
EE 8510 Thursday, Jan. 27, 2005
Advanced Topics in Communications Prof. N. Jindal

Homework Set # 2

Due: Thursday, Feb. 3, 2005

1. Entropy of functions of a random variable. Let X be a discrete random variable.
Show that the entropy of a function of X is less than or equal to the entropy of X by
justifying the following steps:

H(X, g(X))
(a)
= H(X) + H(g(X)|X)

(b)
= H(X)

H(X, g(X))
(c)
= H(g(X)) + H(X|g(X))

(d)

≥ H(g(X))

Thus H((g(X)) ≤ H(X).
(Cover & Thomas 2.5)

2. An AEP-like limit. Let X1, X2, . . . be i.i.d. drawn according to probability mass
function p(x). Find

lim
n→∞

[p(X1, X2, . . . , Xn)]1/n

(Cover & Thomas 3.2)

3. (Csiszar, Korner 78) Let Xn and Y n be two random vectors with arbitrary joint prob-
ability distribution. Show that

n
∑

i=1

I(Xn
i+1; Yi|Y

i−1) =
n
∑

i=1

I(Y i−1; Xi|X
n
i+1) ∀1 ≤ i ≤ n

where Xn+1, Y0 = ø. We use the following notation: Xj = (X1, . . . , Xj) and Xj
k =

(Xk, . . . , Xj). Note that this expression may be useful later in proving some converses.
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4. In this problem we will show that capacity is the fundamental limit on communication
even if the performance criterion is bit error rate instead of block error rate. In lecture
we were interested in systems that had block error rate PB converging to zero as block
length (n) went to infinity. However, in many practical systems we are interested in
the bit error rate Pb.

Consider a system where the message W is an equiprobable k-bit sequence, denoted
U1, . . . , Uk, and the output of the encoder is an n-bit sequence denoted X1, . . . , Xn.
Clearly the rate of our code is R = k/n. The output of the channel is Y1, . . . , Yn. The
decoder outputs an estimate of the message bits denoted Û1, . . . , Ûk.

U1, . . . , Uk Y1, . . . , Yn Û1, . . . , Ûk

DecoderChannel
X1, . . . , Xn

Encoder

The expressions for block and bit error rate are:

PB = Pr{(Û1, . . . , Ûk) 6= U1, . . . , Uk} Pb =
1

k

k
∑

i=1

Pr{Ûi 6= Ui}

It is easy to see that Pb ≤ PB since each block error rate can cause at most k bit errors
(i.e. in the worst case each bit is wrong).

(a) Use Fano’s inequality to prove

H(Ui|Ûi) ≤ h(Pe,i)

where h(·) is the binary entropy function and Pe,i = Pr{Ûi 6= Ui}.

(b) Use the concavity of the entropy function to show

1

k

k
∑

i=1

h(Pe,i) ≤ h

(

1

k

k
∑

i=1

Pe,i

)

= h(Pb)

(c) Justify steps (a)-(g) in the following proof:

k = H(Uk)
(a)
= I(Uk; Ûk) + H(Uk|Ûk)
(b)

≤ I(Xn; Y n) + H(Uk|Ûk)
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(c)

≤
n
∑

i=1

I(Xi; Yi) + H(Uk|Ûk)

(d)

≤ nC + H(Uk|Ûk)

(e)

≤ nC +
k
∑

i=1

H(Ui|Ûi)

(f)

≤ nC +
k
∑

i=1

h(Pe,i)

(g)

≤ nC + kh(Pb)

Dividing both sides by k and rearranging gives:

h(Pb) ≥ 1 −
C

R
→ Pb ≥ h−1

(

1 −
C

R

)

.

Since the h(p) > 0 for 0 < p < 1, the bit error rate is bounded away from zero
for all blocklengths n if R > C.

For example, if you are using a code with R = 1.1C, you are guaranteed that
Pb ≥ h−1

(

1 − 1
1.1

)

= h−1 (0.091) = .0115, i.e. a BER of larger than 1%. (J.

Massey notes)

5. An additive noise channel. Find the channel capacity of the following discrete memo-
ryless channel: Y = X + Z, where Pr(Z = 0) = Pr(Z = a)= 1

2
. The alphabet for x is

X = {0, 1}. Assume that Z is independent of X. Observe that the channel capacity
depends on the value of a. (Cover & Thomas 8.3)

6. Cascade of binary symmetric channels. Show that a cascade of n identical binary
symmetric channels,

X0 → BSC #1 → X1 → · · · → Xn−1 → BSC #n → Xn

each with raw error probability p, is equivalent to a single BSC with error probability
1
2
(1− (1− 2p)n) and hence limn→∞

I(X0; Xn) = 0 if p 6= 0, 1. No encoding or decoding
takes place at the intermediate terminals X1, . . . , Xn−1. Thus the capacity of the
cascade tends to zero. (Cover & Thomas 8.8)

7. The Z channel. The Z channel has binary input and output alphabets and transition
probabilities p(y|x) given by p(y = 0|x = 0) = 1 and p(y = 0|x = 1) = p(y = 1|x =
1) = 1

2
. Find the capacity of the Z channel and the maximizing input probability

distribution. (Cover & Thomas 8.9)
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