
EE 5501 Prof. Jindal
Digital Communication Dec. 19, 2009

Final Exam

The exam has 4 questions, for a total of 100 points. For all problems except the first, you
must show your work to receive credit.

1. Nyquist Criterion (10 pts)
For each of the following waveforms, indicate whether it satisfies the Nyquist criterion,
and whether it is a square-root Nyquist pulse. The symbol period is T = 2. For each
part circle your answers. You do not need to show your work for this question.

(a) ���
Nyquist: Yes No Square-root Nyquist: Yes No
(5 pts)

(b) ��� ���
Nyquist: Yes No Square-root Nyquist: Yes No
(5 pts)



2. Constellations (20 pts)
In each of the following parts, you are given two constellations (the constellation points
are indicated by X’s). Determine which of the two constellations has a larger dmin,
assuming that the constellations are scaled to have the same energy per-bit.

(a) (4 pts)

�� ��� �� ��
Constellation 1 Constellation 2

(b) (4 pts) ���� ��� ��� �� ���
Constellation 1 Constellation 2



(c) (4 pts)

� ���� ��� ��� �� �� � ��� ���
Constellation 1 Constellation 2



(d) (8 pts)

����
Constellation 1 Constellation 2

���� ��� �



3. Punctured Convolutional Codes (35 pts)
High-rate convolutional codes can be derived from lower rate convolutional codes
through the process of puncturing. Puncturing refers to deleting some of the coded
bits output by the encoder. By deleting (i.e., puncturing) some of the bits, the total
number of coded bits is decreased and therefore the rate of the code is increased. (The
pattern with which bits are deleted, i.e., the puncturing pattern, is fixed and is known
to both the encoder and decoder.)

(a) We begin with the R = 1/2 binary convolutional code with memory 2 with the
following outputs:

u[k] + u[k − 1] + u[k − 2]

u[k] + u[k − 2]

This is the first code we studied in class, and in octal notation this is the [7,5]
code (nonsystematic and nonrecursive). We will puncture this code to create a
R = 2/3 code.

Considering the following puncturing pattern: the second coded bit corresponding
to the first information bit is punctured, the second coded bit corresponding to
the third information bit is punctured, the second coded bit corresponding to the
fifth information bit is punctured, and so on. The general pattern is that the the
second coded bit corresponding to every other information bit is punctured.

For example, consider the information bit sequence 1100: the un-punctured out-
put sequence from the normal [7, 5] encoder is 11010111, whereas the punctured
sequence is 11/0101/11 → 101011. With this pattern we have 3 coded bits for

every 2 information bits, and thus the code has rate 2/3.

Compute dfree for this punctured code, and indicate the corresponding error event
on the provided trellis. (10 pts)

Note: You are provided with an extended trellis diagram for the un-punctured
[7, 5] code - you will need to modify some of the transition labels to account for
puncturing.



(b) We now consider a different puncturing pattern: the first coded bit corresponding
to the first information bit is punctured, the first coded bit corresponding to the
third information bit is punctured, and so on. The general pattern is that the the
first coded bit corresponding to every other information bit is punctured.

For example, consider the information bit sequence 1100: the un-punctured out-
put sequence from the normal [7, 5] encoder is 11010111, whereas the punctured
sequence is 1/1010/111 → 101111. This is also a rate 2/3 code.

i. Verify that this punctured code has the same dfree as in the previous part,
and indicate the corresponding error event on the provided trellis. (5 pts)

ii. Verify that this punctured code has an infinite number of error events with
output weight 1 + dfree, and indicate the corresponding error events on the
provided trellis. (5 pts)



(c) The rate of a parallel concatenated turbo code can be increased by puncturing
the outputs of encoder 1 and encoder 2. In class we considered a R = 1/3 turbo
code that was composed of two R = 1/2 systematic and recursive convolutional
encoders (in parallel). To increase the rate, we puncture every other parity bit
generated by encoder 1, and we puncture every other parity bit generated by
encoder 2. We do not puncture the information (i.e. systematic) bits.

i. What is the rate of the resulting turbo code? (3 pts)

ii. Explain how you can decode this punctured turbo code using a turbo de-
coder designed for the un-punctured R = 1/3 code. You should not make any
changes to the un-punctured decoder. (12 pts)

Note: In practice, a turbo decoder designed for the un-punctured code is
used to decode un-punctured and punctured turbo codes. This provides a
substantial savings in hardware since the same circuit is used to decode mul-
tiple codes.



4. Equalization (35 pts)
Consider a system where the impulse response of the TX filter and of the channel are:

gTX(t) =

{
1 0 ≤ t ≤ 2
0 else

gC(t) = δ(t) + δ(t− 1.5)

The symbol period is T = 2, i.e., one symbol every two time units.

(a) Compute p(t) and h[n]. (5 pts)

(b) If MLSE is to be performed (assuming BPSK), how many states would be required
in the Viterbi implementation? (5 pts)

(c) Assume white Gaussian noise with PSD σ2 and that BPSK with ±1 is used. We
are interested in the MMSE equalizer (on the standard matched filter outputs) of
length 3. Compute U, the matrix that maps from bits to the 3 received symbols,
and Cw, the noise covariance matrix (for 3 received symbols), and write out the
equation for the MMSE received filter. (15 pts)

(d) Find an RX filter and an appropriate sampling period such that one of the RX
filter samples is interference-free (i.e., it only contains the contribution of a single
transmitted bit/symbol and noise). (10 pts)
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