Problem 1

Saturday, October 24, 2009
11:58 PM

All questions carry equal points.

Problem:

The block diagram of a control system is shown in Figure 1. In Figure 1, r is the reference input, n is measurement noise, y is the measured output, the controller $C(s) = \frac{s+\alpha}{s}$ and the plant is $G(s) = \frac{K(s+2)}{s^2-1}$.

1. Find the relationship between K versus α for the system to be stable.

2. Find the transfer function S from reference r to error $e = r - y$ when $\alpha = 1$ and $K = 10$; assume that $n = 0$. Determine if S is stable. Find the steady state of the error e when $r = \sin 3t$. The transfer function S captures the error in tracking a reference input r and is desired to be small in the frequency region where good tracking is desired.
Consider the unity negative feedback interconnection

\[\rightarrow Q \rightarrow K \rightarrow G \rightarrow y \]

(c) Give an example of \(G \) and \(K \) transfer functions, if possible, such that \(\frac{1}{1 + KG} \) and \(\frac{G}{1 + GK} \) are stable but \(\frac{K}{1 + KG} \) is

(b) Give an example of \(G \) and \(K \) transfer functions, if possible, such that \(\frac{K}{1 + KG} \) and \(\frac{G}{1 + GK} \) are stable but \(\frac{1}{1 + KG} \) is not

(c) Give an example of \(G \) and \(K \) transfer functions, if possible, such that \(\frac{1}{1 + KG} \) and \(\frac{K}{1 + GK} \) are stable but \(\frac{G}{1 + GK} \) is
Obtain the Bode plot of

\[H(\omega) = \frac{10}{1 + \frac{\omega}{100}} \frac{1 + \frac{\omega}{10}}{1 + \frac{\omega}{10}} \]

Using MATLAB, with the range of the magnitude plot between -10dB to 80dB. On the same Bode plot, sketch the Bode plot

\[100 \frac{1 + \frac{\omega}{100}}{1 + \frac{\omega}{10}} \]

by hand.
Obtain the asymptotes of the Bode plots of the following transfer functions:

(a) \(\frac{100s + 100}{s^2 + 110s + 1000} \)

(b) \(\frac{10}{s^2 + 3s} \)

(c) \(-\frac{100}{(s+1)^2 (s+10)} \)

(d) \(\frac{30}{s^2 + 3s + 50} \)

(e) \(\frac{4(s^2 + 8 + 25)}{s^3 + 100s^2} \)

Plot using MATLAB the Bode plots of the above transfer functions and compare with asymptotic Bode plots.