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Abstract— We study the MIMO broadcast channel and com-
pare the achievable throughput for the optimal strategy of
dirty paper coding to that achieved with sub-optimal and
lower complexity linear precoding (e.g., zero-forcing and block
diagonalization) transmission. Both strategies utilize all available
spatial dimensions and therefore have the same multiplexing gain,
but an absolute difference in terms of throughput does exist. The
sum rate difference between the two strategies is analytically
computed at asymptotically high SNR, and it is seen that this
asymptotic statistic provides an accurate characterization at
even moderate SNR levels. Weighted sum rate maximization is
also considered, and a similar quantification of the throughput
difference between the two strategies is computed. In the process,
it is shown that allocating user powers in direct proportion to
user weights asymptotically maximizes weighted sum rate.

I. INTRODUCTION

The multiple antenna broadcast channel (BC) has recently
been the subject of tremendous interest, primarily due to
the realization that such a channel can support multiple data
streams, and therefore realize MIMO spatial multiplexing
benefits, without requiring multiple antenna elements at the
mobile devices [1]. Indeed, it is now well known that dirty
paper coding (DPC) achieves the capacity region of the
multiple antenna BC [2]. However, implementation of DPC
requires significant additional complexity at both transmitter
and receiver, and the problem of finding practical dirty paper
codes that approach the capacity limit is still unsolved.

On the other hand, linear precoding is a low complexity but
sub-optimal transmission technique (with complexity roughly
equivalent to point-to-point MIMO) that is able to transmit the
same number of data streams as a DPC-based system. Lin-
ear precoding therefore achieves the same multiplexing gain
(which characterizes the slope of the capacity vs. SNR) curve)
as DPC, but does incur an absolute rate/power offset relative
to DPC. The contribution of this work is the quantification of
this rate/power offset.

The key analytical tool used in this paper is the affine
approximation to capacity at high SNR recently developed by
Shamai and Verdú [3]:

C(P) = S∞ (log2 P−L∞)+o(1), (1)

where S∞ refers to the multiplexing gain (i.e., how many
additional bps/Hz for every 3 dB power gain) and L∞ refers
to the rate offset. Although this approximation is exact only at
asymptotically high SNR, it is seen to provide very accurate

results for a wide range of SNR values, e.g., on the order
of 5 dB and higher. This affine approximation is evaluated
for point-to-point MIMO channels for a number of different
fading models in [4].

In this work, we apply the high SNR approximation to the
sum rate capacity (DPC) and to the linear precoding sum rate.
Both approximations have the same S∞, but by characterizing
the difference in the L∞ terms the rate/power offset between
the two strategies is determined. By averaging the per-channel
realization rate offset over the iid Rayleigh fading distribution
we are able to derive very simple expressions for the average
rate offset as a function of only the number of transmit and
receive antennas and users for systems in which the aggregate
number of receive antennas is no larger than the number of
transmit antennas.

Note that previous work has analyzed the ratio between the
sum rate capacity and the linear precoding sum rate [5][6].
In this work we alternatively study the absolute difference
between these quantities, which appears to be a more meaning-
ful metric precisely because both strategies provide the same
multiplexing gain.

In addition to sum rate, we also study weighted sum rate
maximization (using DPC and linear precoding) and provide
simple expressions for the rate offsets in this scenario. One
of the most interesting results is that weighted sum rate (for
either DPC or linear precoding) is maximized at asymptot-
ically high SNR by allocating power directly proportional
to user weights. This result appears to generalize the well-
known property that equal power allocation (across users,
fading states, and eigenmodes, for example) asymptotically
maximizes sum rate in a number of different single-user
and multi-user settings. To illustrate the usefulness of this
asymptotically optimal power allocation policy, we apply it to
a system employing queue-based scheduling (at finite SNR’s)
and see that it performs extremely close to the true optimal
weighted sum rate maximization.

II. SYSTEM MODEL

We consider a K-user Gaussian MIMO BC in which the
transmitter has M antennas and each receiver has N antennas
with M ≥ KN, i.e., the number of transmit antennas is no
smaller than the aggregate number of received antennas. The
received signal yk for user k is given by

yk = Hkx+nk, k = 1, · · · ,K, (2)



where Hk(∈ CN×M) is the channel gain matrix for user k,
x is the transmit signal vector having a power constraint
tr(E[xxH ]) ≤ P, and nk (k = 1, · · · ,K) is complex Gaus-
sian noise with unit variance per vector component (i.e.,
E[nH

k nk] = I). We assume that the transmitter has perfect
knowledge of all channel matrices and each receiver has
perfect knowledge of its own channel matrix. For the sake of
notation, the concatenation of the channels is denoted by HH =
[HH

1 HH
2 · · · HH

K ](∈CKN×M), which can be decomposed by row
vectors as HH = [hH

1,1 hH
1,2 · · · hH

1,N hH
2,1 hH

2,2 · · · hH
2,N · · · hH

K,N ],
where hk,n(∈ C1×M) is the nth row vector of Hk.

Notations: Boldface letters denote matrix-vector quantities.
The operation tr(·) and (·)H represents the trace and the
Hermitian transpose of a matrix, respectively. The operation | · |
and ‖ ·‖ denote the determinant of a matrix and the Euclidean
norm of a vector, respectively.

III. SUM RATE BY DIRTY PAPER CODING

The DPC sum rate, which achieves the sum capacity of
the MIMO BC, can be expressed from the MIMO BC-MAC
duality by the following [7]:

CDPC(H,P) = max
∑k tr(Qk)≤P

log2

∣∣∣∣∣I+
K

∑
k=1

HH
k QkHk

∣∣∣∣∣ . (3)

No closed-form solution to (3) is known to exist, but it has
been shown that CDPC(H,P) converges (absolutely) to the
capacity of the point-to-point MIMO channel with transfer
matrix H whenever M ≥ KN:

Theorem 1 ([1]): When M ≥ KN,

lim
P→∞

[
CDPC(H,P)− log2

∣∣∣∣I+
P

KN
HHH

∣∣∣∣
]

= 0. (4)

A direct corollary of this result is the fact that choosing each of
the covariance matrices as Qk = P

KN I in (3) is asymptotically
optimal [8].

As a result of Theorem 1, an affine approximation for the
sum rate can be found as:

CDPC(H,P)∼= KN log2 P−KN log2 KN + log2
∣∣HHH

∣∣ , (5)

where ∼= refers to equivalence in the limit (i.e., the difference
between both sides converges to zero as P→ ∞). Notice that
the high SNR sum rate capacity only depends on the product
of K and N and not on their specific values; this is not the
case for linear precoding.

IV. SUM RATE BY LINEAR PRECODING

In this section we compute the affine approximation to
the linear precoding sum rate, and quantify the asymptotic
rate/power offset relative to DPC.

When linear precoding is used, the transmit signal vector x
is a linear function of the symbols intended for the K users
sk(∈ CN×1), k = 1, · · · ,K:

x =
K

∑
k=1

Vksk, (6)

where Vk(∈ CM×N) is the precoding matrix for user k. Since
each receiver has N (≤M) antennas, N symbols (data streams)
are transmitted to each receiver.

The resulting received signal for user k is given by

yk = HkVksk + ∑
j 6=k

HkV js j +nk, (7)

where the second term in (7) represents the multi-user inter-
ference.

In this paper we consider two linear precoding schemes
to eliminate the multi-user interference when M ≥ KN: zero-
forcing (ZF) and block diagonalization (BD). The precoding
matrices {V j}K

j=1 for BD are chosen such that for all j(6= k)∈
[1,K],

HkV j = O, (8)

while those for ZF are chosen so that

hk,nv j,l = 0, ∀ j(6= k) ∈ [1,K], ∀n, l ∈ [1,N], (9)
hk,nvk,l = 0, ∀l(6= n) ∈ [1,N], (10)

where v j,l denotes the lth column vector of V j. Consequently,
performing ZF in a system with K users with N(> 1) antennas
is equivalent to performing ZF in a channel with KN single
antenna receivers.

A. Zero-forcing

Since zero-forcing eliminates multi-user and inter-antenna
interference, the received signal at the nth antenna of user k
is given by

yk,n = hk,nvk,nsk +nk,n, n = 1, · · · ,N. (11)

Thus, ZF converts the system into KN parallel channels with
effective channel gk,n = hk,nvk,n. Sum rate is maximized by
optimizing power allocation across these parallel channels:

CZF(H,P) = max
∑k ∑n Pk,n≤P

K

∑
k=1

N

∑
n=1

log2
(
1+Pk,n|gk,n|2

)
. (12)

Since the optimum power allocation policy converges to
uniform power at asymptotically high SNR [8], we have:

CZF(H,P)∼= KN log2 P−KN log2 KN + log2

K

∏
k=1

N

∏
n=1

|gk,n|2.
(13)

This approximation is identical to that for DPC in (5) except
for the final constant term.

We define the rate loss as the asymptotic (in SNR) difference
between the sum rate capacity and the zero forcing sum rate:

βDPC-ZF(H) , lim
P→∞

[CDPC(H,P)−CZF(H,P)] . (14)

From (5) and (13), the rate loss incurred by ZF is:

βDPC-ZF(H) = log2
|HHH|

∏K
k=1 ∏N

n=1 |gk,n|2
. (15)

Due to the affine behavior of sum rate at high SNR, this
rate offset (i.e., the vertical offset between capacity vs. SNR



curves) can be immediately translated into a power offset (i.e.,
a horizontal offset): 3

K βDPC-ZF(H) dB.
While the above metric is the rate loss per realization, we

are more interested in the average rate offset across the fading
distribution:

β̄DPC-ZF = EH [βDPC-ZF(H)] , (16)

which allows a comparison of average (over the fading dis-
tribution) throughput. Under iid Rayleigh fading, the matrix
HHH clearly is Wishart with 2M degrees of freedom. Fur-
thermore, it can be shown that the square of the norm of
the effective channel gains |gk,n|2 are identically χ2

2(M−K+1).
Utilizing the expression for the expected log-determinant of
Wishart matrices and of chi-squared variables in terms of
Euler’s digamma function [9], we can compute the expected
offset in closed form:

Theorem 2: The expected loss in Rayleigh fading due to
zero-forcing is given by

β̄DPC-ZF = log2 e
K−1

∑
j=1

j
M− j

(bps/Hz). (17)

Proof: See [8].
Furthermore, when M = K, the loss is approximately found

as
β̄DPC-ZF(M)≈M log2 M (bps/Hz). (18)

B. Block Diagonalization

Since the precoding matrix for BD is chosen to be HkV j =
O for k 6= j, the received signal for user k is given by

yk = HkVksk +nk. (19)

Thus, BD converts the system into K parallel MIMO channels
with effective channel matrices Gk = HkVk, k = 1, · · · ,K. The
BD sum rate is given by [10][11]

CBD(H,P) = max
Qk:

K
∑

k=1
tr{Qk}≤P

K

∑
k=1

log2
∣∣I+GkQkGH

k

∣∣ , (20)

and the optimal rate is achieved asymptotically by uniform
power allocation at high SNR since the channel can be
decomposed into parallel channels. Hence, the sum rate is
asymptotically given by

CBD(H,P)∼= KN log2 P−KN log2 KN + log2

K

∏
k=1
|GH

k Gk|.
(21)

Let us define the loss from the DPC sum rate as

βDPC-BD(H) , lim
P→∞

[CDPC(H,P)−CBD(H,P)] , (22)

and denote the expected loss as β̄DPC-BD , EH[βDPC-BD(H)].
Similar to the analysis for ZF, we can calculate the loss terms
for a fixed channel and also average over Rayleigh fading. In
order to compute the average rate loss, we use the fact that
each of the effective channels is equivalent to an N× (M−
(K−1)N) iid Rayleigh MIMO channel [10].

Theorem 3: The expected loss in Rayleigh fading due to
block diagonalization is given by

β̄DPC-BD = (log2 e)

(
K−1

∑
k=0

N−1

∑
n=0

(K−1)N

∑
i=kN+1

1
M−n− i

)
(bps/Hz).

(23)
Proof: See [12].

Eq. (23) simplifies to (17) when N = 1; i.e., zero-forcing is
a special case of block diagonalization. If M is kept fixed
but N is increased and K is decreased such that KN remains
constant, i.e., the number of antennas per receiver increases
but the aggregate number of antennas is kept constant, then
the rate offset decreases. To understand this, consider that the
sum rate capacity (DPC) is the same as the capacity of a
KN×M MIMO channel (and thus only depends on the product
KN). However, the BD sum rate is K times the capacity of an
N× (M−KN + 1) MIMO channel, while the ZF sum rate is
KN times the capacity of an (M−KN +1)×1 MISO channel.

The above expression is somewhat unwieldy, but it is pos-
sible to gain more intuition by considering the offset between
BD (K receivers with N antennas each) and ZF (equivalent to
KN receivers with 1 antenna each).

Theorem 4: If M = αKN with N > 1 and α > 1, the
difference of the expected losses by BD and ZF is given by

β̄BD-ZF , β̄DPC-ZF− β̄DPC-BD

= (log2 e)K
N−1

∑
i=1

(N− i)
(α−1)KN + i

(bps/Hz).

Proof: See [12].
A direct corollary of this is an expression for the expected
power offset when M = KN:

∆̄BD-ZF =
3(log2 e)

N

N−1

∑
j=1

N− j
j

(dB). (24)

The most important feature of this expression is that it depends
only on the number of receive antennas. For example, consider
two system configurations: (i) M

2 users each have two receive
antennas, and (ii) M users each have one receive antenna.
Equation (24) indicates that the power advantage of using
BD in the N = 2 system is ∆̄BD-ZF = 2.1640 (dB) relative to
performing ZF. Since this offset is independent of M, it is the
same for M = 4 and K = 4,N = 1 vs. K = 2,N = 2 systems as
well as for M = 6 and K = 6,N = 1 vs. K = 3,N = 2 systems.
To illustrate the utility of the asymptotic rate offsets, sum rates
are plotted in Fig. 1 for systems with M = 6 and K = 6,N = 1,
K = 3,N = 2, and K = 2,N = 3. Notice that the asymptotic
offsets provide insight at even moderate SNR levels (e.g., 10
dB).

V. GENERALIZATION TO WEIGHTED SUM RATES

In this section we generalize the sum rate to weighted sum
rate maximization for single antenna receivers (N = 1). We
first show that allocating power in proportion to user weights
is asymptotically optimal, and then use this result to compute
the associated rate offsets. Finally, we show the utility of our
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Fig. 1. Simulated rate losses and power offsets between the sum rate by
DPC and the sum rate by linear precoding.

simple power allocation policy via application to queue-based
scheduling.

A. Asymptotic Optimal Power Allocation

Without loss of generality, we assume user weights are in
descending order: µ1 ≥ µ2 ≥ ·· · ≥ µK ≥ 0 with ∑K

k=1 µk =
1. The maximum weighted sum rate problem (DPC), which
is defined as the maximum of ∑K

k=1 µkRk over the capacity
region, can be written as:

CDPC(µ,H,P) = max
∑K

k=1 Pk≤P

K

∑
k=1

µk log2

(
1+Pkhk(A(k−1))−1hH

k

)
,

(25)
where A(k−1) = I+∑k−1

j=1 PjhH
j h j. Since N = 1, the channel is

a row vector and is written as hk.
The following lemma shows that if we limit ourselves to

linear power allocation policies, then the objective function in
(25) can be decoupled at high SNR:

Lemma 1: If M ≥ K, then for any αk(= Pk/P) > 0, k =
1, · · · ,K with ∑K

k=1 αk = 1,

lim
P→∞

[
K

∑
k=1

µk log2

(
1+αkPhk(A(k−1))−1hH

k

)

−
K

∑
k=1

µk log2
(
1+αkP‖fk‖2)

]
= 0, (26)

where fk is the projection of hk onto the nullspace of
{h1, · · · ,hk−1}.

Proof: See [12].
That is, instead of solving (25) directly, the following opti-
mization will yield an asymptotically identical solution (albeit
with a restriction on allowable power policies):

max
Pk: ∑K

k=1 Pk≤P

K

∑
k=1

µk log2
(
1+Pk‖fk‖2) . (27)
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Fig. 2. Weighted sum rate difference between the exact solution (25) and
the asymptotic solution (30) when µ1 = 0.6 and µ2 = 0.4 for h1 = [0.8576+
1.3809i 0.3070− 0.7095i 0.2146− 0.5851i − 0.1260 + 0.6932i], and h2 =
[−1.2592−0.5144i 0.5696−0.2819i −0.8380−0.1668i 0.0919+0.4464i].

The KKT conditions yield the solution to (27):

P∗k = µkP+ µk

(
∑

i

1
‖fi‖2

)
− 1
‖fk‖2 , (28)

for k = 1, · · · ,K. Therefore, at high SNR we have

P∗k = µkP+O(1), k = 1, · · · ,K. (29)

Since the O(1) power term leads to a vanishing rate, allocating
power according to:

Pk = µkP, k = 1, · · · ,K (30)

maximizes (27) at asymptotically high SNR.
In Fig. 2 the difference between the true weighted sum rate

(25) and the weighted sum rate achieved using Pk = µkP is
shown for a specific channel realization when µ1 = 0.6 and
µ2 = 0.4 for M = 4 and K = 2, and the gap is seen to be
negligible throughout the entire SNR range.

Meanwhile, the weighted sum rate by ZF is given by

CZF(µ ,H,P) = max
Pk: ∑K

k=1 Pk≤P

K

∑
k=1

µk log2
(
1+Pk‖gk‖2) , (31)

where gk is the projection of hk onto the null space of
{h1, · · · ,hk−1,hk+1, · · · ,hK}. Notice that the optimization (31)
is the same as the optimization (27) except that fk is replaced
by gk which does not contribute to the asymptotic solution.
This only affects the O(1) term in (28)and thus the power
allocation policy in (30) is also the asymptotic solution to
(31).

B. Rate Loss

Using the asymptotically optimal power allocation policy of
(30), the weighted sum rates of DPC and ZF can be expressed
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as

CDPC(µ,H,P) ∼=
K

∑
k=1

µk log
(
1+ µkP‖fk‖2) , (32)

CZF(µ ,H,P) ∼=
K

∑
k=1

µk log
(
1+ µkP‖gk‖2) . (33)

Thus, the rate offset per realization is given by

βDPC-ZF(µ,H,P)∼=
K

∑
k=1

µk log
‖fk‖2

‖gk‖2 . (34)

In Rayleigh fading, the distributions of ‖fk‖2 and ‖gk‖2

are χ2
2(M−k+1) and χ2

2(M−K+1), respectively. Therefore, the
expected rate loss is given by

β̄DPC-ZF(µ,M,K)∼= (log2 e)
K

∑
k=1

µk

(
M−k

∑
j=M−K+1

1
j

)
. (35)

C. Application to Queue-based Scheduling
Queue-based scheduling, introduced by the seminal work of

Tassiulas and Ephremides [13], is one application in which it
is necessary to repeatedly maximize the weighted sum rate
for different user weights. Fig. 3 illustrates a queue-based
scheduling system for two users. Data for the users arrive at
rates λ1 and λ2, which are generally assumed to be unknown.
During each time slot, the transmitter chooses the rate vector
that maximizes the weighted sum rate over the instantaneous
rate region with weights equal to the current queue sizes. If
the queue lengths are denoted as q1(t) and q2(t), then the
transmitter solves the following optimization during each time
slot:

max
R∈C(H,P)

q1(t)R1 +q2(t)R2, (36)

and such a policy stabilizes any rate vector in the ergodic
capacity region.

Although the weighted sum rate maximization problem
for DPC stated in equation (25) is convex, it still requires
considerable complexity and could be difficult to perform on
a slot-by-slot basis. An alternative is to use the approximate
power allocation policy from (30) is used during each time
slot:

Pk =
qk(t)

q1(t)+q2(t)
P, (37)

and where the ordering of the queues determines the dual MAC
decoding order (larger queue decoded last).

Although we do not yet have any analytical results on
the performance of the asymptotically optimal power policy,
numerical results indicate that such a policy performs nearly
as well as actually maximizing weighted sum rate.

VI. CONCLUSION

We have investigated the difference between the through-
puts achieved by dirty paper coding (DPC) relative to those
achieved with linear precoding strategies by utilizing the affine
approximation to high SNR and computing the exact through-
put/power offsets at asymptotically high SNR for MIMO
broadcast channels in which the number of transmit antennas is
no smaller than the total number of receive antennas. Simple
expressions in terms of the number of transmit and receive
antennas are provided for the average rate/power offset in
a spatially white Rayleigh fading environment. When the
aggregate number of receive antennas is equal or slightly less
than than the number of transmit antennas, linear precoding
incurs a rather significant penalty relative to DPC, but this
penalty is much smaller when the number of transmit antennas
is large relative to the number of receive antennas.

Furthermore, we generalized our analysis to weighted sum
rate and quantified the asymptotic rate/power offsets for this
scenario as well. One of the most interesting aspects of
this extension is the finding that allocating power directly
proportional to user weights is asymptotically optimal at high
SNR. This finding appears to apply quite generally to power
allocation over parallel channels, and may prove to be useful
in other settings.
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multiantenna communication,” IEEE Trans. Inform. Theory, vol. 51,
no. 12, pp. 4134–4151, Dec. 2005.

[5] N. Jindal and A. Goldsmith, “Dirty-paper coding versus TDMA for
MIMO broadcast channels,” IEEE Trans. Inform. Theory, vol. 51, no. 5,
pp. 1783–1794, May 2005.

[6] Z. Shen, R. Chen, J. G. Andrews, R. W. Heath, and B. L. Evans,
“Sum capacity of multiuser MIMO broadcast channels with block
diagonalization,” in Proc. IEEE Int. Symp. on Inform. Theory (ISIT),
Seattle, WA, Jul. 2006, pp. 886–890.

[7] S. Vishwanath, N. Jindal, and A. Goldsmith, “Duality, achievable rates,
and sum-rate capacity of Gaussian MIMO broadcast channels,” IEEE
Trans. Inform. Theory, vol. 49, no. 10, pp. 2658–2668, Oct. 2003.

[8] N. Jindal, “High SNR analysis of MIMO broadcast channels,” in Proc.
IEEE Int. Symp. on Inform. Theory (ISIT), Adelaide, Australia, Sep.
2005.
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