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Abstract: This survey is motivated by the need to gather and 
understand all the fundamental results concerning the capacity limits 
and the asymptotic performance of MIMO systems. MIMO systems 
based on the multi-antenna array (MEA) technology, offer significant 
increase in the spectral efficiency of wireless systems by exploitation and 
processing of the spatial dimension, except from the temporal. We state 
known results under different correlation models and channel state 
information assumptions, based on the existing literature. Furthermore, 
we present results concerning the transmitter optimization problem (i.e. 
optimization of the transmit covariance) and we state capacity results 
for the cases that these results are known. Then, we examine closely the 
Ricean channel model and we try to analyze the impact of the Ricean K 
factor on the capacity limits. 
 
 

INTRODUCTION 
 
   Nowadays, there is a great expansion of technology all over the world. The planet 
“earth” becomes a small village through the great evolution of transportation and 
communication systems. The economy follows the path, which leads to a global 
picture of the society structures, among different nations. As economy expands, it is 
inevitable that technology will track and follow the expansion. Wireless systems 
obtain a central role to this “homogeneity” transformation. This “compact” process 
of evolution combined with the annual increase of the world population, yields an 
increase of the number of users that they enter the pool of wireless technology use. 
Consequently, in order to accommodate the new users, especially in crowded cities 
and the new applications of wireless technologies, there is an increasing need in ever 
higher data rates. This goal has to be achieved under certain challenging 
assumptions imposed by the existing structures on wireless LANs i.e. power and 
bandwidth constraints. Also, since in mobile systems the users are moving people 



using small devices, the next challenging assumptions that is imposed is that of 
complexity. 
 
   MIMO techniques offer great increase in spectral efficiency. Originally, Foschini, 
[1], and Telatar, [2], predicted this huge increase in spectral efficiency, when the 
wireless system employs multiple receive and/or transmit antennas. The basic 
assumption that characterizes an environment such that the gain in spectral 
efficiency is significant is an environment of rich scattering. Another great issue, in 
combination with the above, is how the coherence time of the channel is compared 
with the burst time or in other words how fast the channel changes. One technique 
that can be used in MIMO systems is that of “training of the channel”. Through this 
technique and by the use of pilot signaling from the transmitter, the receiver can 
perform channel estimation and it may use a fast feedback link to send this valuable 
information to the transmitter. The implicit assumption almost always is that the 
feedback link is noise free. Hence, by this two-way communication scheme the 
transmitter obtains channel state information (CSI) (global or partial) and it can use 
this information to achieve higher capacity. In mobile systems, this can be the case 
to either uplink or downlink scenarios.  
 
   The general issue that comes into picture, in wireless communication systems is 
“multipath”. Gesbert in [3] tries to answer the question: “Multipath: Curse or 
blessing?”. So the natural question in our case is: “How does multipath connect to 
the capacity achieved by MIMO systems? ”. Basically, multipath is a spatial 
concept, connected to the general issue of scattering. A propagation environment, 
which is characterized by rich scattering offers the valuable operating condition of 
independent transmission paths. This independence condition in combination with 
some “homogeneity” of the propagation environment leads to transmission paths of 
independent and statistically identical behavior. Consequently, we may describe the 
channel with such a model that the complex channel gains are i.i.d rvs, which in 
turn may lead to a simplification and mathematical tractability of the system’s 
analysis.  
 
   So far, there are several contributions available for MIMO systems. Practical 
channel models that they have been analyzed are the Rayleigh and the Ricean 
fading models. The general channel model is:     )1(
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representing the output of the channel (received vector) as a function of the input 
(transmit vector) in the baseband. This model fits to the representation of a MIMO 
system with M transmit antennas and N receive antennas, under the implicit 
assumption of a single user matrix channel. The channel matrix 
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H  denotes the 
fading effect of the channel on the channel input, while the vector  denotes a 
additive noise vector, at the front end of the receiver. The noise vector is assumed to 
contain independent, circularly symmetric, complex gaussian entries with zero 
mean and variance . In the Rayleigh fading model, 
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independent, circularly symmetric, complex gaussian entries with zero mean and 



variance α ,while in the Ricean case the independent, circularly symmetric, complex 
gaussian entries are assumed to have nonzero mean and so the channel matrix  H  

can be written in the following form: HDH
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where  is a deterministic NxM matrix, denoting the line_of_sight (LoS) 

component and 

)(DH LOS

)~(HH NLOS  is a random matrix with the same description as that in 
the Rayleigh fading model. K  is the Ricean K factor. The channel model given by 
(1), contains another constraint, mentioned in the beginning of this introduction. 
The input vector is subject to an average power constraint i.e , where PxxE ≤+ ][ +  
denotes the hermitian transposition.  
 
   The channel model, given in (1), is the general channel model for MIMO systems 
in the baseband, as we mentioned earlier. This matrix model occurs naturally from 
the original motivation of MIMO systems i.e. the diversity gain, which is obtained 
by introducing in the system several transmit and/or receive antennas, increasing in 
this manner artificially the spatial dimensions of the entire communication scheme. 
Antenna diversity leads to efficient utilization of the available bandwidth, while it 
can also lead to limitation of the transmit power and reduction of the co-channel 
interference. Diversity, at last, ends to increased capacity i.e. increased throughput 
of the hole system in its “global” picture. Basically, if one wants to use antenna 
diversity at the receiver, the exploitation of this set up is straightforward: the 
receiver can always perform channel estimation from the received data. The use  of 
antenna diversity at the transmitter is difficult, since the transmitter cannot in 
general guess the channel state in a magic way ( the transmitter does not have any 
data that have absorbed the channel effect). In this case, the problem can be 
approached by various techniques such as the Time Division Duplexing (TDD) or 
Frequency Division Duplexing (FDD), so the transmitter can figure out the channel 
trough feedback information from the receiver, unless the designer of the system 
wants to avoid “closed loop” schemes of communications, trough the use of space-
time codes (STC).  
 
   After, the above general introduction, we state in the following sections the main 
results concerning the capacity analysis of MIMO systems and we focus on the 
Ricean case. The results, presented below, are generally known in the literature, 
while in each case we give the reference and we state various types of channel 
knowledge at the transmitter and/or the receiver. 
 
 
 
 
 
 
 
 



Capacity of MIMO systems   
 
 
   In the previous section, we stated the channel model for single user MIMO 
systems. After having the appropriate framework, we may first proceed in 
describing some general concepts and giving some definitions in the MIMO case. 
 
   First of all, we consider  to be white (independence assumption based on the 
gaussianity and the existence of no correlation among the additive noise vector 
components). Using the observation in [4], we may also result in the same model in 
the case of nonwhite noise covariance. If the noise covariance is denoted by , this 
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   Also, another interesting observation in [4] justifies the aforementioned statistical 
model, especially in the case where the channel matrix H  is assumed to be zero 
mean. This observation is based on a very useful insight of how a model that one 
selects to describe a real situation might highlight the special nature of the time-
space evolution of a particular phenomenon. The authors ,in [4], mention that the 
statistical model depends on the time scale of interest. The explanation is that the 
structure of the channel matrix H , i.e. the values of the entries, reflects the 
geometry of a particular propagation environment. While in the short term, the 
channel coefficients might be nonzero mean and correlated random variables, in the 
long term, they can be described as zero mean uncorrelated random variables due 
to averaging over several propagation environments. This capitalizes on the fact 
that the user in a wireless system generally moves. The motion generates different 
geometries while all his/her possible movements generate an infinite number of 
channel realizations. Note that the possible movements of a particular user depend 
on his/her will to follow a particular direction. Even as person, a user has infinite 
many choices which are countable according to his/her understanding of the world 
as a discrete reality, its own inherent nature as generating motive of the statistical 
phenomenon of the channel variations, has the “power of continuous”. Even this 
rather philosophical approach seems to be contradictive, one can verify that it’s not 
after some thinking. The averaging procedure is a “smoothing”, which has the effect 
of gradually erasing the special form of any instantaneous channel realization. This 
explanation/justification of the selected model is somehow intuitive and it may based 
on some experimental results i.e. reduces to the well-known strategy used in science 
that justifies the use of certain model, based on how well the model “fits” the data. 
But it is generally easily understood that a model has an axiomatic foundation, while 
from its very own nature, it has the ability of bringing in the surface certain 
aspects/details that the engineer/scientist may want to highlight. The above aspect is 
rather philosophical and capitalizes on the general principle that nature can never 
be described exactly, only approximately. For example, even if we describe certain 
phenomena statistically, the nature of any phenomenon is deterministic depending 



on the infinite many variables/parameters which act deterministically but cannot be 
tracked so in the large scale they are described under the umbrella of stochastic 
theory.  
 
   Suppose now that the channel distribution is generally known as a functional 
relationship but depends on a generally unknown parameter θ , that characterizes 
the transmission environment. By [4], we have the following definition of the 
“ergodic capacity” : “The ergodic capacity C  is the capacity )(θC  averaged over 
different realizations of θ :    )3()]([ θCEC = . 
By [4], we also have that the computation of )(θC  under a general is generally 
a hard problem. Hence, the research interest has been focused on the following 
three models: 
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(a) Zero mean spatial white (ZMSW): ; WHHHE == ,0][ WH  is a white 
channel matrix. 

(b) Channel mean information (CMI): WHaHHHHE +== ,][ ; this model 
can naturally fit in the Ricean channel case, where is the estimation error. a

(c) Channel covariance information (CCI): 2
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   In the following, we state the capacity results for the three above cases. These 
results are summarized based on [4]. Before getting involved with the above 
argument, just in favor of intuition, we give the “constant MIMO channel capacity” 
([4]): 
   “When the channel is constant and known perfectly at the transmitter and the 
receiver, the capacity is: 
                   )4(||logmax )(:
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where Q  is the input covariance matrix . 
 
   As mentioned in [4], it was earlier proved by Telatar in [2], that the above 
channel, under the previous mentioned assumptions can be transformed into a bank 
of parallel SISO(single input-single output) branches/channels, achieving 
interference cancellation through an SVD of the channel matrix at the transmitter. 
This singular value decomposition yields to  parallel channels. If we 
denote the singular values of 
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determines the optimal power allocation([4]): 
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where µ  is the waterfill level,  the power of the  eigenmode of the channel and 
 denotes the positive part of x i.e. . Then capacity is ([4]): 
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   We can observe in the above case that the capacity expression doesn’t depend on 
the eigenmodes of the channel but only on its singular values. Basically, the 
interesting to note is how a certain definition of the channel matrix H ,as a matrix 

 which is just a certain placing of complex numbers in a rectangular form, 
yields to the so significant from practical perspective channel diagonalization. 
Basically, the eigenmodes are characterized by orthogonality and reflect the spatial 
structure of the transmit linear array of antennas (interelement spacing), the spatial 
structure of the receive linear array, their distance from each other, the scattering 
peculiarities of the specific propagation environment and how these parameters in 
combination with the transmitted power, yield such a wave superposition at the 
receiver, that the transmitted eigenmode maintains its directionality when passing 
through the propagation environment. Channel diagonalization has the desirable 
effect of interference cancellation. We can see by (5) that as the singular value  
increases,  increases. This shows that the singular values of the channel represents 
the inverse of the level of power absorbency in the originally transmitted power, 
that is imposed by the channel to the  eigenmode. We can observe that this 
absorbency is equal to all the transmitted vector components, which means that the 
original channel decomposition yields a coupled and “compact” view of the channel 
at the receiver. Keep in mind this explanation, because it might be useful later on. 
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   The above results, in the constant MIMO case, set the foundation for the study of 
fading MIMO channels. Obviously, in the constant MIMO case, with transmitter 
channel state knowledge, the channel capacity case doesn’t contain any ensemble 
averaging. Note that the capacity is a concept that is closely connected only with the 
general view of the transmitter about the communication protocol. All the capacity 
expressions that will be stated later on, are dictated from the degree of knowledge 
that the transmitter has about the channel state or the channel 
covariance/uncertainty. And this is a consequence of the fact that the data rate is a 
quantity determined by the sender.  
 
   For the fading case, we state the results for the capacity expressions based on the 
different assumptions for the channel state information, given in [4]: 
(a) Capacity with perfect channel state information at the transmitter (CSIT) and at the 
receiver (CSIR): This model implies that the channel varies slowly. Slow variation of 
the channel might imply slow or no motion at the receiver in a downlink scenario or 
the transmitter, in an uplink scenario. This operating condition leads to the ability 
of the receiver to perform channel estimation (assume no error) and to feed the 
channel state information back to the transmitter perfectly, through a noiseless 
feedback link. Obviously, even if the channel condition is known at the transmitter, 
the channel fade process is a reality. Hence, we may obtain an ergodic capacity 
expression for this scenario ([4]): 
       )7(|]|log[max )(:
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Note that the expectation operator  precedes the expectation operator over the 
transmit covariance, which implies that the channel variation is so slow that the 
transmitter can use efficiently the CSI that it has in the next transmission. In real 
operating conditions, the last expression given in (7), is accurate only in the case that 
the channel remains the same during the channel estimation at the receiver, the 
feedback to the transmitter and during the next transmission. 

[.]HE

(b)Capacity with perfect channel state information at the receiver (CSIR) and channel 
distribution knowledge at the transmitter(CDIT):  This is the ZMSW case. Here, the 
capacity expression is: 
            )8()(max )(: QCC PQtrQ ==

where . The matrix Q is the transmit covariance. 
As mentioned in [4], for a given covariance matrix, the mutual information is 
achieved by transmitting independent, circularly symmetric, complex gaussian 
symbols along the eigenvectors of Q . The powers allocated to each eigenvector are 
given by the eigenvalues of Q . In this case, we can see that the expectation operator  

 comes after the maximization. This reflects the fact that there is no feedback 
from the receiver. Hence, as mentioned in [4] and was proved in [2], the optimum 

input covariance has the form 

)9(|]|[log ++= HQHIEC NH

)(QC

[.]HE

I
M
PQ  and the capacity expression becomes: =

      )10(|]|[log ++= HH
M
PIEC NH . 

   The effect of selecting as an optimum input covariance a scaled identity matrix, is 
to split the power equally among all the transmit antenna elements. Since the 
transmitter doesn’t have any knowledge of the channel matrix, the best it can do, is 
to use the multipath. So what it does, is that it considers the channel to be equally 
good in all directions and puts equal amount of powers to propagate through 
different spatial paths. This is intuitively correct, since under these circumstances, 
the argument is that this selection yields a maximization of the power that each 
receive antenna collects. In this case, Telatar proved in [2] that capacity grows 
linearly in min{M,N} as M,N increase simultaneously. 
   The operating conditions, reflected by this selection of the covariance, is that the 
channel may varies fast enough so that the receiver cannot feedback this 
information to the transmitter on time or the feedback link is too noisy. 
( c) Capacity with perfect CSIR and CDIT: CMI and CCI models: 
   The assumptions here are exactly the same, as in the previous case, so again we 
have: 
            )(max )(: QCC PQtrQ ==

where . |]|[log ++= HQHIEC NH

By [4], the optimum input covariance might be full (high) rank. In the case that its 
rank becomes unity, capacity can be achieved via beamforming. 
    
   There are some significant advantages associated with the beamforming. The 
general results that occur are that beamforming leads to a very simple 
implementation of the transmitter so one can reduce complexity. Also, beamforming 



may lead to scalar coding of each bit stream in each transmit antenna element. In 
the scalar case, there are coding schemes that achieve performance near to capacity. 
These are the turbo codes. Based on these advantages, Jafar in [5] explores the 
aforiomentioned cases and proves necessary and sufficient conditions for which 
beamforming is optimal in a MIMO system, in the sense that beamforming achieves 
capacity. We present here theorems 2 and 4 from this paper: 
Theorem 2: Under the CCI model, the input covariance that maximizes (8) has unit 
rank if and only if: 
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where  is the incomplete Gamma function. The channel matrix 

is of the form 
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vector  given by (1) is assumed to be white, then  is the variance of each noise 
vector component.  
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Theorem 4: Under the CMI model i.e. the model for which wHHH += µ , the input 
covariance matrix that maximizes (8) has unit rank if and only if: 

2

2

2
1

)1(1
]

1

1[

σ

σ

σ
µ P

NP

w
Ph

E
+

−+
≤

+
   

where  is a noncentral chi-squared random variable with 2N degrees of freedom 
and noncentrality parameter  where  is the nonzero eigenvalue of .  
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   After we have stated the general results for MIMO channels, we are now ready to 
proceed furthermore to the Ricean channel model and state the available results for 
this case. The Ricean distribution dictates the structure or the kind of the random 
variables consisting the channel matrix. In this case, the complex channel gains are 
gaussian with nonzero mean. Showing explicitly the dependence of the channel 
matrix on the Ricean K factor, we may write the channel matrix in the following 
form: 
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The component matrices  have been explained previously, while the K 
factor represents the ratio of the power of the LoS component over the NloS 

component. We can observe in (11) that as 
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, we approach the deterministic case, while as , the channel model 
reduces to Rayleigh fading.  
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   At this point, it is crucial to make the following extension: when the channel model 
describes with enough accuracy the reality, it is significant to analyze it. The natural 
process of human perception, concerning the models, works in two directions: A 
model serves as a representation and a parametrization of the reality, while the 
same model, when it fits the reality, it helps in gaining greater insight in how the 
inner mechanism that drives the reality works. This is something that a naturalist 
philosopher, like Andres Breton or an ancient Greek philosopher, like Aristotelis, 
would call the “closed loop of perception”. Or even in later years, we may recall 
Haxley and the “Doors of perception”. It is the engineer or the scientist, who in the 
process of understanding and control nature, tries to “break the old, stacked doors 
of perception”. The understanding of the model leads to better exploitation of the 
natural resources. One may claim that for the specific problem of channel capacity, 
it is the model perception that will lead us to greater data rates. 
 
   In the Ricean case, we may state the known results based on [6]. In order to be 
consistent with the notation of this source, we rewrite the channel model as follows: 
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where we have  co-located transmit antennas and  co-located receive antennas. 
The channel matrix 
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   Furthermore, another assumption that is stated in [6], is that the sequence of the 
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   We state now the different asymptotic capacity results for the Ricean channel 
based on [6]. 
 
Perfect channel knowledge at the transmitter: 
 
[6]:Theorem 1: Given a channel H, the channel capacity per receiving antenna 
converges almost surely as ∞→= tr nn β  to  
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   Also by [6], if the distribution function )(λF  has a continuous derivative, it is related 
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Perfect knowledge of NloS component: 
 
By [6],the channel capacity for a Ricean channel when the Tx has knowledge of the 
channel mean is achieved by gaussian vectors having the same eigenvectors with 

t
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. This is a general result and it can be stated as the general problem of 

the eigenspace matching. Basically, since the Tx has knowledge of the channel mean, 
its tries to exploit this information since the channel mean denotes the average 
channel behavior. Intuitively, it is correct that the eigenvectors of the optimal 
transmitted covariance are the same with those of the channel mean. This process 
leads to a sort of coupling the transmission with the peculiarities of the channel 
average behavior. What is the gain from finding the eigenvectors of a channel 
matrix? What is the advantage? Our intuition suggests that the propagation 
environment, if assumed to be fixed, determines the wireless channel. A fixed 
environment leads to a fixed channel matrix that reflects the whole set up of this 
environment. We should scan the whole 3-D space in order to find such directions of 
forcing the power to move so as the superposition at the Rx will yield a vector which 
is just a scaled version of what we introduced to the input. It is amazing to 
understand that the power moves in a certain propagation environment and it is 
absorbed in certain amounts or with certain rates from the existing materials, it is 
reflected to move to other directions and finally reaches the receiver. This whole 
microscopic behavior can be predicted and used by an engineer in the macroscopic 
fashion by a so simple mathematical construction/concept as the channel matrix.  



   By [6], we state the second theorem for this case: 
 
Theorem 2: Let  be the line of sight component of H, with SVD and 
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),),(,( βλλ KFq  denotes the diagonal entries of Q  and ˆ ),),(,0( βλ KFqqo =  
 
   In order to get the asymptotic capacity in this case, we just need to maximize over 

, the expression given above for the mutual information.  Q̂
 
   In [6], what is also stated is the case the Tx has knowledge of the limiting 
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significant knowledge is the eigenstructure of the channel matrix. The eigenvectors 
of the channel matrix give the proper transmitting directions. A knowledge, such as 
the limiting eigenvalue distribution of the mean is not important. So, as intuition 
suggests, since the Tx doesn’t have any information about the channel matrix, the 
best thing to do is to split all the transmit power equally among all the Tx antenna 
elements. Normalizing the transmitting power, we get an optimal covariance 

and the asymptotic mutual information per receiving antenna, as 
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   Based now on further observations made in [6], we have that the Rice MIMO 
channel with rank –1 line of sight behaves as a Rayleigh MIMO channel in the 
asymptotic regime, i.e as  ∞→tr nn , . The result is intuitively correct since as 

we have more and more transmission paths averaged, so we get the zero 
mean effect leading to Rayleigh behavior. 
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Monotonicity results concerning the capacity of Ricean MIMO 
channels 
 
   After having stated all the previous results available in the literature for the 
asymptotic Ricean case analysis, we may also mention some significant results about 
the monotonicity behavior of the channel capacity in the Ricean case. Before 
stepping into this argument, we may clarify that for the Ricean case, the asymptotic 
analysis is suitable since it makes the approach more tractable, in mathematical 
sense. At this point, one may wishes to touch upon the previous claim. Basically, if 
we observe the results for the CMI model and we compare it with the CCI model or 
the Rayleigh fading model, then we may understand that the zero mean makes 
things easier. The asymptotic analysis offers the “almost zero mean behavior”, since, 
as we mentioned earlier, in the asymptotic case, one has more and more spatial 
transmission paths to average over the channel effect. Furthermore, its important to 
understand that in many cases where the analysis is performed in the asymptotic 
regime, for example in estimation problems when one tries to find expressions for 
asymptotic variance of a scalar estimator or the asymptotic covariance of a vector 
estimator, this asymptotic regime might be reasonably reachable from a practical 
perspective. In our case, we wish to underline that the asymptotic regime can be 
considered a large but reasonable number of antenna elements in either the 
transmitter and/or the receiver.  
 
   Now, about the singular values of the mean in the Ricean case we have some 
monotonicity results. Why it is important to study the effect of the singular values of 
the mean and not the behavior of the entire channel matrix? The channel matrix is 
characterized by two components: one deterministic and one random. If we consider 
the random component matrix fixed, then a study of the singular values of the whole 
matrix is important. The singular values of the mean determine the volume/shape of 
the hyperellipsoid that is the basic subset of the min{M,N} space that the channel 
mean transforms unit vectors. This hyperellipsoid characterizes the mean channel 
behavior. Basically, if we could assume a fixed random component, with the same 
left and right singular vectors as the channel mean, the this random component 
component would determine a random process according which we would have 
hyperellipsoid perturbations. Actually, the  expressions that we have in the 
previous capacity formulas is nothing else but the volume of a hyperellipsoid. What 
we try to do is to maximize the volume of a hyperellipsoid. This fact, in combination 
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with the known result that the singular values represent the actual lengths of the 
semiaxes, may lead to the conclusion that the channel capacity depends on the 
singular values of the mean in a nondecreasing fashion. This conclusion is verified 
by the results, we state below, based on [7],[8]. 
 
   Lapidoth in [8], gives the following corollary: 
Corollary 1.3: Let bet two LoS component matrices with decreasingly 
ordered singular values 

mxnCDD ∈~,

                                     },min{21 ... nmσσσ ≥≥≥  
 
               and              },min{21

~...~~
nmσσσ ≥≥≥  

respectively. Then  
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where , ),(sup),( DKIDC K=Ε K  the input covariance subject to a power constraint 

and the mutual information which is given by the following 

expression: 
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.In this expression 

is the additive noise variance per component and the channel matrix in this case is 
written in the form where the Ricean 

2σ
RaylHDH += K  factor has been absorbed by the 

matrix components.  
 
   It is also worthy to record the following theorem from this paper: 
 
Theorem 1.4: The set of eigenvectors of the capacity achieving covariance matrix K, 
for the coherent MIMO Ricean channel must coincide with those of . DD+

 
   Basically, the above two results verify our earlier conclusion. The important 
concept of “ergodic capacity” in the Ricean MIMO case increases with larger 
singular values of the mean, while theorem 1.4 states that the optimal input 
covariance, when the set up is such that allows coherent reception (i.e. the receiver 
does perform channel estimation) must be simultaneously diagonalizable with the 
channel mean. This is something reasonable, because from our so far experience on 
MIMO systems, we know that the major motivation is to align ourselves with the 
eigenstructure of the channel mean matrix or the channel matrix in general, 
achieving in such a way orthogonal signaling or “multibranch channel decoupling”. 
 
   In [8], the authors state also monotonicity results when our operating definition of 
the channel capacity is the outage capacity. We didn’t define earlier the outage 
capacity and so we prefer not to record these results. If the reader of this report is 
interested in learning more on this topic, he/she may read the reference paper. 
 



   From the above results, the conclusion is that the singular values of the channel 
mean provides us with certain quantitative results on the channel “quality” or the 
increase in capacity that can be achieved when the transmitter has knowledge of the 
channel mean and it can use this knowledge to find the optimal input covariance. 
This last conclusion yields the solution of the transmitter optimization problem., in 
this case. 
 
   At this point, we would like to share with the reader of this survey some thoughts. 
It is obvious from the above analysis that information theory in these areas is not yet 
well established. The general ideas that drive this research are based on general 
motivations that exist in a wide area of analysis on wireless systems. The idea of 
MIMO systems goes a few years back and so the information theoretic perspectives 
of MIMO systems are now proceed into more depth. When one wants to built up a 
theory so as to explain certain behaviors either of physical phenomena or even social 
phenomena, the first thing he/she has to do is to set up the axiomatic foundation and 
then proceed to basic definitions. Note here that this set up doesn’t apply in the case 
that someone wants to explain phenomena of individual behavior, because as Paul 
Dirac claimed sometime in his lifetime, “human beings do not act according to 
probabilities. They act according to possibilities.” And just to make a perenthesis, 
this is the major reason that there is no global economical theory to describe and 
predict the financial behavior of large crowds, while the existing ones has huge 
prediction gaps.  From Shannon’s years, information theory has obtained the form 
of a whole science. It has all the formulation needed to claim that it is actually a 
theory. Many brilliant people worked throughout forty years so this theory to 
expand and cover all the areas of communication theory. From the above results, 
concerning the monotonicity results on the capacity of MIMO Ricean channels, we 
just have a first step in understanding the major parameters that have a significant 
impact on quantities, such as the channel capacity, in the MIMO case. 
 
 
           
                 

 Approach of the monotonicity behavior of the MIMO Ricean 
channel capacity, with respect to the Ricean K factor: A new 
result 
 
   As stated in the proposal of this survey, an interesting thing to examine, is the 
monotonicity of the channel capacity with respect to the Ricean K factor. Professor 
Nihar Jindal made the following conjecture: “If the receiver has CSI, while the 
transmitter knows  and if the number of receive and transmit antenna 
elements is equal, the channel capacity should be nondecreasing in K”.  

LOSH

 
   This proposition/conjecture is based on an intuitive observation: From the channel 
matrix formula, we see that as ∞→K , the only component that survives is the 
deterministic, while as , the only term that survives is the random 0→K



component. We may now observe carefully the equations (4),(7),(8) and (9). 
Obviously,  is a concave function, while the expectation operator is a 
generalized convex combination of all possible realizations of H. So, the 
deterministic capacity given by (4), is an upper bound to the other cases, based on 
Jensen’s inequality. So, the deterministic case, with transmitter CSI, outperforms 
the other cases, in the channel capacity sense. Consequently, the claim of Professor 
Nihar Jindal is intuitively correct. 
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   Furthermore, yesterday, during the last presentation, a classmate gave numerical 
examples where the actual channel capacity in the Ricean case, increases with K but 
at a specific point it saturates. From a practical perspective, the channel capacity 
indeed saturates with increasing K. Theoretically, it never stops to increase, as we 
approach the deterministic case. What is happening, is that the rate of increase of 
the channel capacity reduces gradually to zero, yielding this “saturation behavior”. 
Actually, we are never going to reach the deterministic case in reality. This is like 
the ancient paradox of the race between the turtle and the rabbit! So, what we will 
try to prove is that the channel capacity, in the Ricean case, is nondecreasing in K. 
 
   We give again the channel matrix formula: 
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leads to the conclusion that   is a nondecreasing function of )(Kf K . To prove this is 
straight forward since  is a continuous and differentiable function of )(Kf K , in 
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So, since the derivative is strictly positive in the interval ,  is an 
increasing function of 

),0[ ∞ )(Kf
K .  

 
   Furthermore, we will not bound ourselves in the case of square  with equal 
eigenvalues. Suppose that  is a rectangular matrix. Also, suppose that we 
examine the channel capacity in the asymptotic regime i.e. we let the number of 
receive and transmit antennas to increase to infinity, by maintaining a constant 
ratio, say 

LOSH

LOSH

β .  The singular value decomposition of the LOS matrix is given by: 
 



       )22(+Σ= UVH LOS

      where are two unitary matrices and ttrr xnnxnn CUCV ∈∈ , rt xnnR∈Σ  is a diagonal 
matrix, with ordered entries },min{21 ... nmσσσ ≥≥≥ . We now prove the following 
lemma: 
 
Lemma 1: If the LoS component matrix has an SVD given by (22), then the scaled LoS 
matrix LOSHξ , where ξ is a positive scalar, has an SVD given by the same formula, 

where the unitary matrices  are the same but the diagonal matrix  contains in 

this case the entries: . Since the scalar 
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ordering of the singular values is maintained:   },min{21
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nmσσσ ≥≥≥ .  
 
Proof 
 
   By (22), the LOS matrix can be written as follows: 
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iiiLOS uvH σ , where + denotes the hermitian transposition. Using the 

“orthonormality” property of the vectors  we may have: 
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the ordering of the singular values is maintained. Q.E.D. 
 

   By lemma 1 and by (20), assuming that 0
1
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Kξ , we have that the singular 

values of  maintain their ordering as LOSH ∞→K . Since   with ↑ξ K , we have that  
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~,~  respectively. By employing corollary 1.3 given previously, 

(Lapidoth [8]), we get the result that the channel capacity in the MIMO Ricean case 
is nondecreasing in K. 
 



                                            Conclusion 
 
 
   After we have seen all the above results, our experience is sufficient to get into 
final concluding remarks and extensions to general issues. Every conclusion is like 
the end of a trip either in reality or in a depth of time, through life. Without 
conclusion, we don’t have a complete understanding about the meaning of 
performing research or performing life. When a transmitter emits a signal into the 
environment, its wish is the receiver to get the signal in the best possible condition. 
The receiver has actually the same wish. Between these two wishes, there is the 
actual signal, which experiences the “trip” i.e. the multiplicative and additive effects 
of the channel. What is unfair into this “picture”, is that the signal cannot perform a 
“conclusion” of itself. The conclusion, about the condition of the signal, is going to 
be given from the receiver. Any receiver cannot give the same estimate of what 
effects the signal experienced, when passing trough the channel. So, the quality of 
the estimation of the signal condition depends on how “smart” or how 
“experienced” the receiver is. This point-to-point communication scheme can be 
generalized into MIMO systems. What is happening here is that we have a bank of 
receivers (actually one receiver in the single user case, the smartest we can think) 
which have the same quality in performing conclusions i.e. they are equally smart. 
Then, we reveal the signal to all of them, with the difference that each one receives 
the same signal in different condition. Then, each one gives its conclusion. Hence, 
from this combined procedure of equally smart conclusions for the same signal, we 
hope that we can improve the final conclusion, in comparison with the single 
transmitter –single receiver case. The projection to real life is the following: If we 
say the same story to a number of equally smart people, with small differences, the 
combined conclusion, based on their opinions is going to be better, than speak only 
to one person. In MIMO systems, multiple transmit antennas might transmit parts 
of a transmission vector with no overlapping in the information that they transmit. 
At the receiver’s side, multiple antennas collect the same signal i.e. all the 
components transmitted from each single transmit antenna element. But due to 
different propagation paths through the wireless medium, each receive antenna 
collects the same signal in different condition. Then, the processing of the multiple 
received replicas is performed in a centralized fashion, except from some 
preprocessing that might take place in each receive antenna.  
 
   The question is now, what do we win from a capacity perspective by this process? 
By the above “preprocessing”, i.e. the introductive previous paragraph ,it is obvious 
that by this introduction in the system of multiple antennas, we increase the hole 
throughput of the system. How do we achieve this argument? We achieve this 
argument by having multiple receive antennas to collect power from many different 
directions. Or hence we maximize the amount of information that passes through 
the channel by maintaining its “structure”. We can make the extension that if we 
have many people hearing the same story, we maximize our opportunity not to have 
“details” to be forgotten. I.e. we maximize the probability that someone will 
remember a certain detail, which might important for us in the future. We can also 



extend this “picture” to physical constructions that engineers try to achieve. For 
example, well-known pulses are the solitons. Solitons, as mechanical or optical 
waves, have the ability to travel trough huge distances by maintaining their 
“shape”. Hence they maximize our ability to keep the transmitted information 
“compact”, while they minimize the communication cost, since they reduce the need 
in regenerative repeaters. Consequently, the MIMO systems lead to gain in capacity, 
when compared with single antenna systems. The above justifies the original 
prediction of Telatar and Foschini, concerning huge gains in channel capacity via 
MIMO techniques. 
 
   As far as the technical part is concerned, we stated most of the known results 
concerning capacity limits and bounds for MIMO systems. We saw that these 
results apply in a straightforward manner to Rayleigh fading channels. We stated 
results concerning the transmitter optimization problem and we recorded the 
conditions under which, beamforming is optimal transmission strategy, in the case 
of CCI model, as well as in the CMI case.  Then, we gave asymptotic results 
concerning the capacity of single user MIMO systems under different assumptions 
for the channel knowledge of the transmitter, as well as the receiver. Finally, we 
stated some monotonicity results concerning the channel capacity in the Ricean case. 
We saw that the capacity is nondecreasing in the singular values of the mean, while 
the optimal transmit covariance must be aligned with the eigenspace of , where 

 is the channel. Finally our own contribution is the proof of the fact that the 
channel capacity in the Ricean case is nondecreasing in 

DD+

D
K , where K  is the Ricean K 

factor.  
 
   Future work might be to explore the multi-user case, for the Ricean channel model 
and examine the impact of parameters such as the multiple channel means and their 
singular values, the Ricean K factor and the received SNR in the capacity region. 
We may also try to analyze the channel capacity region, in the asymptotic regime, 
with equal but large number of receive antennas in each receiver and large number 
of transmit antennas. Till then, just remember: “Karpe diem!!!”(Or in plain English 
“Seize the day”) 
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