
Maximizing the Worst-User’s Capacity

for a Multi-User OFDM Uplink Channel

Juyul Lee

Department of Electrical and Computer Engineering
University of Minnesota

E-mail:juyul@ece.umn.edu

Abstract

This project considers the challenges in maximizing the worst-user’s rate for a multiple
access Gaussian vector channel under power constraints. The multiple access Gaussian vector
channel is derived from a multi-user OFDM uplink channel, which has no interference between
subchannels. The optimal rate is determined at the maximal equal rate among the users. For
a simple treatment, a multi-user scalar channel is considered initially and then a single-user
vector channel is considered to show the optimal allocation strategy. For the multi-user vector
channel, the solution has yet to be found in this project but one conjectured algorithm is shown.

1 Introduction

Though the concept of multicarrier modulation with non-overlapping subchannels was introduced in
the 1950s, it was not aggressively pursued because of its inherent compexity [1]. Later on Weinstein
[2] suggested using a DFT to modulate signals with orthogonally overlapping subcarriers. With the
advances in VLSI and the development of FFT algorithms, OFDM came into practice in the 1980s.
Various standards for wired and wireless systems cam to adopt OFDM in the 1990s, especially when
high-rate data transmission was required. Since 2000, it is being applied to cellular environments
for the next generation mobile communications.

Basically, OFDM converts a high-rate data stream into multiple low-rate streams, sending
them simultaneously over orthogonal subcarriers. Since the required pulse duration for each low-
rate stream is relatively long, it is inherently more robust against inter symbol interference (ISI).
In addition, introducing a guard interval, which typically adds a cyclic prefix, allows for the com-
plete removal of ISI [1][3]. Another prominent feature of OFDM is the use of FFT techniques to
decompose signals into orthogonal subcarriers, allowing for low complexity [2].

There are several ways to accommodate multiusers beyond point-to-point communication. One
way, which is a combination of OFDM and CDMA, known as Multi-Carrier(MC)-CDMA, first
spreads the signal with a spreading code and then sends it through a number of subcarriers. Another
technique involves the splitting of the subcarriers among users, which is equivalent to FDMA, is
known as OFDMA. In addition, OFDMA can also incorporate TDMA for users to access the system
in a certain timeslot. This technique is called multiuser OFDM [1].
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Communication with multiple users through an OFDM channel can be configured in various
ways since the channel has many controllable resources. The controllable resources typically include
the position of the subcarriers, the number of subcarriers for each user, and the amount of power for
each subcarrier. These resources should be allocated in a way to maximize the system performance.
Typical measures of performance are aggregate capacity, worst-user’s capacity and total transmitted
power.

With certain assumptions concerning the channel state, many allocation strategies have been
proposed. For the downlink case, maximizing a given rate vector was solved in [4] along with the
proof of the duality with the minimizing power to support. This is called the sum-rate capacity.
But maximizing the sum-rate capacity has a drawback, when there is very good channel user or
very bad channel user. Only the former is allowed to transmit, and there is no chance to transmit
for the latter. To resolve this issue, [5] dealt with the proportional fairness among the users. In
[6] maximizing the worst-user’s rate was addressed but with considerations only for the downlink.
It should be noted that every individual user has a common power constraint in downlink while
each user has an independent power constraint in uplink. As for the uplink, the structure of the
capacity region was characterized as a polymatriod [7] and maximization of the sum-rate capacity
was considered in [8][9], with [8], also showing an iterative algorithm to achieve the optimal point.

In this project, I will consider the problem of maximizing the worst-user’ rate for an uplink
OFDM channel. I will assume that the channel gains are known in advance and that each user
has individual power constraint. The channel gains can be estimated at the transmitting end for
a time division duplex (TDD) system, but the system model is a frequency division duplex (FDD)
because all of the channels are used for the uplink communication. So, for the transmitter to have
the channel gain information, it should be feedbacked in practice. There are two specific questions
to answer the problem. The first one pertains to the optimal rate for maximizing the worst-user’s
rate, with the other one being the nature of the allocation strategy.

This project report is organized as follows. Section 2 will describe an uplink OFDM channel,
derive a model, and formulate the problem providing assumptions. Section 3 will solve the problem
for a simple case (scalar channel). Section 4 will extend for the case of a vector channel and provide
an algorithm. Section 5 will conclude with some remarks.

2 Problem Description

A block diagram of multi-user OFDM for an uplink transmission is depicted in Figure 1. Assuming
the channel state information (CSI) is known, each user’s data is allocated to a certain subcarrier
position with a certain amount of power. The calculations for subcarrier and bit allocation are
performed at a base station with the results sent back to the corresponding users. According to
the number of bits in a subcarrier, adaptive modulation is performed. This is then followed with
typical OFDM processing: inverse fast Fourier transformation (IFFT), conversion of the parallel
data stream into serial ones and insertion of a guard (typically done with cyclic prefix).

There are many negative characteristics inherent to OFDM caused by the overlapping subcar-
riers and the use of IFFT/FFT. Since the subcarrier channels are overlapped, it is vulnerable to
the interchannel interference when there is slight synchronization error. In addition, the ratio of
the instantaneous peak value of the signal at the output of IFFT to its time-averaged value is large

2



user 1

user 2

user N

subcarrier and

bit allocation

...

adaptive

modulation 1

adaptive

modulation 2

adaptive

modulation K

...

N: # of users

K: # of subcarriers

IFFT

parallel

to

serial

guard

insertion
channel

...

...

Control

algorithm

performed

at BS

Figure 1: Block diagram of an uplink multi-user OFDM TX system

enough to cause non-linear amplification by the power amp [1]. In this project, however, I will
assume an ideal situation; i.e., the channel is maintaining orthogonality and there are no nonlinear
effects. Thusly, we can model the scheme as a parallel channel assuming the channel has additive
Gaussian noise.

Figure 2 shows a model of N -user K-dimension vector Gaussian channel. In this model, Xn

(n = 1, · · · , N) are the channel inputs, Yk(k = 1, · · · ,K) are the channel outputs and Zk(k =
1, · · · ,K) are additive Gaussian noises. The Zk in the model can be interpreted as its variance
divided by the fading gain of each channel, assuming fading gain is constant. And hn,k[·] denotes
the channel gain for the kth channel of the nth user.

In a matrix vector form, the model can be expressed as

Y =
N∑

n=1

HnXn + Z (1)

where Y, Xn, and Z are K × 1 vectors and Hn is a diagonal matrix. Hn is assumed to be known
and Z has a Gaussian distribution with N (0, I) .

In this project, I will deal with the optimization problem associated with maximizing the worst-
user’s transmission rate. The worst-user is the person who has the lowest maximum transmission
rate due to small channel gains and a small power constraint. Note that each user has its own
power constraint. Two questions arise: (1) What is the optimal rate for each user? (2) How
should we allocate power to achieve this optimal rate in a point of information theory? I will
approach this problem from the viewpoint of channel capacity. That is to say that input distribu-
tions can be continuous instead of finite, and so no practical digital modulation schemes will be
considered. All variables are real-valued, not complex, for a simple deployment. But extension to
complex-valued variables is not difficult. Typically, information is packed in a complex-value and
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Figure 2: Multi-user vector channel model

transmitted through a complex-valued channel since there are always two orthogonal waveforms at
one frequency.

3 Scalar Channel

For simplicity, let us examine the problem for a multi-user scalar channel first. Unlike a vector
channel, no allocation strategy is possible. So in this case, I will examine which point in the capacity
region is the solution of the problem. Two-user multiple access channel, for example, is given by

Y =
√

h1X1 +
√

h2X2 + Z (2)

where X1 and X2 are two transmitters’ random variables, Y is a receiver random variable, h1 and
h2 are channel gains and Z is an additive Gaussian noise. Without loss of generality (WLOG), Z
is assumed to be N (0, 1). Note also that both transmitters have power constraint: E[|X1|2] ≤ P1

and E[|X2|2] ≤ P2. Then the capacity region, which is the set of all achievable rate pairs (R1, R2),
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is given as in [10] by the closure of the convex hull of all satisfying

R1 ≤ 1
2

log2 (1 + h1P1)

R2 ≤ 1
2

log2 (1 + h2P2) (3)

R1 + R2 ≤ 1
2

log2 (1 + h1P1 + h2P2)

Now consider the problem of maximizing the worst user’s capacity:

maximize min {R1, R2}
subject to R1 ≤ 1

2
log2

(
1 + h1P1

)
(4)

R2 ≤ 1
2

log2

(
1 + h2P2

)

R1 + R2 ≤ 1
2

log2

(
1 + h1P1 + h2P2

)

The optimization problem (4) can be interpreted pictorially as Figure 3.

R1R1

R2R2

feasible region

min {R1, R2}min {R1, R2}

Figure 3: Graphical interpretation of the maximizing the worst-user’s capacity problem for a two-
user scalar channel

Thus, no matter how the feasible region is shaped, the solution of the optimal rate pair (R1, R2)
can be found at the intersection of the boundary of the capacity region with the 45 degree line, as
shown in Figure 4.

When the products of the square of channel gain and the given power are comparable between the
two users, the capacity region will look like (a) in the Figure 4. If they are not, the region will
shape like either (b) or (c) depending on the product. To reach the optimal point with respect to
maximizing the worst user’s capacity for (b), a transmitter is required to encode ((2nR, 2nR), n)
codes where R = 0.5 log2(1 + h2P2) and a receiver decode user 1 code regarding user 2 as an
interference and then decode user 2 code. A similar argument can be applied for (c). But for (a),
time sharing is required to reach the optimal point.

We now consider the problem for multiple users. Like the two-user case, the rate vector that
maximize the minimum capacity is determined where the straight line r1 = r2 = · · · = rN is
touching the boundary of the capacity region. It implies that all users have the same rate at this
optimal point. That is, it tells us what the minimum rate is to receive information from all users
with an equal rate.
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Figure 4: Optimal rate pair (R1, R2) examples

4 Vector Channel

4.1 Single-User Vector Channel

The single-user vector channel model can be interpreted as a parallel channel since the channel
matrix has only diagonal terms. This model can be written as

Y = HX + Z (5)

where X is the transmitter’s random vector, Y is the receiver’s random vector, H is the channel gain
matrix, and Z is an additive Gaussian noise with N (0, I). Note that bold face letters denote matrix-
vector quantities. WLOG, the channel gain matrix is assumed to be H = diag(

√
h1,

√
h2, · · · ,

√
hK)

and h1 ≥ h2 ≥ · · · ≥ hK ≥ 0. And the transmitter has power constraint of tr(E[XXT ]) ≤ P .

The optimal allocation strategy to maximize the channel capacity is given by the water-filling
algorithm [10]. Let Q = E[XXT ], then the optimal Q is

[
diag(Q)

]
ii

=
(
ν − 1

hi

)+
(6)

where ν is chosen so that
∑

(ν − 1/hi)
+ = P . Note that (a)+ := max{0, a}. When the covariance

matrix of Z is not the identity matrix, whitening by multiplying S−1/2
Z is required before applying

the water-filling. Note that SZ is the covariance matrix of Z and it is a diagonal matrix since there
is no interference between the subchannels.

4.2 Multi-User Vector Channel

Unlike the single-user case, we can strategically allocate resources either to maximize the system
performance or to minimize the cost. This is due to the multi-user diversity. That is, a deep faded
subchannel for a user may appear to be good for some other user.
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We now consider the problem of maximizing the worst-user’s rate for a two-user case first. The
model is given as

Y = H1X1 + H2X2 + Z (7)

where H1 and H2 are channel gains for the two users and Z is an additive noise with N (0, I).
Note that the channel gain matrices are diagonal and that there are input power constraints:
tr(E[X1XT

1 ]) ≤ P1 and tr(E[X2XT
2 ]) ≤ P2.

Similar to the multi-user scalar channel case, the capacity region is given as

R1 ≤ I(X1;Y|X2)
R2 ≤ I(X2;Y|X1) (8)

R1 + R2 ≤ I(X1,X2;Y)

and the mutual information is bounded as follows for the Gaussian channel:

I(X1;Y|X2) ≤ 1
2

log det
(
H1Q1HT

1 + I
)

I(X2;Y|X1) ≤ 1
2

log det
(
H2Q2HT

2 + I
)

(9)

I(X1,X2;Y) ≤ 1
2

log det
(
H1Q1HT

1 + H2Q2HT
2 + I

)

where Q1 = E[X1XT
1 ] and Q2 = E[X2XT

2 ]. Figure 5 illustrates (9) for two channel cases.

Figure 5: Capacity region examples for two-user vector channels

Tse and Hanly [7] showed that the capacity region is a polymatroid and can be characterized by
Figure 6.

Note that part of the boundary surface is curved. When the 45 degree line intersects the non-curved
part of the boundary, the optimization of maximizing the worst-user’s rate can be solved easily by
superposition coding and successive decoding. So I will focus on the problem when it intersects the
curved part.
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Figure 6: Characteristics of two-user capacity region

When we have the characteristics of the surface of the curved part, we can get the slope at the
optimal point as in Figure 7.

R1R1

R2R2

45◦45◦

tangent linetangent line

slope := −
µ1

µ2
slope := −
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Figure 7: The slope at the optimal point

Then the problem can be re-casted into a problem which has a solution already. That is, the
sum-rate capacity [8]

maximize µ1R1 + µ2R2 (10)
subject to tr{Q1} ≤ P1, tr{Q2} ≤ P2

For the multiple-user case, it can be extended by the supporting hyperplane theorem [11]. The
vector normal to the supporting hyperplane at the intersection of the boundary and the 45 degree
line will be the rate vector. Achieving the boundary point can be accomplished by successive
decoding.

Instead of reaching the intersection of the 45 degree line and the boundary of the capacity
region explicitly, we can progressively approach the intersection in the following way: Pouring a
small amount of power to user 1, user 1 will reach a certain rate R1. Then pour power to user 2
until user 2 has the same rate with user 1. Increase user 1’s power again, and do the same thing for
user 2. Keep running the pouring until the given powers are exhausted. The algorithm is described
as follow:
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Algorithm 1:

W ← I noise + interference
while p1 ≤ P1, p2 ≤ P2

p1 ← p1 + ∆1

Q1 ← waterfill(H1, p1,W)

R1 ← 1
2

log2

det(H1Q1HT
1 + W)

det(W)

W ← H1Q1HT
1 + I

while R1 −R2 > tol

p2 ← p2 + ∆2

Q2 ← waterfill(H2, p2,W)

R2 ← 1
2

log2

det(H2Q2HT
2 + W)

det(W)
end

end

As a numerical example, when H1 = diag(2.0918, 1.2608), H2 = diag(1.1688, 1.839), tr(Q1) ≤ 7,
and tr(Q2) ≤ 10, two user’s rates reached 2.4923 and 2.4913, respectively, as shown in Figure
8. Note that the point determined by this algorithm is very close to the boundary. Although
the algorithm seems to work, I have yet to determine whether the algorithm will reach the exact
optimal point.
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Figure 8: Example of the algorithm 1
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5 Conclusion

This project has dealt with the problem of maximizing the worst-user’s rate. The optimal rate was
determined when all users have the same maximal rate and it can be achieved by a successive de-
coding for vector channel cases. Though the optimal solution may not have been determined in this
project, I have showed an algorithm to close to the optimal rate with a geometrical interpretation.
When the boundary surface characteristic is known, it is also pointed out that the optimization
problem can be re-cast into a sum-rate capacity optimization problem.

The remaining tasks include analyzing the characteristics of the curved part of the boundary
surface of the capacity region, finding an algorithm how to get to the optimal point which is given at
the intersection of the boundary surface and the 45 degree line, and the extension to the multi-user
cases.
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