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Abstract

Transmission of information over a MIMO discrete-time flat fading channel with an average power constraint is
considered. The scenario in which the transmitter alone has knowledge of the fading levels, as side information, is
assumed. This knowledge may be provided in either a causal or a non-causal manner. Upper and lower bounds are
derived for each of the two cases. The tools developed are applied to the On/Off fading channel, and some useful
strategies for transmitter adaption are discussed.

. INTRODUCTION

Among the extensive research on fading channels, special attention has been given to the scenarios in which
the fading coefficients are available to the communication system as side information. These scenarios include
the case of channel side information (CSI) available to both the receiver and the transmitter and the case of CSI
available to the receiver alone. In the non-coherent scenario, CSl is not available to either the receiver or the
transmitter, was considered. The scenario in which the fading levels are available only to the transmitter was left
mostly unconsidered. Aside from the scientific curiosity, this scenario gains practical use as well, for example, in
OFDM-Discrete Multitone based systems who have a-priori knowledge of all sub-carriers gains. Another motivation
comes from the increase in computation resources at cellular base stations which may use the available causal fadin
levels to design more sophisticated and powerful codes. Such is the case in Time Division Duplexing (TDD) based
systems where reciprocity facilitates channel measuring more accurately at the transmitter, due to these increase
processing capabilities. The receiver, for complexity reasons, avoids this operation.

This project checks the results in paper [1] carefully and then extend them to a MIMO counterpart. In [1], problem
of communicating through a flat fading AWGN channel with the fading coefficients available to the transmitter, as
side information, was considered, in either a causal or a non-causal manner. Upper and lower bounds are derivec
for each of the two cases and Arimoto-Blahut like algorithms, to numerically compute capacity in each case, are
presented when an average power constraint was imposed. The tools developed are applied to the On/Off fading
channel, and to some restricted cases of a Rayleigh fading channel. In the latter case the capacity per unit cost is
examined and it is shown that transmitting at an arbitrarily Ieyy Ny will sustain reliable communication at zero
spectral efficiency, regardless of the causality/non-causality nature of the available side information, mimicking the
case of fully available CSI at the transmitter and the receiver.

II. CHANNEL MODEL
There arelM transmitter antennas ard receiver antennas. So, we consider the following MIMO channel model

Y1 S11 S12 - S1M T 21
Y2 S21 S22 -+ SaMm 1) Z2
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where x,,, € C is the channel input from thenth transmitter antennay,, € C is the channel output at theth
receiver antenna,,,, € C is the flat fading coefficient from transmitter antenndo receiver antenna. The fading
coefficients are independent (with respect to betand m) and identically distributed (i.i.d.). The additive noise
at receiver antenna is denotedz,, € C, and is independent (with respect, identically distributed’ \'(0, 1).
An equivalent channel is

y = Sx + z, (2)
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T z:=[z,...,2y5]%, andS := . .. i |.The fading

wherey := [y1,...,yn]%, x == [21,...,20]

SN1 "° SNM
coefficientsS = S(i) vary with timei (discrete time index). We assume the noise processes are independent of the

fading processes and of the channel inputs. We further assume a perfect knowledge of the fading cosfficients
at the transmitter in either a causal manf8(k)| — oo < k < i} or a non-causal manngS (k)| — oo < k < co}.
Finally, it is assumed that the signalling is subject to the average power constraint

Bl|x]*) < P. 3)

Gel'fand and Pinsker [3] have found the capacity formula for a discrete memoryless channel with random state
S known non-causally to the transmitter. Following the extensions made by Costa [5] for discrete-time channels
with continuous alphabets and the introduction of constraints on the channelinpa have

Cnc = sup {I(Ua Y) - I(Ua S)} ) (4)
p(ul|S), FUxS—X, E[|F(U,S)|?|<P

whereU is an auxiliary random variableF is a deterministic function, and the joint distribution of the random
variablesS, U, X andY is given by

(S, 0%, y) = { g(S)p(u!S)p(YIx,S) gﬂ}l{ejwiéu s), 5

It was shown by Cohen [4] that taking to be independent of leads to a capacity formula equivalent to that
given by Shannon [2] corresponding to the problem where the transmitter has causal CSI. In the case we have

C.= sup Iu;y), (6)
p(u), FUxS—X, E[|F(U,S)|?|<P

where the joint distribution of the random variabl€s/, X andY is given by
_ [ p(S)p(w)p(y[x,S) if x=F(u,S),
p(Sux,y) = { 0 otherwise. (7)
Similarly, the capacity formula form given by Shannon (extended to continuous alphabets and including an average
power constraint),

C.= sup IrT;yvy), (8)
p(t), E(|T(S)|?]<P

can be shown to be a special case of the Gel'fand-Pinsker formula by taking the strategies probability distribution
to be independent of the channel state,

Che = sup {I(T;Y) — I(T; S)}, (9)
p(t[S), E[|T(S)|*]<P

wheret € 7, the set of all possible mappings S — X which we will refer to as Shannon strategies or simply
as strategies. We will use either form of each capacity formulae as suitable.

I1l. LoOWERBOUNDS
The lower bound can be obtained by choosing an appropriate strategy. For the non-causal case, we examine

HU;Y) - I(U;S) = I(U;SY) - I(U;S)Y) - (I(U; 5,Y) = I(U;Y1]5))

= I(U;Y|S) - I(U;S|Y). (10)
The lower bound will be obtained by using the following choice of conditional probability distributions:
pL(x[S) = arg{ sup I(X; Y\S)} provided it exists, (11)
p(x|S)eq

[ d(u—ygp(x,8)) ifSeS,
pr(ux,S) = { Qﬁ(u\sf itS € S, (12)



using the following definitions,

S = {S|I(X;Y|S)#0,X ~pr(x|S)},
S {S[H(X;Y[S) =0,X ~prL(x|S)},
B = PJ/N,

whereggs is a chosen function which depends on the parameétithe SNR) and with the requirement that there
is a one-to-one mapping betweanand u for every S € S, and finally Q3 is a chosen conditional probability
distribution that depends o as well. The idea behind takings to be independent of is that for thoses which
it is defined forX has zero power.

As for the causal case, the lower bounds will be derived from eq. (6) tdkitgbe a Gaussian random variable
and X given S = S to be Gaussian as well.

IV. UPPERBOUNDS

It is well known that when complete side information is given to both the transmitter and the receiver the capacity

of channel (2) is given by [8],
sup I(X;Y|S), (13)
p(x|S)eN

where(2 is the set of all conditional probability distributiop$x|S) satisfying the constraint (3). Note that eq. (13)
may be regarded as a special case of the Gel'fand-Pinsker model when th& sadded to the observatidn
at the receiver’'s end. This, of course, is a trivial upper bound on the channel capacity when side information is
available only to the transmitter.

A. Non-Causal CSI

In order to develop an upper bound on Gel'fand-Pinsker capacity, consider the capacity formulation given by
eg. (9). Furthermore, for the time being we assume all the relevant alphabets are discrete. The associated averag
power constraint is seen to be,

S pS(EIS)IS) < P (14)
Expanding the mutual information we S;c,tee that
NEY) - IT:S) = 3 oSpHSivies)n o
S e
= 3 Sy S s~ DO lay)
< 3 pSSyie Sl LS

for any probability distributiony(y) on Y, where equality is achieved iff(y) = p(y). Finding the capacity can
now be rewritten as the following optimization problem,

: p(y,t)
Che = max min p(S)p(t|S)p(y|t,S)In ————, (15)
R & PEPASIPIE ST oy s

with the constraintsy_, p(t|S) = 1 VS, p(t|S) > 0 VS, t, Y, p(S)p(t|S)[It(S)|* < P.
Lemma 1 The functional over which we optimize in (15) is concavepiit|S) and convex ing(y).



Proof is similar to the counterpart in paper [1] and is omitted here. Following the work in [7] we can reformulate
our maximization problem using the lagrange dual technique. Forming a partial lagrangian for (15) we have,

p(y,t)
L= p(S)p(t[S)p tvs)lnq(y)p(ts)+g)\13<1;p(tS)>+/\2< Zp p(t]S)][6( )2),(16)

S.t,y

where we introduce the lagrange multiplierss € R, A2 > 0 and notice thatnax,|g) min,(y) miny,g », £, such

that p(t|S) > 0 and ¢(y) is a valid probability distribution, has the same optimal value as (15). Continuing to
follow the ideas in [7] (note the exchange of thén and themax) we have the upper bound on problem (15)
given by

t
Cpe < min  max {Zp p(t]S) x [Zp y|t,S)1 (p(Y7 ) Ais ~ o(S)|?

a(y), s Az p(t[S) y)p(t[S)  p(S)

wherep(t|S) > 0 andq(y) is a valid probability distribution. To find the solvingt|S) of the inner maximization,
for a givenq( ), A1s and A2, we differentiatel with respect top(t|S),

B~ LA Zs/p(yrf’>S/)<]Z(;‘>S/)p(8,)—Ms—p<s>A2||t<s>||2

p(y[t,S)p(S)
> s p(S")p(t|S")p(y|t. S”)
nZs/p(YIt,S)p(t!S)p( ) Ns 2
S){zy:p(ylt,s)l 5(S) o) ~ ISl }

and we arrive to the following conditions on the solution to the maximization problem (17) (applying the Karush-
Kuhn-Tucker (KKT) conditions)

S pvie ) S

S

+> s+ )\2P} ,(17)

Dt t p(t t
+Zp (t1S)p(ylt,S) t’S +Zp (t18")p(ylt, S")

t|S)p(S")  \is

— Xa[[t(S)|I> =0, if p(t|S) >0

=

a(y)p(t[S) ~ p(S)
ZS/ p(ylt, 8" )p(t[S)p(S")  Mis 9 : _
Zp ylt, )1 5P (ES) o5) ~ eIt <0, if p(t]S) = 0. (18)

With the above conditions we can see that for the maximiziftgS) in (17) we have

min max £ = min A1s + AP 19
a(y),Ais, Az p(t[S) a(y),A1s,A2 ES: 'S ? (19)
To conclude, we now have a dual problem to the problem (17) (the solution of which is an upper bound on
problem (15)):
Chne(P) < min A1s + AP, 20
(P) q(y)’/\ls7/\2§ 15 + A2 (20)

where the set over which we minimize consists of valid probability distributignson Y, real numbers\;s and
A2 > 0 for which a functionp(t|S) > 0 exists such that,

S plyle, ) ZSLOBIESIE) _ Bs s <0, vs.e @)

and for anyS, t such thatp(t|S) > 0 equality in eq. (21) must hold. Choosing any feasiblg, A2 andg¢(y) in
eg. (20) such that (21) holds true will give us an upper bound on the Gel'fand-Pinsker capacity with an average
power constraint.




B. Causal CSI

Again starting with the assumption that all relevant alphabets are discrete and examining eq. (6) we have the
following,

Lemma 2 For every probability distributiop(-) on U, deterministic functiors¥(u, S) and probability distribution
q(+) on the channel output’

I(U;Y) <Zp D(wz(-[u)lg(-), (22)
where

g p(y[F(u,S"),S")p(S")
q(y) '

D(wr(-[w)llg()) =D p(ylF(u,8),8)p(S) In
y S
Proof: we know that,

IU;Y) = Y plylx,S)p(x|u,S)p(u)p(S) In

S,u,x,y

= Y p(yF(w,8),S)p(w)p(S) In

S,u,y
now for everyp(u), F(u,S) andq(y) we have,

50w 3 pv17(0,8),8)p(s) n =3 LIE L SWE) gy,
u y,S

> s PYIF (0", 8"),8")p(S")p(u”)
q(y)

> s P(YIX, S )p(xX' [u, 8" )p(u)p(S’)
p(w) Y gy xr P(YIX", 8")p(x" |0, S”)p(u”)p(S”)

S p(y|F(1,8'),8)p(8)
S ([ F (W, S7), 87 p(u")p(S")’

= > p(w)> p(ylF(u,8),8)p(S)In

u y,S

) S DY IF(, §7), 87)p(S")p(u")
= > > p(ylF(u,S),8)p(u)p(S)In o)

Yy Smu
= D(B(y)lla(y)) >0,

therefore,

H0Y) < 3000 3D oyF(0. )8l 2s PYIF (q‘(‘j')’sl)p(sl)
S

= Zp F(w)llg(-))-

Note we writew£(-|-) to emphaS|ze the dependenceobn F. The extension of the upper bound (22) to continuous
alphabets and to constrained input may be done to obtain:

10:Y) < [ DWsCllQe)dp
< sup D(Wr([w)Q()), (23)
and the upper bound:

cp) = s it {1wiv) 44 (P - [[1F@s)Pars)irw) |

P(u),F720

IN

wt swp {10v) 5 (P [[ 170 PapsIaPw) |

>0 P(u),F

it swp_sup { DOVECIIQU) 4 (P~ [ 17w S)Par(s) ) |

720 p(u),F u

= infswpsup { DOVECRIQE) +7 (P [ 17w S)ars)) | (24)

720 F

IN



V. APPLICATIONS AND DISCUSSION

To give an application example, we consider parallel fading channel, which is a degraded case of MIMO channel.
In parallel fading channel, the number of transmitter antennas is the same as the number of receiver antennas, i.e.
M = N = K; and the channe$ = diag(sy,...,sx) IS a diagonal matrix.

More important, by considering parallel fading channel, we can set the channel in re& fieétead of complex
field C, because after using any strategy and before transmitting, we can always add an extra phase to the transmitte
signal to cancel the phase of the corresponding channel coefficient while satisfying the average power constraint (at
least makingsy, ..., sk to be real). Then, at the receiver side, it can always separate the real part and imaginary
part of the received signals and process them respectively. And the two parts have the same statistics, so analyz
one part is enough to understand the whole story. So the following analysis will be in the redk figle will
take K = 2 in the following example.

A. On/Off Fading Channel

In this example we shall consider a channel with binary fading, thabigs; = 1) = 1 — Py(s1 = 0) = ag,
P.(s9 =1) =1— P,(sy = 0) = ae. To find the lower bound on the non-causal CSI capacity we start by solving
eg. (11) which gives (note the average power constraint (3) holds):

5(%1)5(%2) S1 = 0, S9 = 0

T ( 11)5(1:2) s1=1,50=0
fr(x[S) = \/ﬁ Fe ol o5
\/m exp(—34)d(x1) s1=0,82 =
wp exp(—Tp)  si=1lsy=1
where Py = P, = — + and P3 = +a by waterfilling over both space and time. For eq. (12) we shall take

95(x,8) = 915(901,81)925(152,82) ﬁ($1781 = 1) = z1, g2p(w2, 52 = 1) = z2, andQs(u|S) = Q15(u1|s1)Q2p5(uz|s2),
Q1p(u1]s1 = 0) = N(0, N1?), Qap(ua|sa = 0) = N (0, Nepo?). Thus, we have

fu(ulx,S) = fr(uilzy, s1)frL(uz|ze, s2) (26)

5(’&1 — l’l) S1 = 1

fr(uilzy, s1) = { WGXP(_QJ\?EM) s1=0 (27)
5(UQ — IL’Q) SS9 = 1

Julualisa) = { \/27$v¢22 eXp(_QJ\quif) s2=0 9

where; and depend onP/N and will be determined through numerical optimization. Using eq.~2&)8)
and after some work we get:

1 u? 1 u3
ulS = diag(0,0)) = ———— exp(—=—— exp(— 52
p(ul g(0,0)) 2N G? D 2N¢%) V2r N2 *P 2N¢§)
1 ui 1 uj
S — diag(1,0)) — B 1 U
p(ul iag(1,0)) 7D (o1 T o) exp( 2P (a1 + a2)) N exp( 2N¢%)
. 1 u3 1 ui
p(ulS = diag(0,1)) = exp( )

2nP/(a1 +az)  2P/(n +a2))\/mexp(_m

! ui ) (29)

2
s I Uy
27 (ar + a2) PP + aa)

p(ulS = diag(1,1)) = 2P/ (a1 + o)

) exp(—



plyuS = diag(0,0)) = ——exp(- o) m xp(— %)
— _ 1 Cpmwm)? 1 B
p(ylu, S = diag(1,0)) = \/i%ﬁfexp( 5 )NﬁigﬁieXp( o)
o I SV  (y2 — up)?
Pyl = ding(0,1)) =~ exp(—g) — exp(— )
1 (yl_u1)2) 1 (y2 — u2) )

p(ylu, S = diag(0,0)) (30)

Using p(S = diag(0,0)) = (1 — a1)(1 — a2), p(S = diag(1,0)) = a1(1 — az), p(S = diag(0, 1)) = (1 — a1)a,
p(S = diag(1,1)) = a1aq, and eq. (29) (30) in eqg. (10), finally we reach the lower bound eq. (31) (no space for
closed form).

Cne > —I(U;S)

_ p(u " 25 P(S)p(u[S")p(y|u, S') u
- // Zp S)p(vIn, S n e~ ey, S Y D

The lower bound on the causal CSI capacity is obtained by taking the following probability distribution

p(u) = fr(a) = fr(u1)fr(usz)

_ 1 _ u%
fL(ul) — 27TP/(O{1+O¢2) exp( 2P/(051+042))

= 1 exp(— u%
fulua) = 2P/ (aq + ) p( 2P/(a1 + a2))

and the deterministic functioff(u,S) = Su and from eq. (6) we have the bound eq. (32) (no space for closed
form).

Ce = I(UY)
>_s P(S)p(ylu, S')
= ) 2
// 2 PSS n o oty T, 87y Y 2
To develop the upper bound on the causal CSI capacity we start by writing eq. (24) for this case,

C. < inf supsup{/ / p(y, F,u)]In p(y,(]:) )dyldyg

720 u

+’7(1ir (1—a1)(1—ag)||F(u,s1 = 0,55 =0)|” = (1 — 1) z|| Fu, 51 = 0,82 = 1)||?

~an(1 = a0) (a1 = Lsa = O~ araal|F s = 12 = D) . (33)

where F(u, S) = [F(uq, s1) ]:(UQ,SQ)]T,
v T = L )0 )
+i/;777a]\1[ exp(—%)%exp(— (y2 — 7:(1263\7]82 = 1))2)
N
_ — 2 o _ 2

+\/% exp(_(yl f(;\,;?l =1)) ) ;ﬁ]\r exp(_(yz 7:(1;3\,;92 =1)) ). (34)



It is evident from the equation above that the optimal choiceA¢u;, s; = 0) is 0, ¢ = 1, 2. Taking

2
i) = e )R- )
—i—ﬂexp(—y—l) e exp(— 3 )
V21N 2N"\/2n(N + P/(a1 + a2)) 2(N + P/(c1 + a2))
+1 — "2 (— y2 al exp(— ut )
V21N 2N V21 (N + P/(aq + 042)) 2(N + P/(a1 + a2))

2
1009 y1 Y2

TN Pl 1 o) P AN T B 1 00)) TP TSN Pl or Faa))
and making the assignmenis=~P anddé; = /(a1 + a2)/PF(u1,s1 = 1), 02 = /(a1 + a2)/PF (ug,s2 = 1)

in eq. (33) we get eq. (36), where we gt 6 € R and the change of variables allows us to exchangesiiipe
over F andu with the sup over d; andds.

(35)

0115% + 04252
a1 + a2

- y? 1 —ay y2 (Y1, Y2,01,02)
ex In —""""" " “Zdyd
/ /oo p(= 2N)\/27r exp(= ) q(y1,y2) vy
/ /oo 1—0[1 yl ) (65 ( y?)lnp(ylayé’él?éQ)

C. < mf supsup{'y/(l
v'>

exp(— dy:dys
ON' VarN q(y1, vh) e
yl 1—ay y2 p(yllv Y2, 51?62) /
+ ex In 2092 L2 g0
/_oo/_oo 2T N p(= 2N)\/27r exp(= ) q(yi,y2) i
0 oy Y2 yz (Y1, yh, 01, 02) }
+ 2 ex In 2L Y2, 01 02) g g 36
/_/_Oo P ) o exp(— ) I P By (36)

wherey| = y1 — 61 \/% andyy = ya — 02 N{aifoz)

Looking at the limit asd; — oo and s, — oo of eq. (36) (similar to [1]), we get a necessary condition for the
supremum in (36) to exist:

/ o1 + o
7= 2(14 N(a1 +a2)/P)’ )

Taking +" in (36) to be the right side of eq. (37) we have the upper bound for this case, eq. (38) which will be
evaluated numerically.

a1(1 — 62) + as(1 — 62)
2(1 + N(al + ag)/P)

C. < sup sup{

2

! yi 11— ag Z/z p(y1, 2,01, 02)
ex I PYLY2O0) g g
NN T 2N)JT PN )

/ /°° T 2N)\/F y§2 2 p(y;’(z?f:z;%)dyldyé
*/_:/_Z;Lve’(p 2;)m b2 >Ianyidyg}. (38)
The upper bound for non-causal case considered here is
Cne < Crrsr = W In(1 + ]V(Ozlp—i—()@))’ (39)

whereCrgrsy stands for the case where both the transmitter and the receiver have CSI. This is a trivial upper bound

on the capacities when CSI is available to the transmitter alone, but it is tighter than the upper bound derived in
Subsection IV-A.



Fig. 1 and Fig. 2, in the following pages, display the bounds developed aldgye,, Cup—c, Crp—ne (With
numerical optimization performed when needed), whére ¢ stands for the lower bound on causal CSI capacity,
etc’, and the capacit@'rrs; for several interesting values ofi and as.
Looking at the figures we note the following:
1) As a; andas grow larger the bounds become tighter.
2) There is a clear advantage in knowing the side information in a non-causal manner over causal only (at mid and
high SNR levels the upper bound on the causal CSI capacity lies beneath the lower bound on the non-causal
CSI capacity).

3) For very large SNR the lower bound on the non-causal CSI capacity becomes tight to the capacity in the fully
informed case.
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Fig. 1. Bounds on capacity of a parallel binary fading channel witlFig. 2. Bounds on capacity of a parallel binary fading channel with
CSl available at the transmitteP,.(s; = 1) = P.(s2 = 1) = 0.1. CSl available at the transmitteP,.(s; = 1) = P.(s2 = 1) = 0.5.

VI. SOME USEFUL STRATEGIES

The most difficult part during the process of finding an optimal strategy is to prove this strategy is optimal. For
additive channel in Costa [5], optimal strategy as dirty paper coding can achieve the upper bound, i.e., capacity
when complete side information is given to both the transmitter and the receiver. But for fading channel, this
upper bound seems to be not tight in general, or say there may be a strict gap between the upper bound and the
actual capacity. So, finding a useful (tight) upper bound will be helpful to find the optimal strategy in general.

Unfortunately, in paper [1], the upper bound is not tight, especially for non-causal CSI. So we did not consider it
in Section V.

A. Channel Inversion

A suboptimal but simple transmitter adaption scheme is channel inversion [9], i.e., it inverts the channel fading.
The channel then appears to the encoder and the decoder as a time-invariant AWGN channel. Nbe, tle
instantaneous SNR, anél(vy) be the instantaneous transmit power. We have the conngQB(V)p(y)dy < P.

Then the power adaptation for channel inversion is giverPy)/ P = o/, whereo equals the constant received
SNR which can be maintained under the transmit power constraint. The coastiams$ satisfies/ o/yp(v) = 1,
soo =1/E[1/7].

The fading channel capacity with channel inversion is just the capacity of an AWGN channel the:SNR

1
E[1/7]
Channel inversion can exhibit a large capacity penalty in extreme fading environments. For example, in Rayleigh
fading E[1/~] is infinite, and thus the capacity with channel inversion is zero (so is the case for on/off channel).

C(P) = Blog[l 4 0] = Blog[l +

J- (40)
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A truncated inversion policy is also considered in [9], but this policy is not applicable for on/off channel, as it
requires the receiver to know the threshold, which is equivalent to know the whole channel in this case.

B. Log-DPC
We find a useful strategy for scalar discrete-time flat fading channel model

Yi = sixi + 2, (41)

wherex; > 0 (the reason will be shown later) is the channel inpyte R is the channel outputs; > 0 are

i.i.d. equivalent real random variables describing the fading coefficients after phase cancellatipmm@nthe i.i.d.
Gaussian noise samples with variange We assume the noise processes are independent of the fading processes
and of the channel inputs. We further assume a perfect knowledge of the fading coeffigciahthe transmitter

in a non-causal mannds;| — co < k < oo}. Finally, it is assumed that the signalling is subject to the average
power constraint

E[X?] < P. (42)

Notice whenP/N — oo, we can always take logarithm to both sides of eq. (41) to get a channel with additive
interference:

Iny; =Ins; + Inx;. (43)

Following the way of dirty paper coding (e.g. modulo scheme [6] [10]), we can use this simple strategy: Suppose
U is the desired signal (betweenl and 1), X = Inz; is the transmitted signal, anfl = In s; is the additive
interference (known at TX throug, but not at RX). Take modulp-1, 1] operation to gefX = [U — S]_; ;;, and

what is transmitted here i8; = exp(X) (this is the reason fog; > 0). Receiver takes logarithm to the received
signalY” = Iny;, then performs modul§-1, 1] operation to get” = [V]_ ;) = [X + 5] = [(U — S) + S] = [U].

So we can claim that for scalar discrete-time flat fading channel, as SNR goes to irfipitwill approach the
capacity when CSl is known at both transmitter and receiver. This can be shown somehow in paper [1], where at
high SNR, even the lower bound of the non-causal case will be close to the TRSI bound.

VII. CONCLUSION

In this project, we have tried to extend the results in paper [1] to MIMO case and discussed some useful strategies.
During this work, we realized that the complexity for the MIMO counterpart increases exponentially with respect
to the number of independent channels. The parallel fading channel was taken for simplicity. In my opinion, this
work will not attract people’s eyes until some simple but meaningful strategies found to be able to easily implement
in industry.

REFERENCES

[1] Dan Goldsmith, Shlomo Shamai (Shitz), and Yossef Steinberg, “On Fading Channels with Side Information at the Transmitter,” submitted
to IEEE Transactions on Information Thegrijov. 2004.

[2] C. E. Shannon, “Channels with side information at the transmittBM Journal of Research and Developmewtl. 2, pp. 289 - 293,
Oct. 1958.

[3] S. I Gelfand and M. S. Pinsker, “Coding For Channel With Random Paramefnajlems of Control and Information Theoryol.
9, no. 1, pp. 19 - 31, 1980.

[4] A. S. Cohen, “Communication with Side Information,” Graduate Seminar 6.962, MIT, Cambridge, MA, Spring 2001
(http://web.mit.edu/6.962/www/wwwspring 2001/schedule.html).

[5] Max H. M. Costa, “Writing on Dirty Paper,JEEE Transactions on Information Theomwyol. 29, no. 3, pp. 439 - 441, May 1983.

[6] U. Erez and R. Zamir, “Noise prediction for channels with side information at the transmilEEE Transactions on Information Theory
vol. 46, no. 4, pp. 1610 - 1617, July 2000.

[7] Sriram Vishwanath and Andrea Goldsmith, “A Duality Theory for Channel Capadiygc. 41st Annual Allerton Conference on
Communications, Control and Computingllerton, IL, Oct. 2002.

[8] T.Cover and M. Chiang, “Duality Between Channel Capacity and Rate Distortion With Two-Sided State Inform&éidh Transactions
on Information Theoryvol. 48, no. 6, pp. 1629 - 1638, June 2002.

[9] Andrea Goldsmith and Pravin P. Varaiya, “Capacity of Fading Channels with Channel Side Inform#i&f" Transactions on
Information Theoryvol. 43, no. 6, pp. 1986 - 1992, Nov. 1997.

[10] "Multiuser Information Theory”, pp. 6, Lecture Notes 19-20.



