi1exp(jµ

Tx)fX(x)dx]
)

=
∫
jxi1

∂
∂xi2

(exp(
∑n
i=1 µixi)fX(x))dx

=
∫
j2xi1xi2exp(

∑n
i=1 jµixi)fX(x))dx

Proceeding in a similar manner one can show that
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∂mφX(µ)
∂µi1∂µi1 . . . ∂µim

= jm
∫
xi1xi2 . . . ximexp(

n∑
i=1

jµixi)fX(x))dx

The theorem follows by evaluating above at µ = 0.
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Characteristic Functions of a sum of two independent
random vectors

Theorem 12. Let Z = X + Y where X, Y are two n dimensional random
vectors that are independent. Then

φZ(µ) = φX(µ)φY (µ).

Proof:

Note that

φZ(µ) = E[ejµ
TZ] = E[ejµ

T (X+Y )] = E[ejµ
TXejµ

TY ]

and as X and Y are independent it follows that

E[ejµ
TXejµ

TY ] = E[ejµ
TX]E[ejµ

TY ] = φX(µ)φY (µ).
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This proves the theorem.
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Characteristic function of a Gaussian random vector

Theorem 13. The characteristic function of a n dimensional random vector
X that has mean µ and variance R with a pdf given by

pX(x) =
1√

(2π)n|R|
exp{−1

2
[x−m]TR−1[x−m]}

is
φX(µ) = ejµ

Tm−1
2µ
TR−1µ.
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Linear Transformation of a Gaussian vector is Gaussian
Theorem 14. Let X be a n dimensional random vector with mean mx and
covariance Rx. Let A ∈ Rm×n. Then Y = AX is a m dimensional random
vector that is Gaussian with mean my and covariance Ry where

my = Amx and Ry = ARxR
T .

Proof: The characteristic function of Y is given by

φY (µ) = E[ejµ
TY ] = E[ejµ

TAX] = E[ej(A
Tµ)TX] = φX(ATµ)

= exp{jµTAmx − 1
2µARxA

Tµ}

which is the characteristic function of a Gaussian vector with mean Amx and
variance ARxAT .

This completes the proof.
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Jointly Gaussian Variables

Definition 21. [Jointly Gaussian] Suppose X and Y are two random

vectors of dimension n and m respectively. Let Z :=
[
X
Y

]
be a n+m

dimensional random vector formed by stacking X and Y . X and Y are said to
jointly Gaussian if Z is a Gaussian random vector of dimension n+m.

Theorem 15. Let X and Y be jointly Gaussian n and m dimensional random
vectors with means mx and my respectively and covariances Rx and Ry
respectively. Let A ∈ Rp×n and B ∈ Rp×m. Then Z = AX +BY is a p
dimensional random vector is Gaussian with mean

mz = Amx +Bmy and Rz = ARxA
T +ARxyB

T +BRyxA
T +BRyB

T .

Proof:
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Let U =
[
X
Y

]
. As X and Y are jointly Gaussian, it follows that U is

Gaussian with mean mu =
[
mx

my

]
and covariance

Ru =
[
Rx Rxy
Ryx Ry

]
.

Note that Z = AX +BY =
[
A B

]︸ ︷︷ ︸
H

U. Therefore from Theorem 14 it follows

that Z has the mean given by Hmu = Amx +Bmy and covariance

HRuH
T =

[
A B

] [ Rx Rxy
Ryx Ry

] [
AT

BT

]
=

[
A B

] [ RxAT +RxyB
T

RyxA
T +RyB

T

]
= ARxA

T +ARxyB
T +BRyxA

T +BRyB
T .
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This proves the theorem.
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Marginals from jointly Gaussian pdf

Theorem 16. Suppose Z is a random vector of dimension n+m with a pdf
given as

pZ(z) = [(2π)(n+m)/2

∣∣∣∣[ Rx Rxy
Ryx Ry

]∣∣∣∣1/2]−1

.exp{−1
2

[
x−mx

y −my

]T [
Rx Rxy
Ryx Ry

]−1 [
x−mx

y −my

]
}.

where Z is partitioned as Z =
[
X
Y

]
with X and Y a n and m dimensional

random vectors respectively. Then

pX(x) =
1√

(2π)n|Rx|
exp{−1

2
[x−mx]TR−1

x [x−mx]}
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and
pY (y) =

1√
(2π)m|Ry|

exp{−1
2

[y −my]TR−1
y [y −my]}.

Proof: Note that X =
[
I 0

]︸ ︷︷ ︸
A

Z. Therefore it follows from Theorem 14 that

the mean of X is given by
Amz = mx

and the covariance is given by

ARzA
T = Rx.

A similar derivation can be done to obtain the pdf of the random variable Y.

Theorem 17. If X and Y are independent Gaussian vectors then they are
jointly Gaussian.
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Proof: Note that if X and Y are Gaussian random vectors with dimensions n
and m with pdfs given by

pX(x) =
1√

(2π)n|Rx|
exp{−1

2
[x−mx]TR−1

x [x−mx]}

and

pY (y) =
1√

(2π)n|Ry|
exp{−1

2
[y −my]TR−1

y [y −my]}
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then the joint pdf

pX,Y (x, y) = pX(x)pY (y)

= 1√
(2π)n|Rx|

exp{−1
2[x−mx]TR−1

x [x−mx]}
. 1√

(2π)m|Ry|
exp{−1

2[y −my]TR−1
y [y −my]}

= 1√
(2π)n|Rx|(2π)m|Ry|

.exp{−1
2[x−mx]TR−1

x [x−mx]− 1
2[y −my]TR−1

y [y −my]}

= 1√
(2π)n+m|Rx||Ry|

.exp{−1
2

[
(x−mx)T (y −my)T

] [ R−1
x 0

0 R−1
y

]
︸ ︷︷ ︸

R−1
z

[
x−mx

y −my

]
}

= 1√
(2π)n+m|Rz|

.exp{−1
2

[
(x−mx)T (y −my)T

]
R−1
z

[
x−mx

y −my

]
}



63

which is a Gaussian distribution with covariance Rz and mean mz =
[
mx

my

]
.
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Uncorrelated implies independence for jointly Gaussian
vectors

Definition 22. X and Y two random vectors of dimensions n and m are
uncorrelated if E[(X −mx)(Y −my)T ] = 0 where mx = E[X] and my = E[Y ].

Theorem 18. Suppose X and Y are jointly Gaussian random vectors such
that X and Y are not correlated. Then X and Y are independent.

Proof: If X and Y are not correlated then Rxy = Ryx = 0. Note that

Rz =
[
Rx 0
0 Ry

]
.

and |Rz| = |Rx||Ry|. The Gaussian distribution of Z :=
[
X
Y

]
is given by (with
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z :=
[
x
y

]
)

pZ(z) = [(2π)(n+m)/2|Rz|1/2]−1exp{−1
2[z − zm]TR−1

z [z − zm]}

= [(2π)(n)/2|Rx|1/2]−1(2π)(m)/2|Ry|1/2]−1

.exp{−1
2[x−mx]TR−1

x [x−mx]− 1
2[y −my]TR−1

y [y −my]}

= [(2π)(n)/2|Rx|1/2]−1exp{−1
2[x−mx]TR−1

x [x−mx]}
.exp{−1

2[y −my]TR−1
y [y −my]}

= pX(x)pY (y)

The theorem is proven as pZ(z) = pX,Y (x, y).
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Conditional pdf for jointly Gaussian
vectors/Minimum-variance Estimation for Jointly Gaussian

Variable

Theorem 19. Suppose X and Y are jointly Gaussian random vectors that
are n and m dimensional respectively. with the joint distribution given as

pX,Y (x, y) = [(2π)(n+m)/2|Rz|1/2]−1

.exp{−1
2

[
x−mx

y −my

]T
R−1
z

[
x−mx

y −my

]
}.

where

Rz =
[
Rx Rxy
Ryx Ry

]
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Then the conditional pdf

pX|Y (x|y) =
1√

(2π)n|Rx|y|
exp{−1

2
[x−mx|y]TR−1

x|y[x−mx|y]}

where

mx|y = mx +RxyR
−1
yy (y −my) and Rx|y = Rx −RxyR−1

y Ryx.

Also the solution to the problem

mx +RxyR
−1
yy (y −my) = arg{inf

f
[E(X − f(Y ))T (X − f(Y )]} (2)
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Proof: Note that

R−1
z =

(
Rx Rxy
RTxy Ry

)−1

=
(

I 0
−R−1

y Ryx I

)
︸ ︷︷ ︸

L

(
∆−1 0

0 R−1
y

)
︸ ︷︷ ︸

D

(
I −RxyR−1

y

0 I

)
︸ ︷︷ ︸

T

.

where ∆ = Rx −RxyR−1
y Ryx is the Schur complement of Ry in R.
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It also follows that

|Rz|−1 =
= |R−1

z |

= |L|
∣∣∣∣( ∆−1 0

0 R−1
y

)∣∣∣∣ |T |
= |

(
∆−1 0

0 R−1
y

)
|

= |∆−1| |R−1
y |

= |∆|−1 |Ry|−1

From Thoerem 16 it follows that

pY (y) =
1√

(2π)m|Ry|
exp{−1

2
[y −my]TR−1

y [y −my]}

and from Bayes rule we have
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pX|Y (x|y)
= px,y(x,y)

pY (y)

=
√

(2π)m|Ry|

(
√

2π)(n+m)|Rz|

.exp{−1
2

[
x−mx

y −my

]T
R−1
z

[
x−mx

y −my

]
+ 1

2[y −my]TR−1
y [y −my]}

=
√

(2π)m|Ry|

(
√

2π)(n+m)|∆||Ry|

.exp{−1
2

[
x−mx

y −my

]T
LDT

[
x−mx

y −my

]
+ 1

2[y −my]TR−1
y [y −my]}

= 1

(
√

2π)n|∆|
.exp{−1

2[xT − (mx +RxyR
−1
y (y −my))T ]∆−1[x− (mx +RxyR

−1
y (y −my))]}

This proves the first part of the theorem. Equation 2 follows from Theorem 9
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and the fact that E(X|Y ) = mx|y.
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Estimation with static linear Gaussian models

Theorem 20. Suppose x and v are n and m dimensional random vectors
respectively that are jointly Gaussian with means mx and 0 respectively and
covariances Px and Rv that are uncorrelated. Suppose

z = Hx+ v

where H ∈ Rm×n.

Then the conditional pdf px|z is Gaussian with mean

mx|z = mx + [PxHT ][HPxHT +Rv]−1[z −Hmx]

and covariance

Px|z = Px − [PxHT ][HPxHT +Rv]−1HPx.
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Note that
mx|z = mx +K[z −Hmx] and Px|z = Px −KHPx.

Proof: Note that as x and v are jointly Gaussian, it follows that
[
x
v

]
is

Gaussian. As any linear transformation of a Gaussian vector is Gaussian it
follows that

w =
[
x
z

]
=
[
I 0
H I

] [
x
v

]
is Gaussian with mean

mw =
[
I 0
H I

] [
mx

0

]
=
[
mx

Hmx

]
with covariance

Rw =
[
I 0
H I

] [
Px 0
0 Rv

] [
I HT

0 I

]
=
[
Px PxH

T

HPx HPxH
T +Rv

]
.
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From Theorem 19 it follows that the pdf px|z(x|z) has mean

mx|z = mx +RxzR
−1
z (z −mz)

= mx + PxH
T (HPxHT +Rv)−1(z −Hmx)

and the variance

Rx|z = Rx +RxzR
−1
zz Rzx

= Px + PxH
THPxH

T +Rv)−1HPx
.

This proves the theorem.
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Minimum-variance Linear Estimate of X based on Y.

Theorem 21. Let X and Y be random vectors with dimensions m and n
respectively. Let

µ = inf
X̂=KY

E[‖X − X̂‖22], (3)

where ‖.‖2 is the two norm in Rm. Further assume that Ryy = E(Y Y T ) is
invertible. Then the minimizing solution to the optimization problem (3) is
given by

X̂0 = E(XY T )E(Y Y T )−1Y = RxyR
−1
y Y.

Proof: Note that

µ = inf
∑m
i=1E[(Xi − X̂i)2]

subject to

X̂i = kTi Y, i = 1, . . . ,m
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where

K =


kT1
kT2...
kTm

 .
Note that the above problem can be decoupled into m optimization problems.
The optimization variables X̂i and ki do not influence the terms in the
objective or the constraints on X̂j and kj if i 6= j. Motivated by this we define

µi = inf
√
E[(Xi − X̂i)2]

subject to

X̂i = kTi Y.

where the optimization variables are ki and X̂i. Let

M = span {Y1, Y2, . . . Yn}.
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Let
Y := [Y1, . . . , Yn]T .

Thus M is a finite dimensional subspace of H the Hilbert space of scalar
random variables. Note that

µi = inf ‖X − X̂i‖H
subject to

X̂i ∈M.

where
‖Z‖H =

√
E(Z2).

From the classical projection theorem (Theorem 4) it follows that there exists
X̂0 ∈M that achieves the minimum and (X − X̂0) ∈M⊥. Therefore there
exists scalars α`i such that

X̂0
i =

n∑
`=1

α`iY`
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with

< Xi − X̂i, Yj >H = 0 for all j = 1, . . . , n

⇒ < X̂i, Yj >H = < Xi, Yj >H for all j = 1, . . . , n

⇒ <
∑m
`=1α

`
iY`, Yj >H = < Xi, Yj >H for all j = 1, . . . , n

⇒
∑m
`=1(α`i < Y`, Yj >H) = < Xi, Yj >H for all j = 1, . . . , n.
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Recasting above in a matrix form we have


< Y1, Y1 > < Y2, Y1 > · · · < Ym, Y1 >
< Y1, Y2 > < Y2, Y2 > · · · < Ym, Y2 >

... ... . . . ...
< Y1, Ym > < Y2, Ym > · · · < Ym, Ym >


︸ ︷︷ ︸

E(Y Y T )


α1
i

α2
i...

αmi


︸ ︷︷ ︸

:=αi

=


< Xi, y1 >H
< Xi, y2 >H

...
< Xi, ym >H


︸ ︷︷ ︸

=E(XiY )

.

Thus

αi = [E(Y Y T )]−1E(XiY )

and

X̂0
i = [α1

i , . . . , α
m
i ]Y = αTi Y = E(XiY

T )[E(Y Y T )]−1Y.
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This implies that

X̂0 =


E(X1Y

T )[E(Y Y T )]−1Y

...
E(XnY

T )[E(Y Y T )]−1Y

 = E(XY T )[E(Y Y T )]−1Y.

Thus
X̂0 = RxyR

−1
y Y.

This proves the theorem.

Corollary 1. X̂0 is the minimum variance linear estimate (mvle) of X based
on Y derived in Theorem 21 if and only if

E[(X − X̂0)Y T ] = 0.

Proof: Note that each element X̂0
i of the X̂0 belongs to M where

M = span {Y1, . . . , Ym} whereas (X̂0
i −Xi) ∈M⊥. Therefore it follows from
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Theorem 4 that X̂0
i is a mvle if and only if

E[(X̂0
i−Xi)Yj] =< X̂0

i−Xi, Yj >= 0 for all i = 1, . . . ,m and for all j = 1, . . . ,m.

Therefore X̂0
i is a mvle if and only if

E[(X − X̂0)Y T ] = 0.
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Properties of Minimum-variance Linear Estimates

Theorem 22. The following statements hold:

1. The minimum variance linear estimate of ΓX with Γ ∈ Rp×n based on Y is
ΓX̂0 where X̂0 is the minimum variance linear estimate of X based on Y.

2. Let X̂0 be the minimum variance linear estimate of X based on Y. Then
P

1
2X̂0 is the linear estimate based on Y minimizing E[(X̂ −X)TP (X̂ −X)]

where P ∈ Rn×n is any positive definite matrix.

Proof: (1) Let Z = ΓX. Note that

E[(Z − ΓX̂0)Y T ] = E[Γ(X − X̂0)Y T ] = ΓE[(X − X̂0)Y T ] = 0.

From Corollary 1 it follows that ΓX̂0 is the minimum variance linear estimate of
Z = ΓX based on Y.
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(2) Note that

µ = infX̂=KY E[(X − X̂)TP (X − X̂)]

= infX̂=KY E[(P
1
2X − P 1

2X̂)T (P
1
2X − P 1

2X̂)]

= inf
X̂′=P

1
2KY

E[(P
1
2X − X̂ ′)T (P

1
2X − X̂ ′)]

= infX̂′=KY E[(P
1
2X − X̂ ′)T (P

1
2X − X̂ ′)]

The above problem is to obtain the minimum variance linear estimate of P
1
2X

which from part (1) of the theorem is given by P
1
2X̂0.

This proves the theorem.
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Minimum-variance Linear Estimate

Theorem 23. Let
y = Wβ + ε

where

• W ∈ Rm×n is a known matrix

• β is an n-dimensional random vector with E(ββT ) = R ≥ 0.

• The vector ε is a m dimensional random vector with E(εεT ) = Q ≥ 0.

• E(εβT ) = 0.

Then the minimum variance linear estimate of β based on y is given by

β̂ = RWT (WRWT +Q)−1y = (WTQ−1W +R−1)−1WTQ−1y
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and the error covariance is given by

P := E[(β−β̂)(β−β̂)T ] = R−RWT (WRWT+Q)−1WR = (WTQ−1W+R−1)−1.

Note that

P−1β̂ = WTQ−1y

that does not depend on R the covariance of β.

Proof: From Theorem 21 we have

β̂ = E(βyT )E(yyT )−1y
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with
E(βyT ) = E[β(βTWT + εT )]

= E[ββTWT ] + E[βεT ]

= RWT

E(yyT ) = E[(Wβ + ε)(Wβ + ε)T ]

= E[WββT +WβεT + εβTWT + εεT ]

= WE[ββT ]WT + E[εεT ] = WRWT +Q

Therefore we have
β̂ = RWT (WRWT +Q)−1y.

Note that one can show that

RWT (WRWT +Q)−1 = (WTQ−1W +R−1)−1WTQ−1
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by pre-multiplying by (WTQ−1W +R−1) and postmultiplying by
(WRWT +Q)−1 that shows that β̂ = (WTQ−1W +R−1)−1WTQ−1y.
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The error covariance matrix is given by

E[(β − β̂)(β − β̂)T ] = E[β(β − β̂)T ]− E[β̂(β − β̂)T ]

= E[β(β − β̂)T ], because β̂i ∈M and (βj − β̂j) ∈M⊥

= E[ββT ]− E[ββ̂T ] = E[ββT ]− E[(β − β̂ + β̂)β̂T ]

= E[ββT ]− E[(β − β̂)β̂T ]− E[β̂β̂T ]

= E[ββT ]− 0− E[β̂β̂T ]

= R−RWT (WRWT +Q)−1WR

= (WTQ−1W +R−1)−1.
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The last identity follows by using the matrix identity

(A11 −A12A
−1
22 A21)−1 = A−1

11 +A−1
11 A12(A22 −A21A

−1
11 A12)−1A22A

−1
11

and identifying A11 = R−1, A12 = −WT , A21 = W, A22 = Q. This proves the
theorem.
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Combining Estimators
Theorem 24. Suppose

ya = Waβ + va and yb = Waβ + vb

where va and vb are uncorrelated (E(vavTb ) = 0) and
E[vavTa ] = Qa, and E[vbvTb ] = Qb. Suppose βa is the mvle of β based on ya
and βb is the mvle of β based on yb with error covariance matrices Pa and Pb
respectively. Then the mvle of β based on

y :=
[
ya
yb

]
is given by

P−1β̂ = P−1
a βa + P−1

b βb

where
P−1 = P−1

a + P−1
b −R−1
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with P the associated error covariance matrix of ˆbeta..

Proof:

Note that from Theorem 23 it follows that

P−1
a βa = WT

a Q
−1
a ya and P−1

b βb = WT
b Q
−1
b yb

with
P−1
a = WT

a Q
−1
a Wa +R−1 and P−1

b = WT
b Q
−1
b Wb +R−1.

Its also follows that

P−1β̂ = WTQ−1y =
[
WT
a WT

b

] [ Q−1
a 0

0 Q−1
b

] [
ya
yb

]
.

Therefore
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P−1β̂ = WT
a Q
−1
a ya +WT

b Q
−1
b yb

= P−1
a βa + P−1

b βb.

Note that it follows from Theorem 23 that

P−1 = WTQ−1W +R−1

=
[
WT
a WT

b

] [ Q−1
a 0

0 Q−1
b

] [
Wa

Wb

]
= (WT

a Q
−1
a Wa +R−1) + (WT

b Q
−1
b Wb +R−1)−R−1

= P−1
a + P−1

b −R−1.

This proves the theorem.

Remark: Note that the new estimate is a linear combination of the estimates
βa and βb with the weights proportional to the inverse of the error covariance



93

matrices; if Pa is large compared to Pb then βa contributes lesser towards the
new estimate when compared to βb.
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Minimum Variance Linear Unbiased Estimator
(Gauss-Markov Estimators)

Let ε be a m dimensional random vector with E(εεT ) = Q and E[ε) = 0.
Further let

y = Wβ + ε

where β ∈ Rn and W ∈ Rm×n. Note that β is a deterministic quantity that is
unknown. What is desired is an linear estimator β̂ of β based on y such that
E[β̂] = β. The property of the estimator that E[β̂] = β is termed as the
unbiased property.

Note that as β̂ has to be linear it has the form Ky for some K ∈ Rn×m. Also
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note the following

E[β̂] = β for all β ∈ Rn
⇔ E[Ky] = β for all β ∈ Rn
⇔ E[KWβ + ε] = β for all β ∈ Rn
⇔ KWβ + E[ε] = β for all β ∈ Rn
⇔ KWβ = β for all β ∈ Rn
⇔ KW = I

Note that the performance of the estimator will be measured by the measure

E[‖β − β̂‖22] = E[‖β −Ky‖22]
= E[‖β −KWβ −Kε‖22]
= E[‖Kε‖22
= E[εTKTKε]
= E[Trace[KεεTKT ]]
= Trace[KE[εεT ]KT ]
= Trace[KQKT ]
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where we have used the constraint on K that KW = I and the fact that
xTx = Trace[xxT ].

Thus we are interested in the problem outlined in the following theorem

Theorem 25. Consider the following problem:

µ = inf{Trace[KQKT ]|KW = I}.

The solution to the above problem is given by

KT
o = Q−1W (WTQ−1W )−1.

Proof: Let
KT = [k1 k2 . . . kn]
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where ki is the ith column of KT . Note that

K =


kT1
kT2...
kTn



Note that

Trace[KQKT ] =
n∑
i=1

(KQKT )ii =
n∑
i=1

kTi Qki.

Also
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KW = [Kw1 Kw2 . . . KWn] = I
⇔ Kwi = ei for all i = 1 . . . n

⇔


kT1 wi
kT2 wi...
kTnwi

 = ei for all i = 1 . . . n

⇔ kTi wj = δij for all i = 1, . . . , n and j = 1, . . . , n

where ei is the ith unit vector.

Thus the optimization problem can be written as

µ = inf{
n∑
i=1

kTi Qki|kTi wj = δij for all i, j = 1, . . . , n}.

As the optimization over ki is decoupled from that of kj the solution to the
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above problem can be found by solving

µi = inf{kTi Qki|kTi wj = δij for all j = 1, . . . , n}.

We define the inner product on Rn as

< α, γ >= αTQγ.

In the above inner product the solution to µi can be found by solving the
problem

{inf{‖ki‖ | < ki, Q
−1wj >= δij for all j = 1, . . . , n}.

Appealing to Theorem 8 it follows that there exists an optimal solution ko,i to
the above optimization such that ko,i ∈ span{Q−1wj} with
< ko,i, Q

−1wj >= δij for all j = 1, . . . , n.
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Thus there exist constants αi,l for all l = 1, . . . , n such that

ko,i =
n∑
l=1

αi,lQ
−1wl

such that

<

n∑
l=1

αi,lQ
−1wl, Q

−1wj >= δij for all j = 1, . . . , n.

] that is
n∑
l=1

[wTj Q
−1QQ−1wl]αi,l = δij for all j = 1, . . . , n.

Thus
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n∑
l=1

[wTj Q
−1wl]αi,l = δij for all j = 1, . . . , n.

Thus
wTj Q

−1Wαi = δij for all j = 1, . . . , n

where αi is a column vector. This implies that

WTQ−1Wαi = ei

and therefore
αi = (WTQ−1W )−1ei.

Note that
ko,i = Q−1Wαi

and therefore
ko,i = Q−1W (WTQ−1W )−1ei for all i
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and therefore

KT
o = [ko,1 . . . ko,m] = Q−1W (WTQ−1W )−1.

Thus

The following theorem summarizes the discussion on minimum variance
unbiased estimators (mvue).

Theorem 26. Let
y = Wβ + ε

where β ∈ Rn, W ∈ Rm×n, E(ε) = 0 and E(εεT ) = Q where Q is invertible.
Then the minimum variance unbiased linear estimate of β based on y is given
by ˆbeta that satisfies

β̂ = (WTQ−1W )−1WTQ−1y

and
E[(β − β̂)(β − β̂)T ] = (WTQ−1W )−1.
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Proof: Note that the Gauss-markov estimator is given by

β̂ = Koy = (WTQ−1W )−1WTQ−1

with Ko defined in the proof of Theorem 25. Also

E[(β − β̂)(β − β̂)T ] = E[(β −Koy)(β −Koy)T ]
= E[Koεε

TKT
o ]

= (WTQ−1W )−1WTQ−1Q(Q−1W (WTQ−1W )−1)
= (WTQ−1W )−1

This proves the theorem.
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The State Space Model

The following is the state space model of the system.

xi+1 = Fixi +Giui
yi = Hixi + vi

(4)

We will assume that

• ui and uj are not correlated if i 6= j.

• vi and vj are not correlated if i 6= j.

• ui and vj are not correlated if i 6= j.

• x0 is not correlated with ui and vj.
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The statistics are further described by the following equation:

E(

 ui
vi
x0

 ,

uj
vj
x0

1

) =

 Qiδij Siδij 0 0
S∗i δij Riδij 0 0

0 0 Π0 0

 (5)

Comments

• xj, yj, uj and vj are assumed to be n,m, p and m dimensional random
vectors.

• H denotes the Hilbert space of random variables with the inner product
defined as < α, β >= E(αβ). This is the only Hilbert space on stochastic
entities we will employ.



106

• By any span of random vectors (possibly of different dimensions) is meant
a component wise span which is a subspace of the scalar Hilbert space H.
For example:

span {x0, u1, . . . , uj−1}
is defined to be

span {x0(1), . . . , x0(n), u1(1), . . . , u1(p), u2(1), . . . , u(j − 1)(p)} ⊂ H.
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Properties of the Model

Lemma 11. For the model described by Equations (4) and (5) the following
hold:

1. (Uncorrelatedness property of states and inputs)

E( ui xj∗ ) = 0
E( vi xj∗ ) = 0

}
j ≤ i (6)

2. (Uncorrelatedness property of outputs and inputs)

E( ui yj∗ ) = 0
E( vi yj∗ ) = 0

}
j ≤ i− 1 : (7)

E( ui yi∗ ) = Si
E( vi yi∗ ) = Ri

(8)
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Proof:

(1) Let j ≤ i. From Equation (4) it follows that

xj ∈ Span{x0, u1, . . . , uj−1};

Note that x0 is uncorrelated with ui and ui is uncorrelated with u1, u2 . . . uj−1

(see (5)). (note that : Initial state and inputs are of different dimensions, here
span means component wise span; see the comment earlier) and therefore xj
is uncorrelated to ui that is E(uix∗j) = 0.

Also vi is uncorrelated with x0 and ui are correlated only for same time index
(see (5)). E( vi xj∗ ) = 0 for j ≤i an thus E( vi xj∗ ) = 0.

(2) Again note that
xj ∈ Span{x0, u1, u2, . . . , uj−1}.
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E( x0 vi
∗ ) = 0 for all i, E( uj vi∗ ) = 0 for all i 6= j, and yj = Hjxj + vj. Thus if

j ≤ i− 1 then E(uiy∗j ) = 0 and E(vi, y∗j ) = 0.

Also note that

E( ui yi∗ ) = E( ui (Hixi)
∗ ) + E( ui vi∗ )

= E( ui x∗iHi
∗ ) + Si

= Si

E(viy∗i ) = E(vix∗i )H
∗
i + E(viv∗i ) = Ri

This proves the lemma.
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Notation

• By any span of random vectors (possibly of different dimensions) is meant
a component wise span which is a subspace of the scalar Hilbert space H.
For example:

span {x0, u1, . . . , uj−1}
is defined to be

span {x0(1), . . . , x0(n), u1(1), . . . , u1(p), u2(1), . . . , u(j − 1)(p)} ⊂ H.

• Suppose M is a closed subspace of the scalar Hilbert space H and z ∈ H
is a random variable. We define the projection of z onto M by

PrM(z) := arg{ inf
m∈M

‖z −m‖} = arg{ inf
m∈M

E[(z −m)2]}.

Note that from the classical projection theorem (Theorem 4), ProjM(z) is
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guaranteed to exist with the property that

z̃ := z − PrM(z) ∈M⊥.

• Suppose z is a q dimensional random vector z = (z(1), . . . , z(q))T . Then the
projection of z onto the closed subspace M is defined as

PrM(z) :=


PrMz(1)
PrMz(2)
...
PrMz(q)

 ;

that is PM(z) is the componentwise projection of z onto M.

Associated with this projection is the error vector:

z̃ := z − PrM(z).
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It is evident from Theorem 4 that every element of z̃ ∈M⊥.

• In the context of the model ( 4). Let Mj := span {y0, . . . , yj}. Then the
projection of a random vector z onto Mj is denoted by ẑ|j. That is

ẑ|j := PrMj
z.

Associated with this projection is the error vector:

z̃|j := z − ẑ|j.

It is evident from Theorem 4 that every element of z̃|j ∈M⊥j .

• Using the above notation we have

? x̂i|j = the projection of the state at time instant i onto
Mj = span {y0, . . . , yj}
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? x̃i|j = The associated error vector.

• We will also use the notation

x̂i := x̂i|i−1.

Thus x̂i is the projection of xi onto the past i− 1 measurements. x̃i will
denote the associated error vector.



114

Innovations

Note that
ŷi|j = PrMj

(yi),

Mj = {y0, . . . , yj}.

The innovation sequence is defined by

ei , yi − ŷi|i−1.

Theorem 27. The innovation sequence is white, that is:

E( ei ej∗ ) = 0 if i 6= j.

Proof: Note that:
ei ∈ span {y0, y1, . . . , yi}.
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as ei = yi − ŷi|i−1 and ŷi|i−1 ∈Mi−1 = span {y0, . . . , yi−1}.

From classical projection theorem (Theorem 4) it follows that for all
k = 1, 2, . . . , i− 1

E( (yi − ŷi|i−1) (yk)
∗ ) = 0.

This implies that
E( ei yk∗ ) = 0 for all k < i

which in turn implies that

E( ei ek∗ ) = 0 for all k < i

This proves the theorem.

Lemma 12.

Mj := span {y0, . . . , yj} = span {e0, . . . , ej}.

Proof: Left to the reader.
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Measurement Model with Innovations as Input
In the discussion below we will obtain a state space representation where the
input is the sequence ei and the output is the measurement sequence yi.
Thus we will develop a model to obtain causally the measurement sequence
from the innovation sequence.

Lemma 13. For the state space model (4) with the statistics described by (5)
we have

x̂i+1|i = Fix̂i|i−1 +Kpiei
yi = Hix̂i|i−1 + ei

(9)

where
Kp,i := E( xi+1 ei

∗ )Re,i−1.

Proof: From
xi+1 = Fixi +Giui
yi = Hixi + vi
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we have

x̂i+1|i = Prspan(y0,y1,...,yj)(xi+1)

= Prspan(e0,e1,...,ej)(xi+1)

= Prspan(e0)(xi+1) + . . .+ Prspan(ei)(xi+1)

From Theorem 21 we have that

Prspan(ej)(xi+1) = E(xi+1e
∗
j)E(eje∗j)

−1ej.
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Thus

x̂i+1|i = E( xi+1 e0
∗ )E( e0 e0

∗ )−1
e0 + . . .

=
i∑

j=0

E( xi+1 ej
∗ )E( ej ej∗ )−1

ej

=
i−1∑
j=0

E( xi+1 ej
∗ )E( ej ej∗ )−1

ej + E( xi+1 ei
∗ )Re,i−1ei

= x̂i+1|i−1 + E( xi+1 ei
∗ )Re,i−1︸ ︷︷ ︸

Kp,i

ei
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Also it follows from Theorem 22 and Lemma 11 that

x̂i+1|i−1 = (F̂ixi)|i−1 + (Ĝiui)|i−1

= Fix̂i|i−1 +Giu1|i−1

= Fix̂i|i−1

Thus it follows that

x̂i+1|i = Fix̂i|i−1 +Kpiei

yi = ŷi|i−1 + ei = Hix̂i|i−1 + ei

This proves the lemma.
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Innovation Model with Measurements as Input

Now we obtain a state space representation where the input is the sequence
yi and the output is the innovation sequence ei. Thus we will obtain a state
space model to obtain causally the innovation sequence from the
measurements.

Lemma 14. For the state space model (4) with the statistics described by (5)
we have

x̂i+1|i = Fp,ix̂i|i−1 +Kpiyi
ei = −Hix̂i|i−1 + yi

(10)

where
Kp,i := E( xi+1 ei

∗ )Re,i−1

and
Fpi := Fi −KpiHi.
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Proof:

x̂i+1|i = Fix̂i|i−1 +Kpiei

= Fix̂i|i−1 +Kpi[yi − ŷi|i−1]

= Fix̂i|i−1 +Kpi[yi −Hix̂i|i−1]

= (Fi −KpiHi)x̂i|i−1 +Kpiyi

Letting
Fpi := Fi −KpiHi

we have

x̂i+1|i = Fpix̂i|i−1 +Kpiyi

ei = yi − ŷi|i−1 = yi −Hix̂i|i−1

= −Hix̂i|i−1 + yi
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Note that we have defined x̂i := x̂i|i−1. Thus

x̂i+1 = Fix̂i +Kpiei

yi = Hix̂i + ei

x̂i+1 = Fpix̂i +Kpiyi

ei = −Hix̂i + yi

This proves the lemma.

Thus if we determine Kpi and Rei we can obtain a causal and causally
invertible model for the process yi as follows,
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x̂i+1 = Fix̂i +Kpiei

yi = Hix̂i + ei

x̂i+1 = Fpix̂i +Kpiyi

ei = −Hix̂i + yi

Original Model:

xi+1 = Fixi +Giui

yi = Hixi + vi
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State Recursions
Define

Πi := E( xi xi∗ )

Using

xi+1 = Fixi +Giui

we have
Πi+1 = E( xi+1 xi+1

∗ )
= FiE( xi+1 xi+1

∗ )F ∗i +GiE( ui ui∗ )G∗i
FiE( xi ui∗ )G∗i +GiE( ui xi∗ )F ∗i

= FiΠiF
∗
i +GiQiG

∗
i
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State Estimate Recursions
Define:

Σi := E( x̂i x̂∗i )

Using Lemma 13 we have

Σi+1 = FiΣiF ∗i +KpiReiK
∗
pi

Σ0 = 0
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Error Covariance Recursions
Define

Pi = E( x̃i|i−1 x̃
∗
i|i−1 ) with

x̃i|i−1 := xi − x̂i|i−1

=: x̃i

It follows that
Pi = E( (x− x̂i) (x− x̂i)∗ )

= E( xi xi∗ )− E( x̂i x̂∗i )
= Πi − Σi

Pi+1 = Πi+1 − Σi+1

= FiPiF
∗
i +GiQiG

∗
i −KpiReik

∗
pi
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Kpi and Rei in terms of Pi

Rei in terms of Pi: Note that

Rei = E( ei ei∗ )
= HiE( x̃i x̃∗i )H∗i + E( vi vi∗ )
= HiPiH

∗
i +Ri

Kpi in terms of Pi: Note that

ei = yi − yi|i−1

= Hixi + vi −Hixi|i−1

= Hi(xi − xi|i−1) + vi
= Hix̃i + vi
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Thus

E( xi+1 ei
∗ ) = FiE( xi ei∗ ) +GiE( ui ei∗ )

= FiE( xi ei∗ ) +GiE( ui ei∗ )

= FiE( xi x̃∗i )H∗i + FiE( xi vi∗ )

+GiE( ui x̃∗i )H∗i +GiE( ui vi∗ )

= FiE( (x̃i + x̂i) x̃∗i )H∗i +GiE( ui x̃∗i )H∗i +GiSi

= FiPiH
∗
i +GiSi because x̃i ⊥ ui

Thus
Kpi = E(xi+1e

∗
i )R
−1
e,i

= (FiPiH∗i +GiSi)R−1
e,i
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Innovation Recursions

Theorem 28.

xi+1 = Fixi +Giui

yi = Hixi + vi

with the statistics

E(

 ui
vi
x0

 ,

uj
vj
x0

1

) =

 Qiδij Siδij 0 0
S∗i δij Riδij 0 0

0 0 Π0 0


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The innovation sequence ei can be generated recursively as described below:

ei = yi − ŷi|i−1

x̂0 = 0

e0 = y0

x̂i+1|i = Fix̂i|i−1 +Kpiei

Kpi = (FiPiF ∗i +GiSi) Rei
Rei = HiPiH

∗
i +Ri

Pi+1 = FiPiF
∗
i +GiQiG

∗
i −ReiK

∗
pi
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where

Pi := E( x̃i x̃∗i )

x̃i = xi − x̂i
P0 = Π0

Proof: Follows from the development before.
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Filter State Recursions
Theorem 29. Consider

xi+1 = Fixi +Giui

yi = Hixi + vi

with the statistics

E(

 ui
vi
x0

 ,

uj
vj
x0

1

) =

 Qiδij Siδij 0 0
S∗i δij Riδij 0 0

0 0 Π0 0


The filtered sequence x̂i can be generated recursively as described below:

x̂i+1 = Fp,ix̂i +Kpiyi

x̂0 = 0
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Kpi = (FiPiF ∗i +GiSi) Rei
Rei = HiPiH

∗
i +Ri

Pi+1 = FiPiF
∗
i +GiQiG

∗
i −ReiK

∗
pi

where

Pi := E( x̃i x̃∗i )

x̃i = xi − x̂i
P0 = Π0

Proof: Follows from the development before.
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Time and measurement update formalism for Kalman Filter

Measurement Update Step

Theorem 30. Consider the state-space model

xi+1 = Fixi +Giui
yi = Hixi + vi

where the estimate x̂i = x̂i|i−1 is available and also the related
error-covariance Pi := Pi|i−1 = E[(xi − xi|i−1)(xi − xi|i−1)∗]. Suppose a new
measurement yi is obtained. Then the updated estimate of xi and the updated
error covariance is given by

x̂i|i = x̂i +Kf,iei, Kf,i := PiH
∗
i R
−1
e,i

Pi|i = ‖xi − x̂i|i‖2 = Pi − PiH∗i R
−1
e,iHiPi.
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Proof: Note that

x̂i|i = Prsp(y0,...,yi)xi = Prsp(e0,...,ei)xi
= Prsp(e0,...,ei−1)xi + Prsp(ei)xi
= x̂i|i−1+ < xi, ei > R−1

e,i ei.

Note that

ei = yi− ŷi|i−1 = Hxi + vi− (Hx̂i|i−1 + vi|i−1 = H(xi− x̂i|i−1) + vi = Hx̃i + vi.

E[xie∗i ] = E[(x̃i + x̂i|i−1)e∗i ]
= E[x̃ie∗i ] + E[x̂i|i−1e

∗
i ]

= E[x̃i(Hx̃i + vi)∗] + E[x̂i|i−1(Hx̃i + vi)∗]
= E[x̃ix̃∗i ]H

∗ + E[x̃iv∗i ] + E[x̂i|i−1x̃
∗
i ]H

∗ + E[x̂i|i−1v
∗
i ]

= PiH
∗
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where as x̂i ∈ span{y0, . . . , yi−1} and x̃i ∈ [sp{y0, . . . , yi−1}]⊥ we have
E[x̂ix̃∗i ] = 0 and E[x̃iv∗i ] = E[(xi − x̂i)v∗i ] = E[xiv∗i ]− E[x̂iv∗i ] = 0. This proves
that

x̂i|i = x̂i +Kf,iei, Kf,i := PiH
∗
i R
−1
e,i .

Note that

E[(xi − xi|i)(xi − xi|i)∗] = E[(xi − x̂i −Kf,iei)(xi − x̂i −Kf,iei)∗]
= E[(x̃i −Kf,iei)(x̃i −Kf,iei)∗]
= E[x̃ix̃∗i ]− E[x̃ie∗i ]K

∗
f,i −Kf,iE[eix̃∗i ]

+Kf,iE[eie∗i ]K
∗
f,i

= Pi − PiH∗i R
−1
e,iHiPi − PiH∗i R

−1
e,iHiPi

+PiH∗i R
−1
ei
Re,iR

−1
e,iHiPi

= Pi − PiH∗i R
−1
e,iHiPi

where we have used

E[x̃ie∗i ] = E[xie∗i ]− E[x̂ie∗i ] = PiH
∗
i − E[x̂i(Hx̃i + vi)∗] = PiH

∗
i .



137



138

Time Update Step

Theorem 31. Consider the state-space model

xi+1 = Fixi +Giui
yi = Hixi + vi

where the estimate x̂i = x̂i|i and the related error-covariance
Pi|i := E[(xi − x̂i|i)(xi − x̂i|i)∗] are available. Then the estimate of xi+1 and
the error covariance Pi+1|i can be obtained as

x̂i+1|i = Fix̂i|i +Giûi|i, ûi|i := SiR
−1
e,i ei

Pi+1 = Pi+1|i = ‖xi+1 − x̂i+1|i‖2 = FiPi|iF
∗
i +Gi(Qi − SiR−1

e,iS
∗
i )G∗i

−FiKf,iS
∗
iG
∗
i −GiSiK∗f,iF ∗i
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Proof: Note that

ûi|i = Prsp(y0,...,yi)ui
= Prsp(e0,...,ei)ui
= Prsp(e0,...,ei−i)ui+Prei

ui

= Prsp(y0,...,yi−i)ui + E[uie∗i ]R
−1
e,i ei

Note that
E[uie∗i ] = E[ui(Hx̃i + vi)∗]

= [ui(xi − x̂i)∗] = E[uiv∗i ]
= E[uiv∗i ] = Si

Note that E[uix̂∗i ] = E[uix̂∗i ] = 0 as x̂i ∈ sp{y0, . . . , yi−1} and xi and yj, j < i
are no correlated with ui.

The error covariance update can be obtained easily and left to the reader.
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• Proof: Note that

x̂i|N = Prsp(y0,...,yN)xi = Prsp(e0,...,eN)xi
= Prsp(e0,...,ei−1)xi + Prsp(ei,ei+1···eN)xi
= x̂i|i−1 +

∑N
j=i E(xie∗j )R−1

e,j ej.

and

ej = yj−ŷj|j−1 = Hjxi+vj−(Hjx̂j|j−1+vj|j−1) = Hj(xj−x̂j|j−1)+vj = Hjx̃j+vj.

E[xie∗j ] = E[(x̃i + x̂i|i−1)e∗j ]
= E[x̃ie∗j ] + E[x̂i|i−1e

∗
j ]

= E[x̃i(Hjx̃j + vj)∗] + E[x̂i|i−1(Hjx̃j + vj)∗]
= E[x̃ix̃∗j ]H

∗
j + E[x̃iv∗j ] + E[x̂i|i−1x̃

∗
j ]H

∗
j + E[x̂i|i−1v

∗
j ]

= PijH∗j
where since x̂i ∈ span{e0, . . . , ei−1} and x̃j ∈ [sp{e0, . . . , ei−1}]⊥ for j ≥ i
we have E[x̂ix̃∗j ] = 0 and E[x̃iv∗j ] = E[(xi − x̂i)v∗j ] = E[xiv∗j ]− E[x̂iv∗j ] = 0.
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• Also from xi+1 = Fixi +Giui and x̂i+1 = Fix̂i +Kpiei we have

x̃i+1 = Fix̃i +Giui −Kpivi.

From this recursion equation, we can derive that for j ≥ i

x̃j = φp(j, i)x̃i +
j−1∑
l=i

φp(j − l − 1)(Glul −Kplvl)

⇒ Pij = E(x̃ix̃∗j) = E(x̃ix̃∗i )φ
∗
p(j, i) = Piφ

∗
p(j, i)

since E(x̃iũ∗l ) = 0 and E(x̃iṽ∗l ) = 0 for l ≥ i because x̃i = xi − x̂i and x̂i is
in sp(y0, · · · , yi−1). Therefore

x̂i|N = x̂i + Pi

N∑
j=i

φ∗p(j, i)H
∗
jR
−1
ej
ej
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Now x̂i|N = x̂i + Pi
∑N
j=i φ

∗
p(j, i)H

∗
jR
−1
ej
ej, Therefore

x̃i|N = x̃i − Pi
N∑
j=i

φ∗p(j, i)H
∗
jR
−1
ej
ej

⇒ Pi|N = E(x̃ix̃∗i )− Pi
N∑
j=i

φ∗p(j, i)H
∗
jR
−1
ej
E(ejx̃∗i )−

N∑
j=i

E(xie∗j)R
−1
ej
Hjφp(j, i)Pi

+Pi
N∑
j,l=i

φ∗p(j, i)H
∗
jR
−1
ej
E(eje∗l )R

−1
el
Hlφp(l, i)Pi

= Pi − 2Pi
N∑
j=i

φ∗p(j, i)H
∗
jR
−1
ej
Hjφp(j, i)Pi + Pi

N∑
j=i

φ∗p(j, i)H
∗
jR
−1
ej
Hjφp(j, i)Pi

⇒ Pi|N = Pi − Pi
N∑
j=i

φ∗p(j, i)H
∗
jR
−1
ej
Hjφp(j, i)Pi
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Convex Analysis

• One of the most important concepts in optimization is that of convexity. It
can be said that the only true global optimization results involve convexity in
one way or another.

• Establishing that a problem is equivalent to a finite dimensional convex
optimization is often considered as solving the problem. This viewpoint is
further reinforced due to efficient software packages available for convex
programming.
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Convex Sets
x2

x1

a

b

K

Figure 1: In a convex set a chord joining any two elements of the set lies inside
the set.

Definition 23. [Convex sets] A subset Ω of a vector space X is said to be
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convex if for any two elements c1 and c2 in Ω and for a real number λ with
0 < λ < 1 the element λc1 + (1− λ)c2 ∈ Ω (see Figure 1). The set {} is
assumed to be convex.
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Convex Sets, convex combinations and cones
Definition 24. [Convex combination] A vector of the form

∑n
k=1 λkxk,

where
∑n
k=1 λk = 1 and λk ≥ 0 for all k = 1, . . . , n is a convex combination of

the vectors x1, . . . , xn.

Definition 25. [Cones] A subset C of a vector space X is a cone if for every
non-negative α in R and c in C, αc ∈ C.

A subset C of a vector space is a convex cone if C is convex and is also a
cone.

Definition 26. [Positive cones] A convex cone P in a vector space X is a
positive convex cone if a relation ′ ≥′ is defined on X based on P such that for
elements x and y in X, x ≥ y if x− y ∈ P. We write x > 0 if x ∈ int(P ).
Similarly x ≤ y if x− y ∈ −P := N and x < 0 if x ∈ int(N). Given a vector
space X with positive cone P the positive cone in X∗ , P⊕ is defined as

P⊕ := {x∗ ∈ X∗ :< x, x∗ >≥ 0 for all x ∈ P}.
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Example 1. Consider the real number system R. The set

P := {x : x is nonnegative},

defines a cone in R. It also induces a relation ≥ on R where for any two
elements x and y in R, x ≥ y if and only if x− y ∈ P. The convex cone P with
the relation ≥ defines a positive cone on R.
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Minimum Distance to a closed convex set

Theorem 32. Suppose K is a closed convex subset of a Hilbert space H.
Let x be an element in H. Then k0 satisfies

‖x− k0‖ ≤ ‖x− k‖ for all k ∈ K

if and only if

< x− k0, k − k0 >≤ 0 for all k ∈ K.

Proof: (⇒) Suppose k0 ∈ K is such that

‖x− k0‖ ≤ ‖x− k‖ for all k ∈ K
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. Then

< x− k, x− k > = < x− k0 + k0 − k, x− k0 + k0 − k >

= < x− k0, x− k0 > +2 < x− k0, k0 − k > + < k0 − k, k0 − k >
= ‖x− k0‖2 + ‖k − k0‖2 − 2 < x− k0, k − k0 >
≥ 0.

(⇐)Suppose there exists a k ∈ K such that

< x− k0, k − k0 >= ε > 0.

Let

kα = αk + (1− α)k0 and f(α) := ‖x− kα‖2.
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Note that

f(α) = < x− αk − (1− α)k0, x− αk − (1− α)k0 >

= < x− k0 − α(k − k0), x− k0 − α(k − k0) >

= < x− k0, x− k0 > −2α < x− k0, k − k0 > +α2 < k − k0, k − k0 >

= ‖x− k0‖2 − 2αε+ α2‖k − k0‖2

and therefore
df(α)
dα

∣∣∣∣
α=0

= −2ε < 0.

Thus in a small neighbourhood of zero f(α) < f(0). Thus there exists a
0 < α < 1 and a kα ∈ K such that

‖x− kα‖2 = f(α) ≤ f(0) = ‖x− k0‖2.
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This proves the theorem.

Theorem 33. Suppose K is a closed convex subset of a Hilbert space H.
Let x be an element in H and consider the following optimization problem:

µ = inf{‖x− k‖ : k ∈ K}.

Then there exists a k0 ∈ K such that ‖x− k0‖ = µ that is there exists a
minimizing solution. Furthermore, k0 satisfies

‖x− k0‖ ≤ ‖x− k‖ for all k ∈ K

if and only if
< x− k0, k − k0 >≤ 0 for all k ∈ K.

Proof: If x ∈ K, then k0 = x and theorem is proven. Suppose x 6∈ K. Then for
any n ∈ N. there exists kn ∈M such that µ ≤ ‖x− kn‖ ≤ µ+ 1

n. Thus there
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exist a sequence {ki}∞i=0 ∈ K such that ‖x− kn‖ converges to µ as n→∞.
From the parallelogram law, for any integer i and j,

‖(kj − x) + (x− ki)‖2 + ‖(kj − x)− (x− ki)‖2 = 2‖kj − x‖2 + 2‖ki − x‖2.

This implies that

‖kj − ki‖2 + ‖kj + ki − 2x‖2 = 2‖kj − x‖2 + 2‖ki − x‖2.

Thus
‖kj − ki‖2 = 2‖kj − x‖2 + 2‖ki − x‖2 − 4‖kj + ki

2
− x‖2. (11)

Note that kj+ki2 ∈ K, and therefore

‖kj + ki
2

− x‖ ≥ µ.
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From (11) we have

‖kj − ki‖2 ≤ 2‖kj − x‖2 + 2‖ki − x‖2 − 4µ2.

Given any ε > 0, let N be a large positive integer such that for all n ≥ N,
‖x− kn‖2 ≤ µ2 + ε2

4 . If i, j > N then,

‖kj − ki‖2 ≤ 2µ2 +
ε2

2
+ 2µ2 +

ε2

2
− 4µ2.

This implies
‖kj − ki‖2 ≤ ε2.

It follows that
‖kj − ki‖ ≤ ε

Thus, kn forms a Cauchy Sequence. And, since K is a closed subset of
Hilbert Space (which is complete), kn is a converging sequence (due to
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completeness) with the limit point inside K (due to closedness). Thus there
exists a k0 ∈M , such that

‖kn − k0‖ → 0 as n→∞.

Since, ‖(x− kn)− (x− k0)‖ = ‖kn − k0‖ we have

(x− kn)→ (x− k0) as n→∞

From the continuity of norm, ‖(x− kn)‖ converges to ‖(x− k0)‖. Since, a
converging sequence has a unique limit point, we have

µ = ‖x− k0‖.

This proves the theorem
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Separation of Disjoint Convex Sets
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.

 x 1, x 2( )’ .

Figure 2: Separation of R2 into half spaces by a line L.

Consider the vector space R2. The equation of a line (see Figure 2) in R2 is
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given by
m1x1 +m2x2 = c,

where m1,m2 and c are constants. The graph of a line is given by the set

L = {(x1, x2)|m1x1 +m2x2 = c},

which can be written as

L = {x ∈ R2| < x, x∗ >= c}, (12)

where x∗ = (m1,m2). Note that if m2 = 0 then we have a vertical line. We now
generalize the concept of a line in R2 to normed vector spaces. The line L
defined earlier is a hyperplane in R2.

Definition 27. H is a hyperplane in a Hilbert Space X if and only if there
exists a nonzero linear function x∗ : X → R such that

H := {x :< x, x∗ >= c},
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where c ∈ R.

For the purposes of the discussion below we will assume that c,m1 and m2

which describe the line L in Figure 12 are all nonnegative. The results for
other cases will be similar. Consider the region A in Figure 12 which is the
region “below” the line L. As illustrated earlier,

• L = {x :< x, x∗ >= c} where x∗ = (m1,m2).

• Consider any point x = (x1, x2) in region A. Such a point lies “below” the
line L. Thus if x′ = (x1, x

′
2) denotes the point on the line L which has the

same first coordinate as that of x then x′2 ≥ x2. As x′ is on the line L it
follows that < x′, x∗ >= m1x1 +m2x

′
2 = c. As m2 ≥ 0 it follows that

< x, x∗ >= m1x1 +m2x2 ≤ m1x1 +m2x
′
2 = c. Thus we have shown that for

every point x in the region A, < x, x∗ >≤ c.

• In a similar manner it can be established that if < x, x∗ >≤ c then x lies
“below” the line L, that is x ∈ A.
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• Thus the region A is given by the set {x :< x, x∗ >≤ c} which is termed the
negative half space of L.

• In an analogous manner it can be shown that the region B (which is the
region “above” the line L) is described by {x :< x, x∗ >≥ c}. This set is
termed the positive half space of L.

Thus the line L separates R2 into two halves; a positive and a negative half.
We generalize the concept of half spaces for an arbitrary normed vector
space.
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Half spaces

Definition 28. [Half spaces] Let (X, || · ||X) be a normed linear space and
let x∗ : X → R be a bounded linear function on X. Let

S1 := {x ∈ X :< x, x∗ > < c},
S2 := {x ∈ X :< x, x∗ > ≤ c},
S3 = {x ∈ X :< x, x∗ > > c},
S4 := {x ∈ X :< x, x∗ > ≥ c}.

Then S1 is an open negative half space, S2 is a closed negative half space, S3

is an open positive half space and S4 is a closed positive half space.
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Separation of convex sets in R2.
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Figure 3: Separation of of convex sets in R2.

It is intuitively clear that in R2 if two convex sets C1 and C2 do not intersect
then there exists a line in R2 which separates the two sets (see Figure 3). In
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other words there exists x∗ in (R2)∗ and a constant c in R such that C1 lies on
the positive half space of the line L = {x| < x, x∗ >= c} and C2 lies in the
negative half space of L. That is

C1 ⊂ {x :< x, x∗ > ≥ c},

and
C2 ⊂ {x :< x, x∗ > ≤ c}.

The main focus of this section is to generalize this result to disjoint convex
sets in a general normed vector space.
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Separation of point and a closed convex set
Theorem 34. Let K be a closed convex subset of a Hilbert space H. Let
x ∈ H be such that x 6∈ K. Then there exists a hyperplane that separates the
point x from the set K. That is there exist an element x∗ ∈ H with ‖x∗‖ = 1
such that

< k, x∗ >≤< x, x∗ > for all k ∈ K.

Proof: Let
µ = inf{‖x− k‖ : k ∈ K}.

From 33 there exists k0 ∈ K such that
‖x− k0‖ = µ and < x− k0, k − k0 >≤ 0 for all k ∈ K. Note that µ > 0.

Indeed, if µ = 0 then ‖x− k0‖ = µ = 0 and thus x = k0 ∈ K that contradicts
the fact that x 6∈ K. Thus µ > 0.

Let
x∗ :=

x− k0

‖x− k0‖
.
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Note that for all k ∈ K

< k, x∗ > − < x, x∗ > = < k − x, x∗ >
= 1

‖x−k0‖
< k − x, x− k0 >

= 1
‖x−k0‖

(< k − k0 + k0 − x, x− k0 >)
= 1

‖x−k0‖
(< x− k0, k − k0 > −‖x− k0‖2)

< 0.

Thus
< k, x∗ > < < x, x∗ > for all k ∈ K.
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A closed convex set characterized in terms of hyperplanes

Theorem 35. If K is a closed convex set of a Hilbert space then K is equal
to the intersection of all the closed half-spaces that contain it.

Proof: Let the set Λ be a set such that Sλ, λ ∈ Λ is a half-space that contains
K and Λ characterizes all such sets. Let

S = ∩λ∈ΛSλ.

Suppose k ∈ K. Then k ∈ Sλ for every λ ∈ Λ as Sλ ⊃ K. Thus k ∈ S.

Suppose h 6∈ K. Then from Theorem 34 it follows that there exists a half
space Sλ0 that contains K but does not contain h. Thus h 6∈ S. This proves the
theorem.
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Aside: Banach-Alaoglu result
Lemma 15. Let H be a separable Hilbert space. Consider

B = {x∗ ∈ H : ‖x∗‖ ≤M}.

Then for every sequence x∗k and x ∈ H there exists a subsequence x∗nk

< x, x∗nk >→< x, x∗ > .

Proof: Let x ∈ H be arbitrary. For this given x and any n

| < x, x∗n > | ≤ ‖x‖‖x∗n‖ ≤ ‖x‖M.

Thus the real numbers

< x, x∗n >∈ {r ∈ R||r| ≤ ‖x‖M}.
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Thus rn(x) =< x, x∗n > is a sequence of real numbers that lies in a closed and
bounded set. From a result in Real Analysis we can conclude that there exists
a real number r(x) and a subsequence of rnk(x) such that
rnk(x)→ r(x) ∈ R.

Suppose x and y are two elements in H. We will now show that
r(x+ y) = r(x) + r(y) and r(αx) = αr(x). Let nk be a common subsequence
such that

rnk(x)→ f(x), rnk(y)→ r(y) and rnk(x+ y)→ r(x+ y).

Clearly
rnk(x) + rnk(y)→ r(x) + r(y).

Also, as
rnk(x+ y) → r(x+ y)
⇒< x+ y, x∗nk > → r(x+ y)
⇒< x, x∗nk > + < y, x∗nk > → r(x+ y)
⇒ rnk(x) + rnk(y) → r(x+ y)
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Thus we have
rnk(x) + rnk(y) → r(x+ y) and
rnk(x) + rnk(y) → r(x) + r(y).

From the uniqueness of the limit point it follows that

r(x+ y) = r(x) + r(y).

Similarly one can show that
r(αx) = α(x).

Thus r is a linear function on H. Also, for any x in H

|r(x)| = | lim
k→∞

< x, x∗nk > | ≤ lim
k→∞

| < x, x∗nk > | ≤ ‖x‖‖x
∗
nk
≤ ‖x‖M.

Thus r is a linear function that has uniform bound M. Thus there exists an
x∗ ∈ H such that

r(x) =< x, x∗ >
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that satisfies the property that for every x ∈ H there exists a subsequence x∗nk
such that

< x, x∗nk >→< x, x∗ > .
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Separation of a point and the interior of a convex set
Theorem 36. Let K be a convex subset of a Hilbert Space H. Let x ∈ H and
x 6∈ int(H). Then there exists an element x∗ ∈ H such that x∗ 6= 0 and

< k, x∗ >≤< x, x∗ > for all k ∈ K.

Proof: We will prove this result only for separable Hilbert spaces. Let cl(K)
be the closure of the convex set K. If x ∈ cl(K) then we obtain the result from
Theorem 34. Suppose x ∈ cl(K). As x 6∈ int(K), k ∈ bd(K). Thus there exists
a sequence xn ∈ H with xn 6∈ cl(K) such that ‖xn−x‖ → 0. From Theorem 34
there exists an ∈ H with ‖an‖ = 1 such that an separates xn and cl(K). That is

< k, an >≤< xn, an > for all k ∈ cl(K).

Note that
an ∈ B∗ := {x∗ ∈ H : ‖x∗‖ ≤ 1}.
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From Lemma 15 there exists an a ∈ B∗ such that

< h, an >→< h, a > for all h ∈ H.

Note that from Theorem 1 we have

lim
n→∞

< xn, an >=< x, a > .

Thus

< k, an > ≤ < xn, an > for all n, for all k ∈ K
⇒ lim

n→∞
< k, an > ≤ lim

n→∞
< xn, an >, for all k

⇒ < k, a > ≤ < x, a >, for all k ∈ K

Note that a 6= 0 and thus a characterizes the hyperplane that separates int(K)
and x ∈ bd(K).
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Eidelheit Separation
Theorem 37. Let K1 and K2 be convex subsets of a Hilbert space H with
int(K1) 6= {} and int(K1) ∩K2 = {}. Then there is a hyperplane separating
K1 and K2. That is there exists x∗ ∈ H, x∗ 6= 0 such that

< k1, x
∗ >≤< k2, x

∗ > for all k1 ∈ K1 and k2 ∈ K2.

Proof: Let K = K1 −K2. Then int(K) 6= {} and 0 ∈ int(K). From
Theorem 36 there exists a hyperplane characterized by x∗ 6= 0 such that

< k, x∗ >≤ 0 for all k ∈ K.

That is
< k1 − k2, x

∗ >≤ 0 for all k1 ∈ K1 and k2 ∈ K2.

Thus
< k1, x

∗ >≤< k2, x
∗ > for all k1 ∈ K1 and k2 ∈ K2.
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This proves the theorem.
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Convex maps

x
a b

f (b)

f (a)

f (x)

λ a + (1−λ) b

f(λa + (1−λ)b)

λf(a )+ (1−λ)f(b)

Figure 4: A convex function.

Definition 29. [Convex maps] Let X be a vector space and Z be a vector
space with positive cone P. A mapping, G : X → Z is convex if
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G(tx+ (1− t)y) ≤ tG(x) + (1− t)G(y) for all x, y in X and t with 0 ≤ t ≤ 1 and
is strictly convex if G(tx+ (1− t)y) < tG(x) + (1− t)G(y) for all x 6= y in X
and t with 0 < t < 1.
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Epigraph

Definition 30. [Epigraph] Let f : Ω→ R be a real valued function where Ω
is a subset of a vector space X. The epigraph of f over Ω is a subset [f,Ω] of
R×X defined by

[f,Ω] := {(r, ω) ∈ R×X : x ∈ Ω, f(x) ≤ r}.

Lemma 16. Let f : Ω→ R be a real valued function where Ω is a convex
subset of a vector space X. Then f is convex if and only if [f,Ω] is convex.

Proof:Left to the reader.
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Convex Optimization
The problem that is the subject of the rest of the chapter is the following
problem.

µ = inf f(x)
subject to

x ∈ Ω,
where f : Ω→ R is a convex function on a convex subset Ω of a vector space
X. Such a problem is called a convex optimization problem.



179

Local minimum is global minimum

Lemma 17. Let f : (X, ‖.‖X)→ R be a convex function and let ω be a
convex subset of X. If there exists a neighbourhood N in Ω of ω0 where
ω0 ∈ Ω such that for all ω ∈ N, f(ω0) ≤ f(ω) then f(ω0) ≤ f(ω) for all ω in Ω
(that is every local minimum is a global minimum).

Proof:Let ω be any element of Ω. Let 0 ≤ λ ≤ 1 be such that
x := λω0 + (1− λ)ω be in N. Then f(ω0) ≤ f(x) ≤ λf(ω0) + (1− λ)f(ω). This
implies that f(ω0) ≤ f(ω). As ω is an arbitrary element of Ω we have
established the lemma. .
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Uniqueness of the optimal solution

Lemma 18. Let Ω be a convex subset of a Banach space X and f : Ω→ R
be strictly convex. If there exists an x0 ∈ Ω such that

f(x0) = inf
x∈Ω

f(x),

(that is f achieves its minimum on Ω) then the minimizer is unique.

Proof:Let m := min
x∈Ω

f(x). Let x1, x2 ∈ Ω be such that f(x1) = f(x2) = m. Let

0 < λ < 1. From convexity of Ω we have λx1 + (1− λ)x2 ∈ Ω. From strict
convexity of f we have that if x1 6= x2 then
f(λx1 + (1− λ)x2) < λf(x1) + (1− λ)f(x2) = m which is a contradiction.
Therefore x1 = x2. This proves the lemma.
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Varying the constraint level

Many convex optimization problems have the following structure

ω(z) = inf f(x)
subject to

x ∈ Ω
g(x) ≤ z,

(13)

where f : Ω→ R, g : X → Z are convex maps with Ω a convex subset of the
vector space X and Z a normed vector space with a positive cone P. The
condition g(x) ≤ z is to be interpreted with respect to the positive cone P of
the vector space Z.

Lemma 19. The function ω is convex.
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Proof:Let z1 and z2 be elements in Z and let 0 ≤ λ ≤ 1 be any constant. Then

ω(λz1 + (1− λ)z2) = inf{f(x) : x ∈ Ω, g(x) ≤ λz1 + (1− λ)z2}
= inf{f(x) : x = λx1 + (1− λ)x2, x1 ∈ Ω, x2 ∈ Ω,

g(x) ≤ λz1 + (1− λ)z2}
≤ inf{λf(x1) + (1− λ)f(x2), x1 ∈ Ω, x2 ∈ Ω,

g(x) ≤ λz1 + (1− λ)z2}
≤ inf{λf(x1) + (1− λ)f(x2), x1 ∈ Ω, x2 ∈ Ω,

g(x1) ≤ z1, g(x2) ≤ z2}
= λω(z1) + (1− λ)ω(z2).

The second equality is true because for any given λ with 0 ≤ λ ≤ 1 the set
Ω = {x : x = λx1 + (1− λ)x2, x1 ∈ Ω, x2 ∈ Ω}. The first inequality is true
because f is a convex map. The second inequality is true because the set
{(x1, x2) ∈ Ω×Ω : g(λx1 + (1− λ)x2) ≤ λz1 + (1− λ)z2} ⊃ {(x1, x2) ∈ Ω×Ω :
g(x1) ≤ z1, g(x2) ≤ z2}, which follows from the convexity of g. This proves the
lemma.
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Lemma 20. Let z1 and z2 be elements in Z such that z1 ≤ z2 with respect to
the convex cone P. Then ω(z2) ≤ ω(z1).

Proof:Follows immediately from the relation
{x ∈ Ω : g(x) ≤ z2} ⊃ {x ∈ Ω : g(x) ≤ z1}, if z1 ≤ z2.
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Kuhn-Tucker Theorem

Z

R
s(z)

L= {x : < x,x  > =h  (x )* }*
K

(z,w(z))

Figure 5: Illutstration of ω(z).
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Consider the convex optimization problem

ω(z) = inf f(x)
subject to

x ∈ Ω
g(x) ≤ z.

We will obtain information about ω(0) by analyzing ω(z). We have shown that
ω(z) is a decreasing function of z (see Lemma 20) and that it is a convex
function (see Lemma 19). It can be visualized as illustrated in Figure 5. As
ω(z) is a decreasing function it is evident that the tangent to the curve at
(0, ω(0)) has a negative slope (see Figure 5). Thus the tangent can be
characterized by a line L with the equation:

ω(z)+ < z, z∗ >= c,

where z∗ ≥ 0. Also, note that if we change the coordinates such that L
becomes the horizontal axis and its perpendicular the vertical axis with the
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origin at (0, ω(0)) (see Figure 5) then the function ω(z) achieves its minimum
at the new origin. In the new cordinate system the vertical cordinate of the
curve ω(z) is given by the distance of (z, ω(z)) from the line L. This distance is
given by

s(z) =
ω(z)+ < z, z∗ > −c

‖(1, z∗)‖
.

Thus s(z) achieves its minimum at z = 0. This implies that

ω(0) = min
z∈Z
{ω(z)+ < z, z∗ >}

= min
z∈Z
{inf{f(x) : x ∈ Ω, g(x) ≤ z}+ < z, z∗ >}

= inf{f(x)+ < z, z∗ >: x ∈ Ω, z ∈ Z, g(x) ≤ z}
≥ inf{f(x)+ < g(x), z∗ >: x ∈ Ω, z ∈ Z, g(x) ≤ z}
≥ inf{f(x)+ < g(x), z∗ >: x ∈ Ω}.

The first inequality is true because z∗ ≥ 0 and g(x) ≤ z. The second inequality
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is true because the {x ∈ Ω : z ∈ Z, g(x) ≤ z} ⊂ {x ∈ Ω}. It is also true that

ω(0) = inf{f(x)+ < z, z∗ >: x ∈ Ω, z ∈ Z, g(x) ≤ z}
≤ inf{f(x)+ < g(x), z∗ >: x ∈ Ω},

because g(x) ≤ g(x) is true for every x ∈ Ω. Thus we have

ω(0) = inf{f(x)+ < z, z∗ >: x ∈ Ω}.

Note that the above equation states that a constrained optimization problem
given by the problem statement of ω(0) can be converted to an unconstrained
optimization problem as given by the right hand side of the above equation.
We make these arguments more precise in the rest of this subsection.
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Figure 6: Figure for Lemma 21.

Lemma 21. Let (X, || · ||X), and (Z, || · ||Z), be normed vector spaces with Ω
a convex subset of X. Let P be a positive convex cone defined in Z. Let Z∗

denote the dual space of Z with the postive cone P⊕ associated with P. Let
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f : Ω→ R be a real valued convex functional and g : X → Z be a convex
mapping. Define

µ0 := inf{f(x) : g(x) ≤ 0, x ∈ Ω}. (14)

Suppose there exists x1 ∈ Ω such that g(x1) < 0 and and suppose µ0 is finite.
Then, there exist z∗0 ≥ 0 such that

µ0 = inf{f(x)+ < g(x), z∗0 >: x ∈ Ω}. (15)

Furthermore, if there exists x0 such that g(x0) ≤ 0 and µ0 = f(x0) then

< g(x0), z∗0 >= 0 (16)

Proof:We will say that an element x in Ω is feasible if g(x) ≤ 0. Define A, (see
Figure 6) a subset of Z ×R by

A := {(z, r) : there exists x ∈ Ω such that g(x) ≤ z and f(x) ≤ r},
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and B (see Figure 6) another subset of Z ×R by

B := −P × (−∞, µ0] := {(z, r) : −z ∈ P and r ≤ µ0}.

We will assume that the norm on Z ×R is the product norm induced by the
norms on Z and R. Note that in this norm int(B) 6= {} (let p0 ∈ int(−P ); then
(p0, µ0 − 1) ∈ int(B)). We will show that int(B) ∩A = {}.

Suppose (z, r) ∈ int(B) ∩A. Then there exists x in Ω such that f(x) ≤ r and
g(x) ≤ z. Also z ∈ −P and r < µ0. Therefore, f(x) ≤ r < µ0 and g(x) ≤ z ≤ 0.
This implies that x is feasible and f(x) is strictly less than µ0 which contradicts
the definition of µ0. Therefore, int(B) ∩A = {}.

Applying Eidelheit’s separation result (see Corollary ??) to A and B (note that
A and B are convex) we know that there exists a nonzero element
(z∗, s) ∈ (Z ×R)∗ = Z∗ ×R (see Theorem ??) and k ∈ R such that

< z, z∗ > +sr ≥ k for all (z, r) ∈ A and (17)



191

< z, z∗ > +sr ≤ k for all (z, r) ∈ B. (18)

We will now show that s ≥ 0. As (0, r) for r ≤ µ0 is in B it follows from
inequality (18) that sr ≤ k for all r ≤ µ0. This implies that s ≥ 0 (otherwise by
letting r → −∞ we see that k =∞ which is not possible because inequality
(17) holds).

We will now show that s > 0. Suppose that s = 0. Then from inequality (17) we
have

< g(x1), z∗ >≥ k, (19)

because (g(x1), f(x1)) belongs to A. Also, from inequality (18) we have that

< z, z∗ > ≤ k, (20)

for all z ∈ −P. In particular as 0 ∈ −P we have k ≥ 0. Suppose for some
z ∈ −P, < z, z∗ > > 0. Then we have < αz, z∗ >= α < z, z∗ >→∞ as
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α→∞. However as P is a cone and α ≥ 0, αz ∈ −P if z ∈ −P. Therefore
< αz, z∗ > ≤ k <∞ if z ∈ −P. Thus we have a contradiction and therefore

< z, z∗ >≤ 0 for all z ∈ −P and k ≥ 0. (21)

As −g(x1) ∈ int(P ) we have that there exists an ε > 0 in R such that ||z||Z ≤ ε
implies that −g(x1) + z ∈ P. Therefore, from (21) we have that
< g(x1)− z, z∗ >≤ 0 if ||z||Z ≤ ε which implies that < g(x1), z∗ >≤< z, z∗ > if
||z||Z ≤ ε. From inequality (19) we have 0 ≤ k ≤< g(x1), z∗ >≤< z, z∗ > if
||z||Z ≤ ε. This implies that for any z ∈ Z, < z, z∗ >≥ 0. For any nonzero z ∈ Z,

|| εz
||z||Z

||Z ≤ ε

and therefore < εz
||z||Z

, z∗ >≥ 0. This implies that for any z ∈ Z, < z, z∗ > ≥ 0.
As Z is a vector space (which implies − < z, z∗ > ≥ 0) it follows that
< z, z∗ >= 0 for all z ∈ Z. Thus z∗ = 0. This contradicts (z, s) 6= (0, 0) and
therefore, s > 0.
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Let z∗0 = z∗
s . Dividing inequality (17) by s we have

< z, z∗0 > +r ≥ k

s
for all (z, r) ∈ A and (22)

dividing inequality (18) by s we have

< z, z∗0 > +r ≤ k

s
for all (z, r) ∈ B. (23)

In particular, as (z, µ0) ∈ B for all z ∈ −P it follows from inequality (23) that

< z, z∗0 >≤
k

s
− µ0 for all z ∈ −P.

This implies that < z, z∗0 > ≤ 0 for all z ∈ −P. Indeed, if for some
z1 ∈ −P,< z1, z

∗
0 > > 0 then < αz1, z

∗ >→∞ as α→∞ which contradicts
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the fact that < αz1, z
∗ > is bounded above by k

s − µ0. Thus we conclude that
z∗0 ∈ P⊕.

Also, as (g(x), f(x)) for x ∈ Ω is in A it follows from (22) that

< g(x), z∗0 > +f(x) ≥ k

s
for all x ∈ Ω and (24)

as (0, µ0) ∈ B it folllows from (23) that

µ0 ≤
k

s
for all (z, r) ∈ B. (25)

From inequalities (24) and (25) we conclude that

inf{< g(x), z∗0 > +f(x) : x ∈ Ω} ≥ µ0. (26)
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Suppose x ∈ Ω and g(x) ≤ 0 (i.e. x is feasible), then

f(x)+ < g(x), z∗0 >≤ f(x), (27)

because z∗0 ∈ P⊕. Therefore, we have

inf{f(x)+ < g(x), z∗0 >: x ∈ Ω} ≤ inf{f(x)+ < g(x), z∗0 >
: x ∈ Ω, g(x) ≤ 0}

≤ inf{f(x) : x ∈ Ω, g(x) ≤ 0} = µ0.

The first inequality is true because Ω ⊃ {x ∈ Ω, g(x) ≤ 0} and the second
inequality follows from (27).

It follows from inequality (26) that

µ0 = inf{f(x)+ < g(x), z∗0 >: x ∈ Ω}. (28)



196

Let x0 be such that x0 ∈ Ω and g(x0) ≤ 0 and f(x0) = µ0. Then

f(x0) = µ0 ≤ f(x0)+ < g(x0), z∗0 > ≤ f(x0) = µ0.

The first inequality follows from equation (28) and the second inequality is true
because z∗0 ∈ P⊕ and g(x0) ≤ 0. This proves that < g(x0), z∗0 >= 0.

Theorem 38. Let X be a Banach space, Ω be a convex subset of X, Y be a
finite dimensional normed space, Z be a normed space with positive cone P.
Let Z∗ denote the dual space of Z with a positive cone P⊕. Let f : Ω→ R be a
real valued convex functional, g : X → Z be a convex mapping, H : X → Y be
an affine linear map and 0 ∈ int({y ∈ Y : H(x) = y for some x ∈ Ω}). Define

µ0 := inf{f(x) : g(x) ≤ 0, H(x) = 0, x ∈ Ω}. (29)

Suppose there exists x1 ∈ Ω such that g(x1) < 0 and H(x1) = 0 and suppose
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µ0 is finite. Then, there exist z∗0 ≥ 0 and y∗0 such that

µ0 = inf{f(x)+ < g(x), z∗0 > + < H(x), y∗0 >: x ∈ Ω}. (30)

Proof:Let
Ω1 := {x : x ∈ Ω, H(x) = 0}.

Applying Lemma 21 to Ω1 we know that there exists z∗0 ∈ P⊕ such that

µ0 = inf{f(x)+ < g(x), z∗0 >: x ∈ Ω1}. (31)

Consider the convex subset,

H(Ω) := {y ∈ Y : y = H(x) for some x ∈ Ω}

of Y. For y ∈ H(Ω) define

k(y) := inf{f(x)+ < g(x), z∗0 >: x ∈ Ω, H(x) = y}.
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We now show that k is convex. Suppose y, y′ ∈ H(Ω) and x, x′ are such that
H(x) = y and H(x′) = y′. Suppose, 0 < λ < 1. We have,
λ(f(x)+ < g(x), z∗0 >) + (1− λ)(f(x′)+ < g(x′), z∗0 >) ≥ f(λx+ (1− λ)x′) + <
g(λx+ (1− λ)x′), z∗0 >≥ k(λy + (1− λ)y′). (the first inequality follows from the
convexity of f and g. The second inequality is true because
H(λx+ (1− λ)x′) = λy + (1− λ)y′.) Taking infimum on the left hand side we
obtain λk(y) + (1− λ)k(y′) ≥ k(λy + (1− λ)y′). This proves that k is a convex
function.

We now show that k : H(Ω)→ R (i.e. we show that k(y) > −∞ for all
y ∈ H(Ω)). As, 0 ∈ int[H(Ω)] we know that there exists an ε > 0 such that
if ||y|| ≤ ε then y ∈ H(Ω). Take any y ∈ H(Ω) such that y 6= 0. Choose λ, y′

such that
λ = ε

2||y|| and y′ = −λy.

This implies that y′ ∈ H(Ω). Let, β = λ
λ+ 1. We have

(1− β)y′ + βy = 0.
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Therefore, from convexity of the function k we have

βk(y) + (1− β)k(y′) ≥ k(0) = µ0.

Note that µ0 > −∞ by assumption. Therefore, k(y) > −∞. Note, that for all
y ∈ H(Ω), k(y) <∞. This proves that k is a real valued function.

Let [k,H(Ω)] be defined as given below

[k,H(Ω)] := {(r, y) ∈ R× Y : y ∈ H(Ω), k(y) ≤ r}.

We first show that [k,H(Ω)] has nonempty interior. As, k is a real valued
convex function on the finite-dimensional convex set H[Ω] and 0 ∈ int[H(Ω)]
we have from from Lemma ?? that k is continuous at 0. Let r0 = k(0) + 2 and
choose ε′ such that 0 < ε′ < 1. As, k is continuous at 0 we know that there
exists δ > 0 such that y ∈ H(Ω) and ||y|| ≤ δ implies that

|k(y)− k(0)| < ε′.
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This means that if y ∈ H(Ω) and ||y|| ≤ δ then

k(y) < k(0) + ε′ < k(0) + 1 < r0 − 1
2.

Therefore, for all y ∈ H(Ω) with ||y|| ≤ δ we have k(y) < r0 − 1
2. This implies

that for all (r, y) ∈ R× Y such that |r− r0| < 1
4, y ∈ H(Ω) and ||y|| ≤ δ we have

k(y) < r. This proves that (r0, 0) ∈ int([k,H(Ω)]).

It is clear that (k(0), 0) ∈ R× Y is not in the interior of [k,H(Ω)]. Using,
Corollary ?? we know that there exists (s, y∗) 6= (0, 0) ∈ R× Y ∗ such that for
all (r, y) ∈ [k,H(Ω)] the following is true

< y, y∗ > +rs ≥ < 0, y∗ > +k(0)s = sµ0. (32)

In particular, rs ≥ sµ0 for all r ≥ µ0 (note that (r, 0) ∈ [k,H(Ω)] for all r ≥ µ0).
This means that s ≥ 0.
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Suppose, s = 0. We have from (32) that < y, y∗ >≥ 0 for all y ∈ H(Ω). As,
0 ∈ int[H(Ω)] it follows that there exists an ε ∈ R such that ||y|| ≤ ε implies
that < y, y∗ >≥ 0 and < −y, y∗ >≥ 0. This implies that if ||y|| ≤ ε then
< y, y∗ >= 0. But, then for any y ∈ Y one can choose a positive constant α
such that ||αy|| ≤ ε and therefore < αy, y∗ >= 0. This implies that
(s, y∗) = (0, 0) which is not possible. Therefore, we conclude that s > 0.

Let y∗0 = y∗/s. From (32) we have,

< y, y∗0 > +r ≥ µ0, for all (r, y) ∈ [k,H(Ω)]. (33)

This implies that for all y ∈ H(Ω),

< y, y∗0 > +k(y) ≥ µ0, (34)

(This is because (k(y), y) ∈ [k,H(Ω)]). Therefore, for all x ∈ Ω,

< H(x), y∗0 > +f(x)+ < g(x), z∗0 >≥ µ0, (35)
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which implies that

inf{f(x)+ < g(x), z∗0 > + < H(x), y∗0 >: x ∈ Ω} ≥ µ0. (36)

But if x ∈ Ω is such that H(x) = 0 then

f(x)+ < g(x), z∗0 > = f(x)+ < g(x), z∗0 > + < H(x), y∗0 >
≥ inf{f(x)+ < g(x), z∗0 > + < H(x), y∗0 >: x ∈ Ω}
≥ µ0.

Taking infimum on the left hand side of the above inequality over all x ∈ Ω
which satisfy H(x) = 0 (that is infimum over all x ∈ Ω1) we have,

µ0 = inf{f(x)+ < g(x), z∗0 > + < H(x), y∗0 >: x ∈ Ω}. (37)

This proves the lemma.
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Primal Problem
Consider the problem

µ0 := inf{f(x) : g(x) ≤ 0, H(x) = 0, x ∈ Ω}. (38)

The above problem is often called the as the Primal problem.
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Lagrangian
Consider the primal problem

µ0 := inf{f(x) : g(x) ≤ 0, H(x) = 0, x ∈ Ω}.

Associated with the above problem one can define the Lagrangian

L(x, z∗, y) := f(x)+ < g(x), z∗ > + < H(x), y > (39)
where z∗ is the dual variable associated with the constraint g(x) ≤ 0 and y is
the dual variable associated with the constraint H(x) = 0 for the primal
problem. x is the primal variable.
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The saddle point characterization: Existence in the Convex
Case

Consider the problem setup in Theorem 38 and assume that x0 is such that

x0 = arg[ inf
x∈Ω
{f(x) : G(x) ≤ 0, H(x) = 0}.]

Then there exists a z∗0 ≥ 0 such that

L(x0, z
∗, y) ≤ L(x0, z

∗
0, y) ≤ L(x, z∗0, y) for all x ∈ Ω, z∗ ≥ 0 and y ∈ Y. (40)

Proof: Proof: Let z∗0 ≥ 0, y be the dual variables as obtained in Theorem 38.
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Then from Theorem 42 it follows that

< g(x0), z∗0 > = 0
g(x0) ≤ 0
H(x0) = 0

infx∈Ω{f(x) : G(x) ≤ 0, H(x) = 0} = infx∈ΩL(x, z∗0, y)

Thus

L(x, z∗0, y) ≥ infx∈ΩL(x, z∗0, y) = infx∈Ω{f(x) : G(x) ≤ 0, H(x) = 0}
= f(x0)
= f(x0)+ < g(x0), z∗0 > + < H(x0), y >
= L(x0, z

∗
0, y).
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Also note that

L(x0, z
∗, y)− L(x0, z

∗
0, y) = f(x0)+ < g(x0), z∗ > + < H(x0), y)

−[f(x0)+ < g(x0), z∗0 > + < H(x0), y)
= < g(x0), z∗ >
≤ 0 for all z∗ ≥ 0 as g(x0) ≤ 0.
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The saddle point characterization: Sufficiency of optimality
We need the following lemma to establish the optimality from the existence of
a saddle point.

Lemma 22. Suppose Z is a Hilbert space with a cone P defined such that P
is closed. Let P⊕ be the dual cone that is

P⊕ := {z∗ ∈ Z| < z, z∗ >≥ 0 for all z ∈ P}.

Suppose z ∈ Z is such that

< z, z∗ >≥ 0 for all z∗ ≥ 0.

Then
z ≥ 0.

Proof: Suppose z 6∈ P. Then as P is closed there exists a hyperplane that
strictly separates z and P (see Theorem 34). That is there exists z∗ 6= 0 and k
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such that
< z, z∗ >< k ≤< p, z∗ > for all p ∈ P.

This implies that
< z, z∗ >< k ≤ inf

p∈P
< p, z∗ >≤ 0.

Note that it has to be true that z∗ ≥ 0. Otherwise suppose p1 ∈ P be such that
< p1, z

∗ >= a < 0. Then note that < αp1, z
∗ >= −αa→ −∞ as α→∞. Note

that αp1 ∈ P for all α ≥ 0 and this will contradict that < p, z∗ > is lower
bounded by k.

Thus we have found a z∗ ≥ 0 such that

< z, z∗ >< 0

that contradicts the hypothesis on z. Thus z ≥ 0.
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Theorem 39. Let f : Ω→ R where Ω is a subset of a vector space X. Let
g : Ω→ Z where Z is a normed vector space with positive cone P defined that
is nonempty and closed. Suppose there exists a x0 ∈ Ω and z∗0 ∈ P⊕ such
that the Lagrangian possesses a saddle point at x0, z

∗
0, y
∗
0 that is

L(x0, z
∗, y∗) ≤ L(x0, z

∗
0, y
∗
0) ≤ L(x, z∗0, y

∗
0) for all x ∈ Ω, z∗ ≥ 0 and y∗ ∈ Y.

Then x0 is the optimal solution to the primal

µ0 = inf
x∈Ω
{f(x) : g(x) ≤ 0, H(x) = 0}.

Proof: Note that

L(x0, z
∗, y∗)− L(x0, z

∗
0, y
∗
0) ≤ 0 for all z∗ ≥ 0, and y∗ ∈ Y
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Thus

< g(x0), z∗ − z∗0 > + < H(x0), y∗ − y∗0 >≤ for all z∗ ≥ 0, and y∗ ∈ Y (41)

By setting y∗ = y∗0 above we have

< g(x0), z∗ − z∗0 > ≤ for all z∗ ≥ 0
⇒ < g(x0), (z∗1 + z∗0)− z∗0 > ≤ 0 for all z∗1 ≥ 0
⇒ < g(x0), z∗1 > ≤ 0 for all z∗1 ≥ 0
⇒ < −g(x0), z∗ > ≥ 0 for all z∗ ≥ 0.

From Lemma 22 as the positive cone P is closed it follows that −g(x0) ≥ 0
that is g(x0) ≤ 0. Also be setting z∗ = 0 in

< g(x0), z∗ − z∗0 > ≤ for all z∗ ≥ 0
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we have
< g(x0), z∗0 >≥ 0.

As g(x0) ≤ 0 and z∗0 ≥ 0 it follows that

< g(x0), z∗0 >= 0.

By setting z∗ = z∗0 and y∗ = y∗1 + y∗0 in 41 we have

< H(x0), y∗1 > ≤ 0 for all y∗1 ∈ Y
⇒ < H(x0),−y∗1 > ≤ 0 for all y∗1 ∈ Y as − y∗1 ∈ Y if y∗1 ∈ Y
⇒ < H(x0), y∗1 > = 0 for all y∗1 ∈ Y
⇒ < H(x0), H(x0) > = 0 as H(x0) ∈ Y.

Thus we have shown that
g(x0) ≤ 0, H(x0) = 0 and < g(x0), z∗0 > + < H(x0), y∗0 >= 0. Note that if
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x1 ∈ Ω is a feasible solution to the problem

inf{f(x) : x ∈ Ω, g(x) ≤ 0, H(x) = 0}

then x1 ∈ Ω, g(x1) ≤ 0 and H(x1) = 0. We also have

L(x1, z
∗
0, y
∗
0)− L(x0, z

∗
0, y
∗
0) ≥ 0

⇒ f(x1)+ < g(x1), z∗0)+ < H(x1), y∗0 >
−[f(x0)+ < g(x0), z∗0)+ < H(x0), y∗0 >] ≥ 0

⇒ f(x1)+ < g(x1), z∗0)− f(x0) ≥ f(x1)− f(x0) ≥ 0
as g(x1) ≤ and z∗0 ≥ 0

⇒ f(x1) ≥ f(x0)

Thus
x0 = arg[inf{f(x) : x ∈ Ω, g(x) ≤ 0, H(x) = 0}].
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Dual Interpretation

Consider the primal problem:

ω(z) = inf
x∈Ω
{f(x) : g(x) ≤ z}.

We have shown that

• ω : Z → R is a decreasing function of the variable z ∈ Z that has a cone P
defined. Thus ω(z2) ≤ ω(z1) if z2 ≥ z1. Thus it can be assumed that the
”slope” of the curve ω(z) is negative at any point z.

• ω(z) is a convex function of z if f and g are convex functions.
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Figure 7: Shows supporting hyperplane to the epigraph of ω(z). Note that the
tangents to the curve ω(z) are all negative from the fact that ω is a decreasing
function. Also we are ruling out vertical hyperplanes. Thus each hyperplane
can be described by (1, z∗) with z∗ ≥ 0. Furthermore, each hyperplane has a
y intercept of ϕ(z∗) where L(z∗) = {(r, z)|r+ < z, z∗ >= ϕ(z∗)} describes the
hyperplane. Also note that the maximum of these intercepts is ω(0). Thus one
can postulate for convex problems that ω(0) = maxz∗≥0ϕ(z∗).
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The dual problem is defined on by first evaluating the dual function defined on
the positive dual cone P⊕ given by

ϕ(z∗) := inf{L(x, z∗) : x ∈ Ω} = inf
x∈Ω
{f(x)+ < g(x), z∗ >}.

Theorem 40. Let z∗ ∈ P⊕ and y∗ ∈ Y. Then

ϕ(z∗) = inf
z∈Γ
{ω(z)+ < z, z∗ >}. (42)

where Γ is the domain of the function ω : Z → R that is
Γ := {z : there exists x ∈ Ω such that G(x) ≤ z}.
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Proof: Let z∗ ≥ 0 and z ∈ Γ. Then

ϕ(z∗) = inf{f(x)+ < g(x), z∗ >} ≤ inf{f(x)+ < g(x), z∗ >: g(x) ≤ z, x ∈ Ω}
≤ inf{f(x)+ < z, z∗ >: g(x) ≤ z, x ∈ Ω}
= inf{f(x) : g(x) ≤ z, x ∈ Ω}+ < z, z∗ >
= ω(z)+ < z, z∗ >

and thus
ϕ(z∗) ≤ inf

z∈Γ
{ω(z)+ < z, z∗ > .

Suppose x1 ∈ Ω, let z1 = g(x1). Then

f(x1)+ < g(x1), z∗ > ≥ inf{f(x)+ < z1, z
∗ >: g(x) ≤ z1, z1 = g(x1), x ∈ Ω}

≥ inf{f(x)+ < z1, z
∗ >: g(x) ≤ z1, x ∈ Ω}

= ω(z1)+ < z1, z
∗ >

Thus
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f(x1)+ < g(x1), z∗ >≥ inf
z∈Γ
{ω(z)+ < z, z∗ >}.

Therefore

ϕ(z∗) = inf{f(x)+ < g(x), z∗ >: x ∈ Ω} ≥ inf
z∈Γ
{ω(z)+ < z, z∗ >}.

Consider the hyperplane defined by

< (r, z), (1, z∗) >= ϕ(z∗)

in R× Z. Consider the set

A := {(r, z) ∈ R× Γ|r ≥ ω(z)}
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which is the epigraph [ω,Γ] of the function ω. Then clearly for all elements
(r, z1) ∈ A we have

r+ < z1, z
∗ >≥ ω(z1)+ < z1, z

∗ >≥ inf
z∈Γ
{ω(z)+ < z, z∗ >} = ϕ(z∗).

Thus A is contained in the positive half space of the hyperplane

< (r, z), (1, z∗) >= ϕ(z∗).

It is also fairly clear that indeed < (r, z), (1, z∗) >= ϕ(z∗) describes a
supporting hyperplane as this hyperplane comes arbitrarily close to the
epigraph of ω(z) given by [ω,Γ].

The above features of the hyperplane described by < (r, z), (1, z∗) >= ϕ(z∗) is
illustrated in Figure 7. Note that the < (r, z), (1, z∗) >= ϕ(z∗) has a vertical
intercept equal to ϕ(z∗). Furthermore, it is evident from the Figure that ω(0) is
the maximum of these intercepts. Thus one can postulate for convex problems
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that
max
z∗≥0

ϕ(z∗) = ω(0) = inf{f(x) : x ∈ Ω, g(x) ≤ 0}.

We will prove this next. It is interesting to note that Theorem 40 does not need
convexity and thus the dual problem always provides a lower bound to the
primal.

Theorem 41. Consider the setup of Theorem 40 that has no requirements
on convexity. Then

sup z∗ ≥ 0ϕ(z∗) ≤ ω(0) = inf{f(x) : x ∈ Ω, g(x) ≤ 0}.

Proof: From Theorem 40 we have that for any z∗ ≥ 0

ϕ(z∗) = inf
z∈Γ
{ω(z)+ < z, z∗ >} ≤ ω(0).
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Thus
sup
z∗≥0

ϕ(z∗) ≤ ω(0).

Now we prove that

max
z∗≥0

ϕ(z∗) = ω(0) = inf{f(x) : x ∈ Ω, g(x) ≤ 0}

for the convex case.
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Lagrange Duality Result
The KKT theorem states that for convex optimization problems the optimal
primal value can be obtained via the following dual problem:

max
z∗≥0, y

ϕ(z∗, y).

The following is a Lagrange duality theorem.

Theorem 42. [Kuhn-Tucker-Lagrange duality] Let X be a Banach space, Ω
be a convex subset of X, Y be a finite dimensional normed space, Z be a
normed space with positive cone P. Let Z∗ denote the dual space of Z with a
positive cone P⊕. Let f : Ω→ R be a real valued convex functional,
g : X → Z be a convex mapping, H : X → Y be an affine linear map and
0 ∈ int[range(H)]. Define

µ0 := inf{f(x) : g(x) ≤ 0, H(x) = 0, x ∈ Ω}. (43)
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Suppose there exists x1 ∈ Ω such that g(x1) < 0 and H(x1) = 0 and suppose
µ0 is finite. Then,

µ0 = max{ϕ(z∗, y) : z∗ ≥ 0, z∗ ∈ Z∗, y ∈ Y }, (44)

where ϕ(z∗, y):= inf{f(x)+ < g(x), z∗ > + < H(x), y >: x ∈ Ω } and the
maximum is achieved for some z∗0 ≥ 0, z∗0 ∈ Z∗, y0 ∈ Y .

Furthermore if the infimum in (43) is achieved by some x0 ∈ Ω then

< g(x0), z∗0 > + < H(x0), y0 >= 0, (45)

and x0 minimizes

f(x)+ < g(x), z∗0 > + < H(x), y0 >, over all x ∈ Ω. (46)
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Proof:Given any z∗ ≥ 0, y ∈ Y we have

inf
x∈Ω
{f(x)+ < g(x), z∗ >

+ < H(x), y >} ≤ inf
x∈Ω
{f(x)+ < g(x), z∗ > + < H(x), y >

: g(x) ≤ 0, H(x) = 0}
≤ inf

x∈Ω
{f(x) : g(x) ≤ 0, H(x) = 0}

= µ0.

Therefore it follows that max{ϕ(z∗, y) : z∗ ≥ 0, y ∈ Y }≤ µ0. From Lemma 38
we know that there exists z∗0 ∈ Z∗, z∗0 ≥ 0, y0 ∈ Y such that µ0 = ϕ(z∗0, y0).
This proves (44).

Suppose there exists x0 ∈ Ω, H(x0) = 0, g(x0) ≤ 0 and µ0 = f(x0) then
µ0 = ϕ(z∗0, y0) ≤ f(x0)+ < g(x0), z∗0 > + < H(x0), y0 >≤ f(x0) = µ0.
Therefore we have < g(x0), z∗0 > + < H(x0), y0 >= 0 and
µ0 = f(x0)+ < g(x0), z∗0 > + < H(x0), y0 >. This proves the theorem.
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Sensitivity

Corollary 2. [Sensitivity] Let X,Y, Z, f,H, g,Ω be as in Theorem 42. Let x0

be the solution to the problem

minimize f(x)

subject to x ∈ Ω, H(x) = 0, g(x) ≤ z0

with (z∗0, y0) as the dual solution. Let x1 be the solution to the problem

minimize f(x)

subject to x ∈ Ω, H(x) = 0, g(x) ≤ z1

with (z∗1, y1) as the dual solution. Then,

< z1 − z0, z
∗
1 > ≤ f(x0)− f(x1) ≤< z1 − z0, z

∗
0 > . (47)
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Proof:From Theorem 42 we know that for any x ∈ Ω,

f(x0)+ < g(x0)− z0, z
∗
0 > + < H(x0), y0 >

≤ f(x)+ < g(x)− z0, z
∗
0 > + < H(x), y0 > .

In particular we have

f(x0)+ < g(x0)− z0, z
∗
0 > + < H(x0), y0 >

≤ f(x1)+ < g(x1)− z0, z
∗
0 > + < H(x1), y0 > .

From Theorem 42 we know that < g(x0)− z0, z
∗
0 > + < H(x0), y0 >= 0 and

H(x1) = 0. This implies

f(x0)− f(x1) ≤< g(x1)− z0, z
∗
0 > ≤< z1 − z0, z

∗
0 > .

A similar argument gives the other inequality. This proves the corollary.


