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Abstract—In this paper the performance of unslotted ALOHA
and CSMA are analyzed in spatially distributed wireless net-
works. Users/packets arrive randomly in space and time accord-
ing to a Poisson process, and are thereby transmitted to their
intended destinations using a fully-distributed MAC protocol
(either ALOHA or CSMA). An SINR-based model is considered,
and a packet transmission is successful if the received SINR is
above a threshold value for the duration of the packet. Accurate
bounds to the probability of outage, which is a function of the
density of transmissions, are developed for both MAC protocols.
These bounds are used to evaluate the performances of ALOHA
and CSMA, and to gain insight into the design of general MAC
protocols for ad hoc networks. Moreover, CSMA with receiver-
sensing is proposed to improve the performance of CSMA.

I. INTRODUCTION

A major challenge in the field of wireless communications
in spatially distributed networks is sharing the medium and
the available resources in a distributed manner. Sharing the
medium has the adherent problem of interference, which may
lead to erroneous reception of packets. In this paper, we con-
sider nodes that are randomly distributed in space and address
the problem of interference through the MAC layer design,
which is an essential source of efficient resource allocation.
The MAC protocols ALOHA and CSMA are applied for the
communication between transmitters and receivers, and we
investigate how often the packets are received successfully.

We ask the following main questions: given a fixed transmis-
sion power and signal-to-interference-plus-noise ratio (SINR)
threshold for each single-hop transmitter-receiver link in the
network, (a) what is the probability of successful transmission
if unslotted ALOHA (i.e., transmit immediately upon recep-
tion) is used by all nodes in the network, and (b) what is the
probability of successful transmission if a simple and fully-
distributed CSMA mechanism (i.e., check the measured SINR
before transmitting) is used by all nodes?

We consider a network in which transmitter nodes are ran-
domly located according to a Poisson point process (PPP) with
a specified spatial density, and packets arrive randomly in time
according to a 1-dimensional PPP. In order to derive precise
results, we focus exclusively on single-hop communication and
assume that each transmitter wishes to communicate with a re-
ceiver a fixed distance away from it. All multi-user interference
is treated as noise, and our model uses the SINR to evaluate the
performance (i.e., outage probability) of the communication
system. The only source of randomness in the model is in the
location of nodes and concurrent transmissions, which allows

us to focus on the relationships between transmission density,
outage probability, and the choice of MAC protocol.

A. Related Work

There has been a notable amount of research done on the
performance of ALOHA in ad hoc networks. A number of
different researchers have analyzed slotted ALOHA using a
Poisson model for transmitter locations, considering transmis-
sion capacity and success probability of the network [1] [3].
Ferrari and Tonguz [6] have analyzed the transport capacity of
slotted ALOHA and CSMA, showing that for low transmission
densities the performance of slotted ALOHA is almost twice
that of CSMA. However, for increasing densities, while the
capacity of ALOHA drops to zero, the capacity of CSMA
increases, making CSMA more beneficial at higher densities.

Other recent works have also considered the performance of
ALOHA, showing among others that the scaling of transport
capacity depends on the amount of attenuation in the channel
[7] [8]. However, most of the research done thus far, focuses on
deterministic SINR models and employs deterministic channel
access schemes, which thereby precludes the occurrences of
outages. In order to best model the behavior of a distributed ad
hoc network at the MAC layer, a stochastic SINR requirement
must be used, as is the case in our model.

Within our Poisson model with random location of nodes,
neither unslotted ALOHA nor CSMA appear to have been
analyzed in detail, despite the fact that CSMA is one of
the most widely used MAC protocols today. Perhaps the
closest work is that of Hasan and Andrews [4] where success
probability of ALOHA and CSMA is analyzed for a similar
spatial model assuming that a scheduling mechanism creates
an interference-free guard zone (i.e., circle) around the receiver
and the optimal guard zone size is studied. The CSMA
mechanism we consider is able to suppress some nearby
interferers, but is not able to create a perfect guard zone; in the
future we hope to utilize the results of [4] to study the optimal
sensing zone for the flavor of CSMA considered here.

II. PRELIMINARIES
A. System Model

We wish to analyze the performance of CSMA in a net-
work with randomly located users and random transmission
times. One possible model that could be used is as follows:
transmitters are located on an infinite 2-D plane according to a
homogeneous PPP with spatial density A*, and each transmitter
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Fig. 1. Each new packet arrival is assigned to a transmitter-receiver pair,
which is positioned randomly on the plane.

receives packets (in time) according to an independent 1-D
Poisson process with parameter \!. These packets are then
transmitted to the dedicated receiver, which is located a fixed
distance R away (with random orientation). The transmission
power p is constant for all transmitters. Assumed that each
packet has a fixed duration, 7', at each time instant the density
of transmitters that have received a packet in the last 7" seconds
is: A = T A° AL In order to analyze this network, it would
be necessary to average over the spatial (to fix locations) and
temporal (packet arrivals) statistics, which is rather difficult.

An alternative model is to assume that packets/users arrive
at a random point in space and time and then disappear after
their packet is served (successful or not). In the above model
user locations are first fixed and then traffic is generated, while
in this model user/packet locations are also random. As a
result, there is a single process that describes both the spatial
and temporal variations which greatly simplifies analysis. We
consider a finite area A, and model packet arrivals according
to a 1-D PPP with arrival rate (A/T)A. Upon arrival each
packet is assigned to a random transmitter location (uniformly
distributed in area A) and a receiver is randomly located a
distance R away, as shown in Fig. 1.

Note that the number of packet arrivals during a time
interval of T' seconds is Poisson(A\). When A is made large
this translates to a spatial density of A , which is the same
as in the fixed model that was initially discussed. Therefore,
results generated with our model can be fairly compared to
the first network model with density A. Furthermore, note that
if slotted ALOHA is used (and the area A is taken to infinity)
the two models are the same, because the set of transmitters
during each time slot is a homogenous 2-D process with
density \. The parameter for our temporal Poisson distribution
is Atempral — 4 xS A\t = A M/T.

For the channel model, only path loss attenuation effects
(with exponent « > 2) are considered, i.e. additional channel
effects such as shadowing and fast fading are ignored, and
the channel is considered to be constant for the duration of
a transmission. Note that it is feasible to extend the work to
include fading using the techniques developed in [5]. Each
receiver sees interference from all the transmitters, and these
interference powers are added to the channel noise 7 to result
in a certain SINR at each receiver. If this SINR falls below
the required SINR threshold 3 at any time during the packet

transmission, the packet is received in outage. With an outage
probability constraint of e, this is given as:

Pr <W < ﬁ) <e ()
n+ 2, plri =

where r; is the distance between the node under observation
and the i-th interfering transmitter.

In the case of ALOHA, each transmission starts as soon
as the nodes are placed, regardless of the channel condition.
Slotted ALOHA improves performance by removing partial
outages, but this system requires synchronization. In the
CSMA protocol the incoming transmitter listens to the channel
in the beginning of the packet, and if the measured SINR is
below g, it drops its packet. No retransmissions are applied.

III. OUTAGE PROBABILITY FOR ALOHA
A. Slotted ALOHA

Weber et al. consider the ALOHA protocol in a slotted
version of our network model [1], i.e. transmitters can only
start their packet transmissions at the beginning of the next
time slot after the packet has been formed. Thus there is
no partial overlap of transmitted packets, something that is
intuitively expected to decrease the probability of outage. De-
fine s to be the distance between the receiver under observation
and its closest interfering transmitter that causes the SINR to
fall just below the threshold §. This distance is found to be:

1
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Consider the area B(Ri,s), which is a circle of radius s
around the receiver under observation, RX;. One situation that
would result receiver RX; to go into outage is if at least one
active transmitter, except TX, falls within B(R1, s). Based on
this, the lower bound (LB) for the probability of outage is [1]:

PLE (Slotted ALOHA)
= P(>1 TX inside B(R;,s) during [0,7]) 3)
1— e—)ﬂ'rs2

Using the Taylor expansion formula for small values of the
density, equation (3) may be approximated by:

PLB (Slotted ALOHA) ~ Arrs? )

This shows that the outage probability is approximately a
linear function of the spatial density. This will be referred to

later for the sake of comparison and intuition. In the following
we will use (3) to develop expressions for continuous-time
transmissions for both the ALOHA and CSMA protocols.

B. Unslotted ALOHA

If no synchronization is possible in the system, the nodes
will have to use unslotted ALOHA for communication.

Theorem 1: The lower bound for the probability of outage
for continuous-time ALOHA is:

2
PLE (Unslotted ALOHA) = 1 — ¢ 227 5)

Proof of Theorem 1: Consider the equation for the lower
bound of the outage probability of slotted ALOHA, and note



10° bbb
107'E
(9]
(=]
g
5
o)
k]
z
g 107 o
o
& —#— Simulated ALOHA
-/ Analytical ALOHA
—b— Analytical slotted ALOHA
10°F
; ;
107 107° 107 107" 10° 10'
Spatial density, A
Fig. 2. Probability of outage for slotted and unslotted ALOHA along with

the simulation results.

that this indicates that there are no interfering transmissions
inside B(Ry,s) during the time period [0,7]. Now, within a
continuous-time system, we know that any transmission that
started less than time T before the transmission between TX;
and RX; starts, is still an ongoing transmission, and will
thus contribute to the outage probability of RX;. Hence, we
now require that except for TX; there are no other active
transmitters inside B(R1,s) during the period [-T,T], i.e.:
PLE (Unslotted ALOHA)

= P (outage in [T, 0] U outage in [0,7])

2 2 2
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Note that this derivation is valid because the probability of
outage in [T, 0] is independent of the probability of outage
in [0, 7], since all packets are of equal length 7. That is, the
set of active transmissions at time 0 is independent of those

at time 7. For small values of the density A the probability of
outage for unslotted ALOHA may be approximated with:

PLB (Unslotted ALOHA) & 2\rs? (6)

Comparing this with equation (4) we see that slotted
ALOHA performs better than unslotted ALOHA by a factor
of 2 in terms of probability of outage. This is expected and
consistent with the results obtained from the conventional
model for the slotted and unslotted ALOHA protocols.

For the Matlab simulations we apply a constant transmission
power p of 1, R equal to 1, path loss exponent « of 3, and a
SINR threshold 8 of 0 dB. The latter is chosen for the outage
probability to have little dependence on the path loss exponent
a. Fig. 2 shows the outage probability versus density for both
slotted and unslotted ALOHA. The analytical bounds given
in (3) and (5) are also plotted, with the latter following the
simulations tightly. As expected, slotted ALOHA outperforms
unslotted ALOHA by approximately a factor of 2.

IV. OUTAGE PROBABILITY FOR CSMA

In the CSMA protocol, a transmitter backs off or drops its
packet if the accumulation of the interference from all other

active transmitters results in a measured SINR that is below
B at the beginning of the packet. The probability of this is
called backoff probability, P,. If the transmitter decides to
transmit, but the measured SINR at the receiver is below g3
any time along the packet duration, the packet is received in
outage. In the following sections we derive expressions for the
probability of backoff and the total probability of outage for
CSMA, both when the transmitter senses the channel SINR,
and when the receiver senses the channel SINR upon arrival.

A. Probability of Backoff

Due to the complexity of the analysis, as in the ALOHA
case, we consider the lower bound for the outage probability,
which may be obtained by only considering the effect of the
nearest interferer (TXz in Fig. 3) on the receiver under ob-
servation (RX;). Denoting this distance by d, we have that d>
follows a Poisson distribution. Note that because of the backoff
property of CSMA, the number of transmitters on the plane no
longer follows a PPP. Nevertheless, as an approximation, we
assume that the transmitters are still Poisson distributed, and
the simulation results show that this assumption is reasonable.

Theorem 2: The approximate probability that a transmitter
using CSMA backs off is given by:

2
Pb — 1 _ 6—/\(1—Pb)7l'8 (7)

The solution to this can be given in closed form in terms of
the Lambert function, Wy (-), as:
Wo (Ars? 1 o= (—p)! n
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Proof of Theorem 2: Consider a new packet arrival that is
assigned to a transmitter-receiver pair. In order for this new
transmitter to start its transmission, we require that the closest
transmission that is already active on the plane is at least a
distance s away. Only the time period [T, 0] is of interest for
the probability of backoff, because the decision on whether to
back off or not is made at the beginning of each packet. Also,
due to the backoff property of CSMA the density of nodes on
the plane is now: A (1 — P,). Hence, using equation (3), the
probability of backoff for a new packet arrival is derived to be
(8). For small values of the density, the probability of backoff
increases as a linear function of X. The analytical backoff
probability for CSMA is plotted versus density in Fig. 4, and
shown to follow the simulation results tightly. As expected, for
higher densities, there is a greater probability that a node backs
off its transmission due to the higher level of interference.

p=1

B. Outage Probability for CSMA — Transmitter-Sensing

Next we consider the probability that a packet goes into
outage during its transmission (i.e., we assume that TX; has
already sensed its own channel at the start of its transmission,
and has decided to transmit).

Theorem 3: Considering an active transmitter-receiver pair,
the probability that the packet is received in outage is:

PLE(CSMAno backoft) )

52 2 2 2 9
:/ , |:1 — %cos_l <d+2};d_s>} e T d(dz)
(s—R)



Fig. 3. The setup used to analyze CSMA. TX; and RXj, are assumed to
be active when the new arrival of TX2 and RX9 occurs.

Proof of Theorem 3: Consider an ongoing packet trans-
mission between say TX; and RX; in Fig. 3. Then a new
packet arrives and is assigned to TXo. This new transmission
will cause RX; to go in outage if TX, falls inside B(Ry,s).
Moreover, due to the properties of CSMA, in order for TXs to
not back off and cause interference, it has to be placed at least
a distance s away from the ongoing transmission of TXy, i.e.,
it has to be outside of B(T1, s). That is, TX3 has to fall inside
B(Ry1,s) N B(T1,s), in order for the arrival of a new packet
to result in outage for an ongoing packet transmission. Note
that this outage probability only covers the transmitter-receiver
pairs that are already active on the plane We know that the pdf
of d? is approximately (e Amd? ), and we denote the angle
rotating around RX; by ¢, as shown in Fig. 3. Using that the
pdf of ¢ is 1/(27), we double-integrate over ¢ and d? to find
the area in which the existence of TXy may cause outage for
an ongoing transmission. That is:

w(d) )\

2
PLB(CSMAno backoft) / / e ™ dg d(d?)
(s—R)?

v(d)

where the integration limits for the angle ¢ are:

2, p2_ 2
v(d) = cos™ ! (d"‘RS

5Td ) i w(d) =21 —v(d)

Solving this integral as far as it is analytically possible, we
obtain (9) as the probability that an already active packet goes
into outage anytime during its transmission.

To find the total outage probability of CSMA, we note that
a packet is received in outage if either the transmitter backs off
its transmission, or if the receiver is in outage upon arrival, or
if the packet goes into outage any time during its transmission.
After some manipulation of the expressions, we obtain:

PLB(cSMA) = P, + (1 — P,)PLE (CSMA|no backoff)  (10)
+P,[1-P27 (CSMA|no backoff) |[1-P27 (RX beg.|backoff)]
where expressions for P, and PLZ(CSMA|no backoff) have

been derived earlier, while PLZ(RX beg.|backoff) is derived
by finding for the probability that the closest interferer, which
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Fig. 4. CSMA'’s total probability of outage, backoff probability, and the
probability that packet goes into outage after it decides to transmit.

is given to be inside B(T1,s), is also inside B(R;,s). That is:

zmil@) R (5)2
T 2s TS 2s

Fig. 4 shows the total probability of outage for CSMA,
as well as the backoff probability and the probability that an
active transmission goes into outage during its packet length.
The simulated results follow the analytical results tightly,
hence validating our method and formulas. For lower densities,
about 30% of total outage probability is due to backoffs, while
45% 1is due to outages occurring during packet transmission.

PEB(RX beg.|backoff) =

C. Outage Probability for CSMA — Receiver-Sensing

For the sake of comparison and with the goal of improving
the performance of CSMA, we consider a modified version
of CSMA in which the receiver senses the channel and
informs its transmitter over a control channel whether to
start its transmission or not. This adds an extra factor to our
expressions for the probability of outage, namely the relative
position of the receiver RXy with respect to TX; and TX.

Theorem 4: Considering an active transmitter-receiver pair
and receiver-sensing, the probability that an ongoing packet
transmission is received in outage is:

P()Luj? CSMA |no backoff)

/ / —P (active|d, ¢) TAe —md? g4 g d(d?)

where P(activeld, ¢),

(1)

a(d), and v(d) are given as:

d? +2R? — s — 2Rdcos¢p (12)
2R\/d? + R? — 2Rdcos¢

a(d) = cos™! <d2+235—s2> Cy(d) =2r—a(d) (13

P(active|d,¢) =1 — %cos (

2Rd

Proof of Theorem 4: As earlier, outage is caused if TX, falls
within B(R;,s). However, in order for TXs to not back off,
we now require that RX, falls outside of B(T1,s). Since the
distance R between the transmitter and receiver is constant,
the new receiver must be positioned on the part of the circle
centered on TXo that is at least a distance s away from TX;.



Given the location of the new transmitter TX through d and
¢, whose distributions are known, the probability that TXjy
starts its transmission is derived to be (12). The probability of
outage given that the transmitter decides to transmit is then
found by double-integrating P(active|d, ¢) with respect to ¢
and d?, obtaining (11), which can be solved numerically.

In order to find the fotal outage probability when the
receiver is sensing the channel, we no longer need to consider
the situation when TX is in outage upon arrival. Then the total
probability of outage for CSMA is given as a summation of the
probability that outage occurs at the beginning of the packet at
the receiver, P, and the probability that the transmitted packet
goes into outage during its duration T, i.e.:

PLEB(CSMA) = P, + (1 — P,))PLE (CSMA|no backoff)  (14)

where expressions for P, and PLZ(CSMA|no backoff) are
given by respectively by equations (8) and (11).

Along with the transmitter-sensing results in Fig. 4, we
plot the total outage probability and the probability that an
active transmission goes into outage during its packet length
for the case of receiver-sensing. The simulated results follow
the analytical results tightly, validating our obtained formulas.
Furthermore, we see that approximately 40% of the total
outage probability is due to backoffs, and the remaining 60%
are outages occurring during the packet transmissions.

V. COMPARING THE MAC PROTOCOLS

The total outage probabilities of ALOHA (slotted and un-
slotted) and CSMA (transmitter-sensing and receiver-sensing)
are all plotted in Fig. 5. Interestingly, we see that for lower
densities, CSMA with transmitter-sensing actually performs
worse than ALOHA, having about 10% more outage proba-
bility. In fact, the performance of slotted ALOHA is almost
two orders of magnitude higher than that of CSMA (as was
also concluded in [6]). As the density increases, however, the
use of CSMA becomes more advantageous. This is because
the backoff probability of CSMA increases resulting in fewer
interferers, and also, the chance of backing off in cases where
the packet would have been correctly received, decreases.

By allowing the receiver to sense the channel and decide
whether to back off or not, the performance of CSMA may
be improved by approximately 23%. Moreover, for a fixed
probability of outage, the density of nodes may be increased
by approximately 20% by using CSMA (RX-sensing) over
unslotted ALOHA. Note that the backoff probability of CSMA
with transmitter-sensing is approximately the same as that with
receiver-sensing, because whether we choose to look at the
transmitter or the receiver of a new packet arrival, they are both
randomly placed on the plane, and their distance to the closest
active transmitter is what determines the backoff probability.

VI. CONCLUSION AND FUTURE WORK

The contribution of this paper is analyzing the performance
of the MAC protocols ALOHA and CSMA in terms of
probability of outage in a new framework. In this framework
nodes are randomly placed in space, and transmissions are
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Fig. 5. Simulated probability of outage of ALOHA (slotted and unslotted)

and CSMA (transmitter-sensing and receiver-sensing) as a function of density.
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continuous in time, hence giving the closest representation to
an actual ad hoc network. In this SINR-based model, we derive
expressions for the probability of outage for unslotted ALOHA
and CSMA (both with transmitter and with receiver sensing),
and the probability of backoff for CSMA. The simulated
results are consistent with our derived analytical expressions.
It is shown that CSMA is most effective for higher densities,
as there is a greater probability of backoff. CSMA performs
worse than ALOHA when the transmitter senses the channel,
but the performance of CSMA is significantly improved if the
receiver senses the channel and informs the transmitter over a
control channel whether to transmit or not.

For future work we will add retransmissions to the model
and analyze the delay introduced, and thereby derive the
transmission rate of packets. Furthermore, we will investigate
the effect of applying adaptive rate and power control to our
system, with the goal of improving the performance of CSMA
in spatial ad hoc networks.
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