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I. Introduction 
 
Distributed Source Coding finds its roots in the work of Slepian-Wolf in 1973[13]. 
Around that time period, several other authors such as Cover, Wyner and Ziv followed up 
with some ground breaking extensions to other source models. After almost two decades, 
research in the area of Distributed Source Coding was reborn because of the growing 
attention to distributed sensor networks. Advances in Micro-Electro-Mechanical Systems 
(MEMS) and the demand for sensor network technology in defense programs and non-
intrusive surveillance and monitoring programs has seen investment pouring in. 
Recognizing the trend, BusinessWeek named Sensor Networks one of the hottest 
technology for this new century and the promise is rapidly turning into a reality. From an 
Information Theoric perspective, there are relatively few known results in capacity 
achieving regions for the various sensor networks models. In coding community, there 
are several application specific efficient coding schemes, but few general methodologies. 
However, the sensor networks field is relatively new and research is guaranteed to 
continue for some time. 
In this paper, we first review the general sensor network topology and then we focus on a 
simplified model. We will present recent progress in term of practical coding schemes for 
the Slepian-Wolf coding and the Wyner-Ziv coding problems. We find that the key to the 
current progress is a proper combination of theoretical work done decades ago and new 
algorithm breakthroughs.  
 
II.  Slepian-Wolf Model 
 

 
Figure 1. 

 
Consider the deployment of some sensors over a constrained geographical area, with the 
sensors having to report their observations to a central base station that will then relay the 
data to a central data monitoring station. Generally, the data gathering sensors are low 
cost, energy-efficient nodes while the base stations doing the relays are fusion centers 



that would typically consume more energy. Several setups exist for how the sensor nodes 
communicate with the fusion center. We will look at a simple model. An event S happens 
and there are k sensors which records that event and need to communicate their finding to 
the fusion center. By the definition of this problem, there will be some correlation in the 
data, Zk, since all the sensors are monitoring the same event. Figure 1 [8] illustrates the 
basic sensor model. For the rest of this paper we consider a simplified model where we 
ignore the channel. 
 
Slepian-Wolf studied the case of lossless encoding of data from 2 sensors X and Y, 
(Xi,Yi) drawn i.i.d with distribution p(x,y). Their achievable region is shown in figure 2 
[16]. There are 3 parts to this figure. Part (a) shows joint encoding, where both encoders 
communicate and it is well known that the best rate is H(X,Y). Part (b) shows separate 
encoding with the best rate not known until Slepian-Wolf’s work [13]. Part (c) shows the 
achievable region for the Slepian-Wolf problem. It reveals the surprising fact that the best 
rate for distributed, non-cooperative encoding is the same as that for joint encoding at the 
source, i.e. R1+R2 >= H(X,Y). This result can be proved by random binning, which is 
actually non-constructive. Pseudo-random binning [4] and algebraic binning [9] have 
been proposed for constructive codes. There are two types of codes for the SWC, 
Asymmetric Coding and Symmetric Coding. The former is when codes are designed to 
achieve point A and B in figure 2 and timesharing is used to achieve everything in 
between. The latter is when codes are designed to specifically achieve a rate on the line 
from A to B. In the results section we look at limit achieving asymmetric codes. 
 

 
Figure 2. 

 
Cover [2] extended Slepian-Wolf’s results for 2 discrete correlated sources to the cases of 
ergodic processes, countably infinite alphabets and arbitrary number of correlated 



sources. Another way to look at Slepian-Wolf coding is to recast it into a problem of 
source coding (X) with side information (Y) at the receiver. We will see the benefit of 
this scheme in the next section 
 
III. Slepian-Wolf Practical Coding Schemes 
 
By restating the Slepian-Wolf problem as that of lossless encoding with side information 
available only at decoder, the apparent source coding problem can be viewed as a channel 
coding problem. In 1974, Wyner [15] drew the parallel between Slepian-Wolf coding and 
channel coding. This is quite interesting because it would allow us to use our extensive 
knowledge of channel coding in source coding. In what was known as the “Wyner’s 
Scheme”, he postulated that one could use linear block code and send syndrome bits to 
achieve SW limits. Although he first looked at the scheme of binary symmetric channels 
and hamming distortion measure, the concept can be extended to all binary linear codes 
and near capacity achieving schemes such as Turbo codes and Low Density Parity Check 
codes [16]. 
Linear codes depend on the correlation model between X and Y. In their tutorial paper, 
Xiong et al. [16] focused on the widely studied binary symmetric correlation model. This 
model draws an i.i.d sequence {Xi,Yi} which are correlated with a Bernoulli(0.5), leading 
to a virtual binary symmetric correlation channel [16]. Although not the most practical 
setup, it is the perfect channel to show the progress of coding scheme over years. The 
first codes that approached Slepian-Wolf limits were published in the early 2000’s. The 
schemes borrowed ideas from turbo codes [4] and parity bits [5] but were not quite the 
same a Wyner’s Scheme which recommends using syndrome bits. In 2003, Liveris et al 
incorporated the Wyner’s Scheme in their coding design [6] to successfully achieve near 
Slepian-Wolf limits and distinctly outperforming non-syndrome coding schemes. Figure 
3 features results from Liveris et al, comparing their results to non-syndromes codes. 

 

 
Figure 3 



Figure 3 shows a plot of probability of error v/s correlation (higher correlation leads to 
lower H(X/Y)). We note that there is only a 0.03 bit difference between their best code 
and the Slepian-Wolf limit. In contrast, the best non-syndrome turbo code is only 0.12 
bits from the same limit.  
 
This work can be extended to any correlation model. Xiong et al, states that “if the 
correlation between the source output X and the side information Y can be modeled with 
a “virtual” correlation channel, then a good channel code over this channel can provide us 
with a good Slepian-Wolf code through the syndromes and the associated coset codes.” 
This said, we have transformed the source coding problem of Slepian-Wolf into a channel 
coding problem that allows us to use high performing iterative codes such as turbo and 
LDPC codes. Lan et al [6] have recently extended the work to different correlation 
models and multiterminal cases. Still coding for source with memory and arbitrary 
number of sources with non binary alphabets evades us, mainly because the channel 
coding dual are not really well studied.  
 
 
IV. Wyner-Ziv Model 
 
 
 

 
Figure 4 shows the basic setup for the Wyner-Ziv coding problem [14]. Instead of 
lossless compression as in the Slepian-Wolf case, we now encode X with respect to a 
distortion criterion and we seek the best rate at which we can send the encoded version X 
while respecting the distortion criterion.  
 
This problem can be broken down in two parts; first quantization of the source X and 
then the encoding and transmission of X to the decoder. The first part is a source coding 
problem which uses results from Quantization Theory while the second part can viewed 
as a channel coding problem as we explained earlier in the Slepian-Wolf section.  
 
V. Wyner-Ziv Results and Practical Coding Schemes 
 
In general, there is a strict rate loss when we compare the Wyner-Ziv problem and the 
joint encoding case. However, there are 2 special cases where it has been shown that 
there is no rate loss when compared to the joint encoding scheme. The first case is that 
where X and Y are related by X = Y + Z, with both Y and Z are zero mean Gaussian 
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random variables and the distortion metric is the MSE [14]. This result was further 
extended to show no rate loss when only Z is zero mean Gaussian, leaving arbitrary 
distribution for X and Y, while using the MSE metric [14].   
 
The widely used coding schemes for the WZC use a source coding scheme like the 
Trellis Coded Quantization (TCQ) to achieve granular gain and channel coding scheme 
like Turbo or LDPC code. The work of Pradhan et al on Distributed Source Coding using 
syndromes (DISCUS) have set the tone for both SWC and WZC [11]. Since its 
appearance in 1999, several coding paradigm followed, including the Slephian-Wolf 
Coded Quantization (SWCQ) as described in [16]. This scheme makes use of efficient 
algebraic binning by grouping source codewords into coset channel codes and then 
sending one index per code. The results for quadratic Gaussian WZC is closer to 
theoretical limits than any previous codes. Other efficient practical codes, like PRISM [8] 
in video communication systems, are more application specific.  
 
VII. Conclusion 
 
While results in Distributed Source Coding has been known for 3 decades now, 
significant progress in developing practical codes have started only recently. A few 
factors can be attributed to this gap. First, technology and computational development 
have provided us with faster and more powerful hardware and simulation tools, which in 
turn have paved the way to developing powerful tools such as turbo codes. Second, is the 
renewed interest in the problems of Distributed Source Coding. Applications such as 
sensor networks have motivated more attention to this problem.  And most importantly is 
the work of researchers who have successfully combined established results with new 
tools to give us better and more efficient codes.  
The problems of distributed source coding extends to more complex cases such as 
multiterminal source coding, chief executive officer problem, cross-layer design, and 
problem where sources have memory. There is still much progress to be made in terms of 
achievable rates and even more work needs to be done for practical and efficient codes. 
However, as we continue to exploit the various source-channel coding dualities and 
progress in both communities continue to grow, we look forward to rapidly improving 
practical codes becoming available. 
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