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Stochastic and Deterministic Models

Chemical reactions can be modeled by
I Deterministic ordinary differential equations involving the

species concentrations (macroscopic model)
I Many spatial agents each one describing a single molecule

(microscopic model)
Both the approaches present advantages and drawbacks

I When there are few molecules of a species the
concentration description is meaningless, mass action
kinetics are not valid, and discrete models are necessary.

I Multi-agent models require a huge computational effort to
be simulated



Macroscopic model

The system state is given by the concentration of the species
and ODEs can be easily written.

Consider the reversible reactions

S1
K21→ S2 (1)

S2
K12→ S1 (2)

leading to the ODEs

ẋ1 = −K21x1 + K12x2 (3)
ẋ2 = K21x1 − K12x2 (4)

where xi is the concentration of the
species Si .



Microscopic model

Every single particle is modeled as a distinct agent with a
specific position and velocity.

I Monomolecular reactions occur
according to the given rate.

I Dimolecular reactions occur
when two particles are in the
same spot and the absolute
value of their relative velocity is
large enough.



The Chemical Master Equation (Mesoscopic model)

The mesoscopic model tries to combine both the approaches.
I The system is described in terms of the n reactants and/or

products {S1,S2, ...,Sn}
I The state of the system is given by the integer vector
{x1, x2, ..., xn} representing the number of molecules for
every species

I The system is considered a time-continuous Markov model
I The M chemical reactions represent the Markov transitions

which can be described by the stoichometric vectors
(r1, ..., rM)

I The probabilities of every state configuration are described
by a vector P(t) = [P1(t),P2(t), ...] which evolves
according to

Ṗ(t) = A P(t) (5)



A graphical representation clarifies the meaning of the
Mesoscopic Model
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The reactions with the relative stoichometric vectors are

∅ → S1 r1 = (1,0)

S1 + S2 → S1 r2 = (0,−1)

S1 → ∅ r3 = (−1,0)



Transition Probabilities

The probability that the reaction Rµ will be the next reaction and
that will occur within the next time dt is given by aµ(x)dt .

I If Rµ represents a supply (∅ → ′Products′), then

aµ(x) = cµ (6)

I If Rµ is a monomolecular reaction (Si → ′Products′), then

aµ(x) = cµxi (7)

I If Rµ is a dimolecular reaction (Si + Sj → ′Products′), then

aµ(x) = cµxixj (8)



Chemical Reactions and Markov Processes

Let us consider a chemical system with n molecular species
and m elementary reactions and its related mesoscopic model.

x(t)
Wi (x(t))−→ x(t) + ri (9)

where x(t) ∈ Nn is the vector of molecule numbers at time t ;
ri ∈ Nn is the stechiometric vector of the i-th reaction and
Wi ∈ <+ is the transition rate.
The transitions described by (9) can be naturally modeled by a
jump Markov system (markovian Petri net).



The Chemical Master Equation

Let us consider how the probability p of the configuration x at
time t evolves. It satisfies the ODE

ṗ(t)(x , t) =
∑

i

Wi(x − ri)p(x − ri , t)−
∑

i

Wi(x)p(x , t) (10)

which is known as the Chemical Master Equation.
Defining P(t) as the vector containing the probabilities of all the
possible configurations x , we have that

Ṗ(t) = A P (11)

where the entries in A depend on the terms Wi(x). This means
that the evolution of the PDF follows a linear dynamics, even
though the transition rates are not linear.



Notation

I I shall use capital letters to denote random
variables/random processes and lower case letter to
denote their realizations

I E [X ] is the mean of the stochastic variable X
I EX (t) := E [X (t)] is the mean of the stochastic process

X (t) at time t
I VXY (t1, t2) := E [X (t1)X (t2)T ] is the second moment
I RXY (t1, t2) := E [X (t1)X (t2)T ]− E [X (t1)]E [X (t2)] is the

second central moment
I RX (t1, t2) := RXX (t1, t2) and VX (t1, t2) := VXX (t1, t2)



Notation

A process X is stationary (wide sense) if and only if, for all
t , t1, t2, τ ,

EX (t) = EX ; RX (t1, t2) = RX (t1 + τ, t2 + τ) (12)

Two stationary processes X and Y are mutually stationary
(wide sense) if and only if

RXY (t1, t2) = RXY (t1 + τ, t2 + τ) (13)

In such a context, the following definitions make sense
I RXY (t) := RXY (t ,0) (abusing the notation!)
I ΦXY (iω) := F(RXY (t ,0))(iω)



A result for linear/affine transitions

In many applicative cases, the transition rate functions Wi(·)
can be considered linear. In the case of linear/affine transition
rates some analytical results can be proved.

Theorem
If Wi(x) = c(i)

1 x + c(i)
0 then, there exist matrices

A,D(t) = D(EX (t)) ∈ <n×n, D(t) semi-positive defined and a
vector C0 ∈ <n such that

d
dt

EX (t) = AEX (t) + C0 (14)

d
dt

RX (t , t) = A
d
dt

RX (t , t) +
d
dt

RX (t , t)T AT + D(EX (t)) (15)

d
dt1

RX (t1, t2) = ARX (t1, t2) (16)



Proof

Let us evaluate d
dt EX (t)

d
dt

EX (t) =
∑

x

x
dp(x , t)

dt
=

=
∑
i,x

xWi(x − ri)p(x − ri , t)−
∑
i,x

xWi(x)p(x , t) =

=
∑
i,x

(x + ri)Wi(x)p(x , t)−
∑
i,x

xWi(x)p(x , t) =

=
∑
i,x

riWi(x)p(x , t).

Define f (x) :=
∑

i riWi(x) and we have

d
dt

EX (t) = E [f (x(t))]



Proof

In the linear/affine case Wi(x) = c(i)
1 x + c(i)

0 , thus

f (x(t)) =
∑

i

riWi(x(t)) =
∑

i

ri

[
c(i)

1 x(t) + c(i)
0

]
= (17)

=
∑

i

ric
(i)
1 x +

∑
i

ric
(i)
0 = Ax(t) + C0 (18)

That leads to

d
dt

EX (t) = E [f (x(t))] = E [Ax(t) + C0]

= AEX (t) + C0



Proof

Let us evaluate the dynamics of RXX (t , t)

d
dt

VX (t , t) =
∑

x

xxT dp(x , t)
dt

=

=
∑
x ,i

xxT [Wi(x − ri)p(x − ri , t)−Wi(x)p(x , t)] =

=
∑
x ,i

(x + ri)(x + ri)
T Wi(x)p(x , t)−

∑
x ,i

xxT Wi(x)p(x , t) =

= E [
∑

i

xrT
i Wi(x)] + E [

∑
i

rixT Wi(x)] + E [
∑

i

ri rT
i Wi(x)] =

= E [xf T (x)] + E [f (x)xT ] + E [
∑

i

ri rT
i Wi(x)]



Proof

d
dt

RX (t , t) =
d
dt

VX (t , t)− d
dt

(EX (t)EX (t)T ) =

= E [x(t)f T (x(t))] + E [f (x(t))x(t)T ] + E [
∑

i

ri rT
i Wi(x(t))]+

− EX (t)E [f (x(t))T ]− E [f (x)]EX (t)T =

= E [(x(t)− Ex (t))(f (x(t))− E [f (x(t))])T ]+

+ E [(f (x(t))− E [f (x(t))])(x(t)− Ex (t))T ]+

+ E [
∑

i

ri rT
i Wi(x(t))]



Proof

In the linear case f (x(t))− E [f (x(t))] = A(x(t)− EX (t)), thus

d
dt

RX (t , t) = ARX (t) + RX (t)A + E [
∑

i

ri rT
i Wi(x(t))] (19)

Define D(t) and consider its Choleski factorization in terms of
B(t), as follows

D(t) = D(E [W (x(t))]) := E [
∑

i

ri rT
i Wi(x(t))] (20)

D(t) = B(t)B(t)T . (21)

We can write that

d
dt

RX (t , t) = ARX (t) + RX (t)A + D(t) (22)



Proof

Let p(x1, t1, x2, t2) be the joint probability of the random
variables X (t1) and X (t2). Let us evaluate the dynamics of
RXX (t1, t2), observing that the Chemical Master Equation holds
also for the joint probability.

d
dt1

VX (t1, t2) =
∑
i,x ,y

xyT d
dt1

p(x1, t1, x2, t2) =

=
∑
x ,y

xyT [Wi(x − ri)p(x − ri , t1, y , t2)−Wi(x)p(x , t1, y , t2)]

=
∑
i,x ,y

(x + ri)yT Wi(x)p(x , t1, y , t2)−
∑
i,x ,y

xyT Wi(x)p(x , t1, y , t2)

=
∑
i,x ,y

riWi(x)p(x , t1, y , t2)



Comments

In the non-stationary case we have

d
dt

EX (t) = AEX (t) + C0 (23)

d
dt

RX (t , t) = ARX (t , t) + RX (t , t)AT + D(EX (t)) (24)

d
dt1

RX (t1, t2) = ARX (t1, t2) (25)

The evolution of the mean of the molecule numbers follows a
standard linear/affine dynamics.
The autocovariance of the molecule numbers evolves according
to the second equation which is a Differential Riccati Equation.
The cross-covariance follows a purely linear dynamics.



The stationary scenario

We have that the signal EX does not depend on t , therefore it
satisfies the relation

AEX + C0 = 0 (26)

This implies that D(t) = D(EX (t)) does not depend on t , either.
Moreover, RX (t2 + τ, t2) depends upon τ only. Hence we have

ARX (t , t) + RX (t , t)AT + D = 0 (27)
d
dτ

RX (t + τ, t) = ARX (t + τ, t). (28)

That Lyapunov Equation is known in physics as the
fluctuation-dissipation problem, since it is very often related to a
balance between phenomena of expansion and dissipation.



An equivalence property

Theorem
Assume that the Markov process described by the reactions

x(t)
Wi (x(t))−→ x(t) + ri with affine transition rates reaches the

steady state. Consider

ARX (t , t) + RX (t , t)AT + D = 0 (29)
d
dτ

RX (t + τ, t) = ARX (t + τ, t). (30)

Factorize D as D = BBT The power spectrum of x is given by

ΦX (ω) = G(iω)G(iω)∗ (31)

where G(s) = (sI − A)−1B
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