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Advanced Topics in Communications Prof. N. Jindal

Homework Set 5

Due: Thursday, March 3, 2005

1. Waterfilling at High SNR. Consider K parallel AWGN channels with noise power
N1, . . . , NK on the K channels. We showed in class that the capacity of this chan-
nel is achieved by independent Gaussian random variables on each channel:
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and the optimal values of P1, . . . , PK are chosen according to the waterfilling procedure.
In this problem we compare the capacity to the rates achievable by allocating equal
power to each of the K channels, i.e. Pi = P
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(a) Show that

lim
P→∞

(C(P ) − Cequal(P )) = 0.

This implies that equal power allocation is optimal at asymptotically high SNR.

(b) Use part(a) to argue that the capacity-achieving covariance matrix for a MIMO
channel with fixed channel matrix H (assumed to be full rank) and Nt ≤ Nr

converges to the identity matrix. A rigorous proof is not required.

(c) Can the same statement be made for the optimal covariance matrix when Nt >
Nr? Provide a simple counterexample of a full rank channel matrix H such that
the statement in (b) is not true.

2. Cooperative multiple-access channel. Consider a cooperative multiple-access channel
where X1 and X2 each have access to both indices W1 ∈ {1, . . . , 2nR1} and W2 ∈
{1, . . . , 2nR2}. Thus the codewords Xn

1 (W1, W2) and Xn
2 (W1, W2) depend on both in-

dices.

(a) Find the capacity region.

(b) Evaluate this region for the binary erasure multiple-access channel Y = X1 +
X2, Xi ∈ {0, 1}. Compare to the non-cooperative capacity region.

(Cover & Thomas 14.1)
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3. Find the capacity region for each of the following multiple-access channels:

(a) Additive modulo-2 multiple access channel. X1 ∈ {0, 1}, X2 ∈ {0, 1}, Y =
X1 ⊕ X2.

(b) Multiplicative multiple-access channel. X1 ∈ {−1, 1}, X2 ∈ {−1, 1}, Y = X1 ·X2.

(Cover & Thomas 14.2)

4. Unusual multiple access channel. Consider the following multiple access channel: X1 =
X2 = Y = {0, 1}. If (X1, X2) = (0, 0) then Y = 0. If (X1, X2) = (0, 1) then Y = 1.
If (X1, X2) = (1, 0) then Y = 1. If (X1, X2) = (1, 1) then Y = 0 with probability 1/2
and Y = 1 with probability 1/2.

(a) Show that the rates pairs (0, 1) and (1, 0) are achievable.

(b) Show that for any non-degenerate distribution p(x1)p(x2), we have I(X1, X2; Y ) <
1.

(c) Argue that there are points in the capacity region of this multiple access channel
that can only be achieved by timesharing, i.e. there exist achievable rate pairs
(R1, R2) which lie in the capacity region of the channel but not in the region
defined by

R1 ≤ I(X1; Y |X2), R2 ≤ I(X2; Y |X1), R1 + R2 ≤ I(X1, X2; Y )

for any product distribution p(x1)p(x2). Hence the operation of convexification
strictly enlarges the capacity region.

(Cover & Thomas 14.6)

5. Successive Cancellation. Consider a discrete memoryless MAC (X1×X2, p(y|x1, x2),Y).
To achieve a corner point of a set R(X1, X2), e.g. R1 = I(X1; Y |X2) − ǫ, R2 =
I(X2; Y ) − ǫ for any ǫ > 0, use random coding and the following two-step decoding
scheme: the receiver first declares that ŵ2 is sent if it is the unique message such that
(xn

2 (ŵ2), y
n) ∈ A

(n)
ǫ , otherwise, an error is declared. If such a ŵ2 is found, the receiver

declares that ŵ1 was sent if it is the unique message such that (xn
1 (ŵ1), x

n
2 (ŵ2), y

n) ∈

A
(n)
ǫ , otherwise an error is declared. Provide a detailed analysis of the error probability

to show that the corner point is achievable. (A. El Gamal)

2



6. Alternative Error Criterion. In class we derived the capacity region with an average
probability of error criterion, where we said an error occurred if our estimate of either

message was incorrect, i.e. P
(n)
e = Pr{(Ŵ1, Ŵ2) 6= (W1, W2)}. This seems overly

stringent. In this problem, we consider a separate probability of error for each user,
i.e. P

(n)
e,1 = Pr{Ŵ1 6= W1} and P

(n)
e,2 = Pr{Ŵ2 6= W2}, and consider a rate pair to be

achievable if P
(n)
e,1 and P

(n)
e,2 can both be driven to zero. Show that this error criterion

yields the same capacity region.

7. Capacity for maximum vs. average probability of error. We first proved the capacity
of a DMC assuming average probability of error. We also showed that the capacity is
the same if we consider maximum probability of error by considering a codebook with
average probability of error ǫ, and using only the best half of the codewords which are
guaranteed to each have probability of error less than 2ǫ by Markov’s inequality. Such
argument cannot be used to show that the capacity of an arbitrary DM-MAC with
maximum probability of error is the same as that with average probability of error.

(a) Argue that simply discarding half of the codeword pairs with the highest proba-
bility of error does not in general work.

(b) How about throwing out the worst half of each sender’s codewords? Show that this
does not work either. (Hint: Provide a simple example of a set of probabilities
pij ∈ [0, 1], (i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . , n}, with 1

n2

∑

i,j pij ≤ ǫ, for some

0 < ǫ < 1
4
, such that there are no subsets Ni ⊂ {1, 2, . . . , n} with cardinalities

|Ni| ≥
n
2
, for i = 1, 2, such that pij ≤ 4ǫ for all (i, j) ∈ N1 ×N2.)

Note: A much stronger statement in fact holds. Dueck in a 1978 paper provided an
example of a MAC for which the capacity region with maximum probability of error is
strictly smaller than that with average probability of error. This provides yet another
example where a result from single-user information theory does not necessarily carry
over to the multiple user case. (A. El Gamal)
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