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Abstract

We study the Rayleigh fading relay channel. We first show that relay cooperation offers a small

capacity increase with respect to the direct channel and then focus on studying the diversity-multiplexing

tradeoff. We find a bound on the optimal diversity-rate function and establish that this bound is achieved

by an adaptive version of the classical Markov coding scheme.
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I. I NTRODUCTION

Recently, there has been a renewed interest in the Gaussian Relay Channel in the context of Cooperative

Networking in wireless fading environments; see e.g., [4], [5], [6], [7]. First analyzed in [2], the relay

channel models a situation in which an ongoing transmission between a sourceS and a destinationD

receives cooperation from a “relay” terminalR. The broadcast nature of the wireless environment makes

this setting particularly appealing, [3].

While relay cooperation can increase the capacity of theS → D link, diversity not capacity is the

main advantage that relay cooperation offers for wireless networks. Indeed, we will later show that the

capacity increase is not significant in general, but that the outage probability decays with the second

power of the signal to noise ratio (SNR). This has to be contrasted to the inversely proportional decay

of the direct link, showing that in non-ergodic scenarios the relay may offer a significant advantage.

To clearly asses the diversity advantage we adopt the diversity-multiplexing tradeoff tool introduced

in [8] for point to point multiple input multiple output (MIMO) channels. Constraining the communica-

tions to orthogonal channels this tradeoff was studied in [4]. For the general case of half-duplex relays it

was studied in [1]. In this report we study full-duplex relays in non-orthogonal channels and show that

similar conclusions hold true.

II. T HE RAYLEIGH FADING RELAY CHANNEL AND THE RATE DIVERSITY TRADEOFF

Depicted in Fig. 1, the Rayleigh fading Gaussian relay channel consists of a SourceS transmitting to

a DestinationD with the help of a RelayR. Due to the broadcast nature of the wireless channel, the

source’s signalXS is received byD and R, based on the information received, the relay constructs a

signalXR which in turn sends to the destination. LettingYD andYR be the signals received atD and

R respectively the input-output equations for the relay channel can be written as

YD =
√

hSD ejφSDXS +
√

hRD ejφRDXR + ZD, (1)

YR =
√

hSR ejφSRXS + ZR (2)

where hSD ejφSD , hSR ejφSR and hRDejφRD denote the channelsS → R, S → D and R → D

respectively; and;ZD and ZR represent Additive White Gaussian Noise (AWGN) with zero mean and

variancesND andNR respectively.

The Rayleigh fading assumption implies that the channels
√

h ejφ (with hejφ denoting any of the

S → R, S → D andR → D channels) are complex normally distributed random variables. Equivalently,

this implies thatφSD is uniform in [0, 2π] and thath is exponentially distributed (see also Appendix A).
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Fig. 1. The Gaussian Relay channel. A relayR cooperates with the ongoing transmission between the sourceS and the

destinationD.

The mean channel powers will be denoted byh̄SD = E(hSD), h̄SR = E(hSR) and h̄RD = E(hRD). We

will further assume thatPS : E(X2
S) = PR : E(X2

R) and define SNR as

γ =
PS

ND
=

PS

NR
=

PR

ND
. (3)

which can be done without loss of generality if we incorporate the difference in noise and signal powers

in the channel coefficients.

It can be proven that relay cooperation does not yield a significant ergodic capacity increase in

a Rayleigh fading environment (see Section III) but it can offer a significant advantage in terms of

outage capacity. This motivates studying the rate-multiplexing tradeoff in the relay channel, following

the formulation and solution for the MIMO channel introduced in [8]. Consider a family of codes{Cγ}
indexed by their operating SNRγ such that the codeCγ has rateR(γ) bits per channel use and error

probability Pe(γ). For this family we define the multiplexing gainr and the diversity gaind as follows

r := lim
γ→∞

R(γ)
log γ

, d := − lim
γ→∞

log[Pout(γ)]
log γ

. (4)

The purpose of this report is to study the diversity-rate functiond(r) for some specific protocols, study

the best achievable diversity for a given rated∗(r), and show that this optimum curve is achieved by and

adaptive decode and forward protocol.

Notation: In the remaining of the paper we will say thatf(x) ∼ Cxn if limx→0 f(x)/xn = C and that

f(x) ∼ C/xn if limx→∞ f(x)xn = C

III. E RGODIC CAPACITY OF THE RAYLEIGH FADING RELAY CHANNEL

When considering fading with channel state information available only at the receivers we have to

distinguish between the so called instantaneous, ergodic and outage capacity. If we consider given
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realizations of the fading coefficients, we say thatC = C(hSD ejφSD , hSR ejφSR , hRD ejφRD) is the

instantaneous channel capacity. The ergodic capacity is defined as the expected value over the channel

realizations of the instantaneous capacity:

C̄ = E[C(hSD ejφSD , hSR ejφSR , hRD ejφRD)] (5)

and is interpreted as the capacity achievable when packets are long with respect to the channel coherence

time. When the channel varies slowly with respect to the coherence time a more compelling measure is

the outage probabilityPout defined as the probability that a given rateRout can be transmitted using the

given channel

Pout(Rout) = Pr{C(hSD ejφSD , hSR ejφSR , hRD ejφRD) < Rout} (6)

Even though the capacity region of the relay channel is unknown we can obtain interesting conclusions

by using the well-known max-flow min-cut bound [2]. This bound, when specialized to an AWGN channel

yields the expression

C < max
ρ∈[0,1]

min





log
(
1 +

(
hSD + hSR + 2ρ

√
hSDhRD |ej(φSD+φRD)|) γ

)
,

log(1 + (hSD + hRD)(1− ρ2)γ)



 (7)

for the instantaneous channel capacity. Note that the first term of the bound in (7) increases asρ increases,

while the second one decreases.

Let us consider the ergodic capacity as defined in (6), and apply it to the capacity bound (7). An

important first observation is that the channel phases appear only in the first term and that taking expected

value over them yields

C̄ < E max
ρ∈[0,1]

min
[
log (1 + (hSD + hSR+) γ) , log(1 + (hSD + hRD)(1− ρ2)γ)

]
, (8)

which is just a formal statement that in a wireless fading channel we cannot expect coherent superposition

of source’s and relay’s signals. Interestingly, the first term does not depend onρ yielding a simple upper

bound on the ergodic capacity of rayleigh fading relay channels

C̄ < E [min [log(1 + (hSD + hSR)γ), log(1 + (hSD + hRD)γ)]] (9)

Comparing (19) with the direct transmission capacityC̄DT := E[log(1 + hSDγ)] we can see that the

capacity increase in the relay channel stems form the extra power transmitted by the relay channel; or;

from the better channelshSR andhRD.

The increase is in any case small and suggests that the advantage of relays, if any, are not from an

ergodic capacity point of view. This leads us to the study of outage probability in the next section.
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IV. OUTAGE CAPACITY

In order to study outage probability we will introduce achievable rates in the relay channel by

considering specific protocols. Studying the outage behavior of this specific protocols will lend a lower

bound in the outage capacity.

The classical achievable region for the relay channel, is the one achieved by Markov coding (MC)

defined as follows.

Definition 1 Markov coding protocol.In the Markov coding protocol the source sends information at a

rateR1 such that the packets are perfectly decoded by the relay. The relay later sends information to let

the destination resolve the uncertainty in the received message.

The details of how this may be implemented are to be found in [2]. Note that different form the usual

definition we are not requiring Source and Relay to cooperate in resolving the uncertainty at the destination

but letting this task to the relay alone.

The instantaneous transmission rate achievable by the MC protocol of Definition 1 is well known and

given by

C > IMC = min [log(1 + hSRγ), log(1 + (hSD + hRD)γ)] (10)

where we also stated that being achievable by a certain coding schemeIMC is a lower bound on capacity.

Combining (10) with (6) we can obtain the following upper bound in the outage probability of the

relay channel,

Pout(Rout) < PMC
out (Rout) := Pr{IMC < Rout}

= Pr{min [log(1 + hSRγ), log(1 + (hSD + hRD)γ)] < Rout} (11)

To study the outage probability upper bound in (11) we introduce the channel power outage variable

defined as

hout =
2Rout − 1

γ
(12)

and we stress thatlimγ→∞ hout = 0. Using (12) we can reduce (11) to the expression,

PMC
out (hout) = Pr{min(hSR, hSD + hRD) < hout} (13)

It is not difficult to obtain a closed form expression forPMC
out (hout) in (13). However since we are only

interested in the high SNR behavior it suffices to study the probability ofhSR and hSD + hRD to be
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very small. This can be done using results about exponential random variables summarized in Appendix

A; indeed, using (31), and then (29) and (30) we obtain

PMC
out (hout) ∼ hout

h̄SR
+

h2
out

2h̄SDh̄RD
∼ hout

h̄SR
(14)

since the linear term dominates the quadratic one ashout → 0.

While the discussion about the diversity/multiplexing tradeoff will have to wait until Section VI, (13)

already hints that MC coding does not achieve diversity gains since asγ → ∞ the outage probability

behaves like the outage probability of direct transmission. This is, perhaps, to be expected since the rate

of MC coding is limited by theS → R channel.

A possible solution for the lack of diversity of MC is an adaptive version of the protocol. Indeed,

given that the relay measures the channelhSR it can adapt its cooperation strategy to the quality of this

link. Thus, if the channel is good it cooperates as in Definition 1 and if it is not it just remains silent.

This is better stated in the following definition.

Definition 2 Adaptive Markov coding protocol (AMC).Considerhout as defined in (12). IfhSR < hout the

relay does not cooperate in the transmission; ifhSR < hout the relay cooperates as in MC (Definition 1

This is unmistakeably a hybrid between MC and direct transmission and the achievable rate is thus given

by,

C > IAMC =





log(1 + hSDγ), hSR < hout

log(1 + (hSD + hRD)γ), hSR > hout

(15)

As well as we did for MC coding we can study the outage capacity which in this case is given by

Pout(hout) < PAMC
out (hout) = Pr{hSD < hout, hSR < hout}+ Pr{hSD + hRD < hout, hSR > hout}.

(16)

Using independence of the fading coefficients we reduce the former to

PAMC
out (hout) = Pr{hSD < hout}Pr{hSR < hout}+ Pr{hSD + hRD < hout}Pr{hSR > hout}. (17)

Finally, considering the high SNR (lowhout) behavior we can use (30) to obtain

PAMC
out (hout) ∼

[
1

h̄SDh̄SR
+

1
2h̄SDh̄RD

]
h2

out. (18)

Different from (14), the outage probability of AMC as given in (18) behaves asγ−2 hinting to the

diversity gains of AMC coding.
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Finally, let us introduce a lower bound in the outage capacity by considering the capacity upper bound

in (7). Consider the second expression only and setρ = 1 to obtain that the instantaneous capacity must

satisfy,

C < ITA log(1 + (hSD + hRD)γ), (19)

which, by the way, can be interpreted as the capacity of a single antenna transmitter two antenna receiver

channel. This capacity upper bound leads to an outage probability lower bound that can be expressed as

Pout(hout) > P TA
out (hout) = Pr{hSD + hRD < hout} (20)

As before, we are interested in the high SNR behavior; for what we lethout → 0 to obtain

P TA
out (hout) ∼

[
h2

out

2h̄SDh̄RD

]
. (21)

As expected, the relay channel cannot offer a diversity order greater than2.

Remark 1 The diversity order of the relay channel is not better than2 as per (21). Since this diversity order

is achieved by AMC as per (18) we conclude that AMC is optimal from a diversity order perspective

V. RATE MULTIPLEXING TRADEOFF

In this section we will use the outage probability lower boundP TA
out (hout) in (21) to obtain a bound

in the optimum diversity-multiplexing tradeoff of the relay channel. We will then show that this bound

is achieved by AMC coding but not by MC coding

So, consider the diversity gain definition in (4) and the outage capacity boundP TA
out (hout) in (20) to

obtain,

d := − lim
γ→∞

log[Pout(γ)]
log γ

≤ − lim
γ→∞

log[P TA
out (γ)]

log γ
. (22)

But now use the large SNR behavior ofP TA
out (hout) as described by (21) to obtain

d ≤ − lim
γ→∞

log(h2
out)

log γ
= −2 lim

γ→∞
Rout − log(γ)

log γ
. (23)

where for the las equality we used the definition ofhout in (12). Finally, note that according to (4)

r := limγ→∞(Rout/log γ) which upon substitution in (23) yields,

d ≤ 2(1− r). (24)

A parallel line of reasoning can be used for the MC protocol; using the high SNR outage behavior

summarized in (14) we obtain

dMC := − lim
γ→∞

log(PMC
out (γ))

log γ
= − lim

γ→∞
Rout − log(γ)

log γ
. (25)
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From where we use the multiplexing gain definition (4) to obtain

dMC = (1− r). (26)

Finally we can repeat the steps for the AMC protocol to obtain the expression [c.f. (18), (4)]

dAMC := − lim
γ→∞

log(PAMC
out (γ))
log γ

= 2(1− r). (27)

The rate-multiplexing curves (24), (26), and (27) are depicted in Fig. 2. It can be seen that the best

possible diversity gain is achieved when the multiplexing gain approaches 0, in which case the diversity

gain of MC approaches1 and the diversity gain of AMC approaches2. When the multiplexing gain

approaches1 on the other hand, the three curves yield 0 diversity gain. This is in all consistent with the

intuition that we can either get a diversity gain or a multiplexing gain but not both at the same time.

It is also consistent with the facts hinted in (14), (18), and (21) that the relay channel cannot achieve a

diversity greater than 2 and that this diversity is achieved by AMC but not by MC.

Finally, note that upper bound for the diversity-rate function in (26) coincides with the diversity-rate

function for AMC in (27). This fact allows to claim that the optimum rate function isd∗(r) = 2(1− r)

as stated in the following proposition.

Proposition 1 The optimum diversity multiplexing tradeoff of the relay channel is

d∗(r) = 2(1− r) (28)

Proof: Due to (24)d∗(r) ≤ 2(1−r), but due to (27)dAMC = 2(1−r). Since the bound is achieved

by at least one coding strategyd∗(r) is given by (28)

This proposition establishes the main claim of this report that the AMC protocol is optimal from a

diversity-multiplexing tradeoff point of view. We finish this section with some reamrks.

Remark 2 Similar studies for half-duplex relay channels were done in [4], and [1], with similar conclusions.

The half-duplex constraint is motivated by the fact that due to involuntary feedback form transmission to

reception the relay cannot receive and transmit at the same time. A way to circumvent with restriction

using two physical relays to simulate a single logical relay has been described in [5].

Remark 3 Quite surprisingly, analog repetition of the signalYR is also optimal for the diversity-multiplexing

tradeoff, as shown in [4] for half-duplex relays. Alas, implementation of this protocol requires storage

of the analog waveform, and for this reason we favor the AMC protocol presented here.

May 4, 2005 DRAFT



MULTI-USER INFORMATION THEORY (PROJECT REPORT) 9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Diversity multiplexing tradeoff in the Rayleigh fading relay channel

multiplexing gain

di
ve

rs
ity

 g
ai

n

Markov coding

Adaptive Markov coding

Upper bound

Fig. 2. Multiplexing-diversity tradeoff for the relay channel. The optimum diversity tradeoffd∗(r) = 2(1− r) is achieved by

the AMC protocol in Definition 2.

Remark 4 The original definition of rate in [8] considers packet error probability instead of outage capacity.

The definitions are equivalent for the problem at hand and the one in (4) was chosen for simplicity of

exposition.

VI. CONCLUSION

In this report we have studied the multiplexing-diversity tradeoff in the relay channel. We considered the

classical Markov coding scheme and showed that this protocol does not achieve any diversity advantage

with respect to direct transmission. We then showed that this is not an inherent limitation of the relay

channel by establishing that an upper bound for the optimum diversity-rate curve behaves like a two

antenna receiver. Finally, we showed that this optimum diversity-rate curve can be achieved by an adaptive

version of the Markov coding scheme.

VII. A PPENDIX

A. Limiting probabilities of exponential random variables

That the fading is Rayleigh implies that the channel variablesh(·) are exponentially distributed. Letting

h denote any of this variables we have that its probability density function (pdf) isph(x) = 1/h̄ exp(x/h̄)

with h̄ = E(h) the average channel power.
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The outage probabilities in (20), (13), and (16) can be found from the exponential distribution. However,

since we are interested in high SNR behavior we can obtain even easier expressions by looking at small

values ofh,

Pr{h < ε} =
1
h̄

exp
(x

h̄

)
∼ ε

h̄
(29)

If we consider the sum of two exponential variablesh = h1 + h2 with h1, h2 exponentially distributed

we have

Pr{h < ε} =
∫ ε

0
Pr{h1 < ε− h2}ph2(h2)dh2

∼ 1
h̄2

∫ ε

0
Pr{h1 < ε− h2}dh2

∼ ε2

2h̄1h̄2
(30)

Finally, if we consider the minimum of two random variablesh = min(h1, h2) with h1, h2 having

arbitrary distributions such thatlimε→0 Pr{h1 < ε} = 0, we obtain

Pr{h < ε} ∼ Pr{h1 < ε}+ Pr{h2 < ε} (31)

Equations (29), (30), (31) are used to obtain the outage probability limiting behavior for large SNR

in (21), (14) and (18).
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