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Abstract— We analyze the sum-rate performance of a multi-
antenna downlink system carrying more users than transmit
antennas, with partial channel knowledge at the transmitter due
to finite rate feedback. In order to exploit multiuser diversity, we
show that the transmitter must have, in addition to directional
information, information regarding the quality of each channel.
Such information should reflect both the channel magnitude and
the quantization error. Expressions for the SINR distribution and
the sum-rate are derived, and tradeoffs between the number of
feedback bits, the number of users, and the SNR are observed. In
particular, for a target performance, having more users reduces
feedback load.

I. I NTRODUCTION

Recent advances in multiuser downlink communication
channels show that in multiple input multiple output (MIMO)
systems withM transmit antennas andK ≥ M single
antenna users, the full multiplexing gainM can be achieved
by using space-division multiple access schemes such as
dirty-paper coding (DPC) or transmit beamforming [1]–[3].
Moreover, in a large user regimeK À M , the sum-capacity
grows like M log log K due to multiuser diversity [3]–[5].
Low-complexity schemes based on zero-forcing beamforming
(ZFBF) or zero-forcing dirty-paper coding (ZF-DPC) have
been proposed that achieve this optimal growth rate [6]–[8].
However, all these results are based on the assumption of
perfect channel state information at the transmitter (CSIT),
which may not be a practical assumption.

One of the popular models to address the lack of perfect
CSIT is to provide the transmitter with imperfect CSI via a
rate constrained feedback channel from each mobile, where
each mobile quantizes its vector channel to one ofN = 2B

quantization vectors and feeds back the corresponding index.
This feedback is used to capture information regarding only
the spatial direction of the channel (referred to as channel
direction information, or CDI), and not the channel magnitude.
MIMO systems under limited feedback have been studied for
single user systems [9]–[12] and recently applied to downlink
systems forK ≤ M [13], [14]. For single user systems, it has
been shown that only a few feedback bits (roughly on the order
of M, the number of transmit antennas) are needed to achieve
near perfect-CSIT performance. For downlink channels, how-
ever, the feedback load per mobile must be scaled with both
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the number of transmit antennas as well as the system SNR in
order to achieve near-perfect CSIT performance and the full
multiplexing gain [13].

When there are more users than antennas (K ≥ M ), CDI
can be used to achieve the full multiplexing gain of the down-
link channel, but cannot simultaneously benefit from multiuser
diversity, i.e. obtain the double logarithmic growth withK. As
we later show, the sum rate with only CDI at the transmitter
is bounded as the number of users is taken to be large while
all other parameters (feedback load, number of antennas, and
SNR) are held constant. In order to scale the sum rate at the
optimal log log K rate, the transmitter must also have channel
quality information (CQI; be it a channel magnitude or SINR
information), to exploit selection diversity among users as well
as control the effect of quantization error in the CDI. Indeed,
the random beamforming (RBF) scheme proposed in [2] uses
SINR feedback and a few (log2 M ) additional feedback bits
to perform user selection and achieves the asymptotic sum-
capacity asK → ∞. However, its performance is generally
poor for practical values ofK [6].

In this paper, we consider a limited feedback model where
each user feeds backB-bit quantized CDI as well as (un-
quantized) CQI. We propose a low-complexity scheme with a
user selection based on a semi-orthogonal user selection (SUS)
principle [6], [7] and a ZFBF precoder. WhenB = log2 M ,
our model reduces to the RBF. We characterize the sum-rate
performance of our limited feedback model and show how it
scales withK. Our analysis reveals tradeoffs betweenB, K,
and SNR, and provides useful design guidelines.

II. SYSTEM MODEL

Consider a single cell MIMO broadcast channel withM
transmit antennas at the base andK ≥ M single antenna
users. We assume users are homogeneous and experience flat
Rayleigh fading. The signal received by a userk can be
represented as

yk = hkx + zk, k = 1, · · · ,K (1)

where hk ∈ C1×M is the channel gain vector with zero-
mean unit variance i.i.d complex Gaussian entries,x is the
transmitted symbol vector containing information symbols to a
selected set of usersS = {π(1), · · · , π(|S|)} with an average
power constraintE{‖x‖2} = P , zk is the additive noise with
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a unit variance, andyk is the symbol received by userk. The
transmit symbol vectorx is related to information symbols
si, i ∈ S, via linear beamformingx =

∑
i∈S wisi. The user

setS is chosen to maximize the sum-rate.
1) Finite rate feedback model for CDI quantization:We

assume that each user has perfect knowledge (CSIR) ofhk

and quantizes the direction of its channelhk/‖hk‖ to a
unit norm vector ĥk. The quantization is chosen from a
codebookC = {f1, · · · , fN}, N = 2B , of unit norm vectors
according to the minimum distance criterion̂hk = fn with
n = argmax1≤n≤N

∣∣ hk

‖hk‖ f
∗
n

∣∣, and each mobile feeds back
the indexn to the transmitter [9]–[11]. After a user setS is
selected (which is discussed later), the users inS are supported
via ZFBF [1], in which the unit-norm beamforming vectors
wi ∈ CM×1, i ∈ S, are chosen to satisfŷhjwi = 0,
∀j 6= i, j ∈ S. Such vectors can be readily determined
from the pseudo-inverse([ĥT

π(1), · · · , ĥT
π(|S|)]

T)†. Note that
CDI feedback is sufficient for determining ZFBF.

2) CQI feedback model:In addition to the CDI, each user
feeds back its CQIg(hk). We consider two definitions of
CQI: one using the channel normg(hk) = ‖hk‖2 in Section
III, and the other using the SINR as the CQI in Section IV,
among which we show the latter achieves multiuser diversity.
We assume the CQI is directly fed backwithout quantization,
in order to concentrate on the effect of quantization of CDI.
We expect the number of bits for quantizing CQI can be kept
relatively small.

3) User selection:Based on{g(hk)ĥk, k = 1, · · · ,K},
the transmitter performs user selection and ZFBF to support
up to M out of K users at a time. Since finding the optimal
user set that maximizes the sum-rate requires an exhaustive
search which is not computationally feasible for moderate to
largeK, we use a heuristic user selection algorithm based on
the semi-orthogonal user selection (SUS) procedure [6], [7].
Specifically, the transmitter selects the first user from the initial
user setA0 = {1, · · · ,K} as π(1) = argmaxk∈A0 g(hk).
After selectingi users, the(i + 1)th user is selected among
the user setAi = {1 ≤ k ≤ K : |ĥkĥ∗π(j)| ≤ ε, 1 ≤ j ≤ i} as
π(i+1) = argmaxk∈Ai g(hk), whereε is a design parameter
that dictates the maximum spatial correlation allowed between
quantized channels. In this way, the transmitter can choose
users that have high channel qualities and are mutually semi-
orthogonal in terms of their quantized directionsĥk. Under
perfect CSIT, this user selection method achieves the optimal
sum-capacity growth rateM log log K at largeK and per-
forms quite well for moderateK as well [6], [7].

III. CDI AND MAGNITUDE FEEDBACK

In this section we analyze the performance of a naive CQI
feedback scheme where each user feeds back its quantized
CDI ĥk as well as its channel magnitudeg(hk) = ‖hk‖2.

The effective channel after the ZFBF is expressed as

yk = (hkwk)sk +
∑

j∈S,j 6=k

(hkwj)sj + zk, k ∈ S. (2)

If the CDI was perfect (i.e.,̂hk = hk/‖hk‖), the second term
(multiuser interference) would be evaluated to zero. Under

quantized CDI, however, the interference is not completely
eliminated because the beamforming vectors are chosen or-
thogonal to the quantized channels and not the actual channels.
Assuming|S| = M and allocating equal powersρ = P/M to
the M users, the SINR of the selected users are given as

SINRk =
ρ|hkwk|2

1 + ρ
∑

j 6=k |hkwj |2 , k ∈ S. (3)

Denote asθk the angle betweenhk and ĥk, i.e. cos θk =
|hkĥ∗k|
‖hk‖ . Then, the expected SINR at userk is given by

E(SINRk) = E

(
ρ|hkwk|2

1 + ρ
∑

j 6=k |hkwj |2
)

≥ ρ|hkwk|2
1 + ρ‖hk‖2 sin2 θk

≥ ρ‖hk‖2 cos2(θk + φ)
1 + ρ‖hk‖2 sin2 θk

, γk(φ),

(4)

where the expectation is taken over beamforming vectors
{wj : j ∈ S, j 6= k} which the userk knows lie in the
subspace orthogonal tôhk, and φ is a constant given by

φ = cos−1
√

1−(M−1)ε
1−(M−2)ε (1 + ε) [7]. We see that in order to

maximize SINR, the transmitter should try to select mutually
semi-orthogonal users (smallε). The inequality (4) is tight
when ε is small, and whenε = 0, the SINR itself becomes

SINRk =
ρ‖hk‖2 cos2 θk

1 + ρ‖hk‖2 sin2 θk

= γk(0) , γk. (5)

Henceforth, for ease of analysis, we useγk which approxi-
mates SINRk when ε is small.

To obtain an upper bound on the sum-rate, we upper-bound
γk as

γk =
ρ‖hk‖2 cos2 θk

1 + ρ‖hk‖2 sin2 θk

≤ cos2 θk

sin2 θk

, γ̃k, (6)

whose distribution depends on the quantization codebook
design. Since the optimal codebook design is in general un-
known, we resort to a quantization cell approximation used in
[11], [12]. The approximation is based on the ideal assumption
that each quantization cell is a Voronoi region of a spherical
cap with the surface area2−B of the total surface area of
the unit sphere. Specifically, for a given codebookC, we
approximate the actual quantization cellRi = {h : |hf∗i |2 ≥
|hf∗j |2,∀j 6= i} as Ri ≈ {h : |hf∗i |2 ≥ 1 − δ}, where

δ = 2−
B

M−1 to giveP{Ri} = 2−B . From this, the cumulative
distribution function (CDF) ofsin2 θk is obtained as

Fsin2 θ(x) =

{
2BxM−1, 0 ≤ x ≤ δ

1, x ≥ δ.
(7)

It is shown in [12] that foranyquantization codebook̃C and its
corresponding CDFFsin2 θ̃, we haveFsin2 θ(x) ≥ Fsin2 θ̃(x).
Therefore, the quantization cell approximation yields a perfor-
mance upper bound, e.g. higher rate, lower outage probability,
etc.1 From (7) the probability density function (PDF) of̃γk

1Numerical results (not included in this paper due to space limitations)
show that this bound is very tight.
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can be derived as

fγ̃k
(x) =

{
2B(M−1)
(x+1)M , x ≥ 1

δ − 1

0, 0 ≤ x < 1
δ − 1.

(8)

Finally, the sum-rate is given by

E{R} ≈ E

{∑

i∈S
log2(1 + γi)

}
≤ E

{∑

i∈S
log2(1 + γ̃i)

}

= ES

{∑

i∈S

∫ ∞

0

log2(1 + x) fγ̃(x)dx
∣∣∣ S

}

= ES

{∑

i∈S

B + log2 e

M − 1

∣∣∣ S
}

=
M

M − 1
(B + log2 e),

(9)

which is independent ofP and K. This means that the
system not only becomes interference limited as eitherP or
K increases, but also does not benefit from multiuser diversity
even with ‖hk‖2 feedback.2 This is because the SINR is
essentially limited by the CDI quantization errorθk, of which
the transmitter has no knowledge. Note that the asymptotic
sum-rate asP →∞ without any CQI feedback is also given
by (9), sincelimP→∞ γi = γ̃i. Therefore, we conclude that
a good CQI should be based on both the channel magnitude
(‖hk‖2) and the CDI quantization error (θk), which motivates
the use ofγk(φ) as the CQI in the next section.

IV. CDI AND SINR FEEDBACK

In this section we analyze the sum-rate of the finite-rate
feedback scheme with SINR-based CQI. Note that the exact
SINR in (3) is unknown at either the transmitter or receiver.
Therefore, we propose the use ofg(hk) = γk(φ) in (4) which
the userk can calculate based onhk, θk, and a given parameter
φ. To simplify analysis, we assume the feedback takes the form
g(hk) = γk(0) = γk. In the following theorem we derive the
distribution ofγk:

Theorem 1:Consider two independent random variables
X ∼ χ2

2 andY ∼ χ2
2(M−1), and define

γ =
ρ (X + (1− δ)Y )

1 + ρδY
. (10)

Then, under the distribution (7),γk and γ have identical
distribution with a CDF forx ≥ 1

δ − 1 given by3

Fγ(x) = 1− 2Be−
x
ρ

(x + 1)M−1
, x ≥ 1

δ
− 1 = 2

B
M−1 − 1.

(11)
Proof: Omitted.

Therefore, the interference termρ‖hk‖2 sin2 θk has aχ2
2(M−1)

distribution scaled byρδ, and the received signal power
ρ‖hk‖2 cos2 θk is described as the sum of two independent

2Note that SINRk in (5) and the sum-rate bound in (9) are valid only for
|S| = M . Clearly, when|S| = 1 (i.e. when one gives up the multiplexing
gain), the system is limited only by noise and fully benefits from multiuser
diversity.

3Fγ(x) for x < 1
δ
− 1 can also be found, but its expression is more

involved.

scaled chi-squaresρχ2
2+ρ(1−δ)χ2

2(M−1). Note that the signal
and interference powers are correlated throughY .

By the user selection process, theith user has the maximum
SINR among|Ai−1| i.i.d. users. Therefore, it is necessary for
us to characterize the behavior of the maximum of a number of
i.i.d. random variables, for which extreme value theory [15]–
[17], [2, Appendix A], [8, Appendix II] is useful.

Theorem 2:The ith largest order statistic among
γ1, · · · , γK , denoted asγi:K , satisfies

P
{
|γi:K − bK | ≤ ρ log log

√
K

}
≥ 1−O

(
1

log K

)
, (12)

where

bK = ρ log
2BK

ρM−1
− ρ(M − 1) log log

2BK

ρM−1
. (13)

Proof: The choice ofbK in (13) may be inferred from
solving 1 − Fγ(x) = 1

K . Using [16], [8, Theorem 6], with
aK = ρ and bK as in (13), we can show thatFγ(x) belongs
to the domain of attraction of Gumbel type[8], [15]. Then,
the theorem is proved by utilizing [17], [8, Theorem 7], in a
similar manner used in [8, Lemma 6].
Theorem 2 implies that for largeK,

γi:K = ρ log
2BK

ρM−1
+ O(log log K). (14)

By the law of large numbers, the ratio|Ai|/K converges
to some constantαi, where α0 = 1 since |A0| = K, and
αi ≥ Iε2(i,M − i), 1 ≤ i ≤ M with Iz(a, b) the regularized
incomplete beta function [7]. Thus, the sum-rate is given by

E{R} ≈ E

{
M∑

i=1

log2

(
1 + γi:|Ai−1|

)
}

≈
M∑

i=1

log2

(
1 + ρ log

2BKαi−1

ρM−1

)
. (15)

Factoringγi:|Ai−1| into the SNR partρ and the logarithmic

term ∆ , log 2BKαi−1
ρM−1 , we can interpret the latter as the

SNR improvement (degradation) factor which includes both
the effect of quantization error and multiuser diversity. From
the expression we can observe the following:

1) Multiuser diversity of an SNR improvement by a factor
of log K [2], [4], [5] is still preserved under quantized
CDI feedback.

2) The quantities2B andK are interchangeable. Thus, for
a target sum-rate, every doubling of the number of users
saves one feedback bit per user.

3) For a target SNR improvement (degradation),B andK
should scale withP such thatB + log2 K = (M −
1) log2 P + c for some constantc. That is, for a fixed
K, every doubling (3dB increase) of power requires
M−1 additional feedback bits. This result has also been
observed in [13] for the case ofK = M . Alternatively,
for a fixed B, K could scale withP as K ∝ PM−1

for a target∆, or both B and K could be adjusted
simultaneously to meetB+log2 K = (M−1) log2 P+c.
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A. High SNR or high resolution regimes

The formulas (12)-(15) are valid only when bothK and
2BK
ρM−1 are large. Moreover, the CDF (11) is valid only for

γi:|Ai−1| ≥ 2
B

M−1 − 1. Some of these conditions may fail
when eitherB or P is large to the degree that a givenK is not
large enough to satisfy the conditions. In this subsection we
characterize these regimes by investigating two limiting cases,
P → ∞ and B → ∞, which correspond to, respectively,
interference limited and noise limited regimes.

1) High SNR regime:In this regime the SINR becomes
limP→∞ γk = cos2 θk

sin2 θk
= γ̃k, whose extremal value is given by

the following theorem:
Theorem 3:The ith largest order statistic among

γ̃1, · · · , γ̃K , denoted as̃γi:K , satisfies

P
{

log(2BK)− log log
√

K ≤ (M − 1) log(1 + γ̃j:K)

≤ log(2BK) + log log
√

K
}
≥ 1−O

(
1

log K

)
. (16)

Proof: ChoosingaK = (2BK)
1

M−1 and bK = −1 we
can show thatFγ̃(x) has aFrechet (M-1) typelimit. Then,
(16) is proved by using [17], [8, Theorem 7].

Thus, for largeK, log(1 + γ̃i:K) = 1
M−1 log(2BK) +

O(log log K). The sum-rate then becomes

E{R} ≈ E

{
M∑

i=1

log2

(
1 + γ̃i:Kαj−1

)
}

≈ M

M − 1
(B + log2 K) +

∑M
i=1 log2 αi−1

M − 1
. (17)

We again observe the interchangeability between2B and K.
Under finite B and K, however, we see that the sum-rate
eventually converges to a constant value (17) asP →∞. This
is because the system is interference limited at high SNR due
to the unavoidable effect of quantization error. The limiting
sum-rate (17), however, grows linearly (ignoring the additive
term) with B + log2 K. In particular, the multiuser diversity
amounts to a logarithmic increase to the sum-rate. This is in
contrast to previous findings that the sum-rate increase by
the multiuser diversity is only by a factor oflog log K [3].
Therefore, multiuser diversity is even more beneficial in this
regime.

2) High resolution regime:As B → ∞, θk → 0, and (5)
reduces toγk = ρ‖hk‖2. ForK i.i.d. χ2

2M random variables, it
has been shown that theirith order statistic behaves likelog K
for a largeK [2], [8]. Thus, γi:K = ρ log K + O(log log K).
We see that the exchangeability between2B and K is no
longer observed, i.e. in the high resolution regime, doubling
the number of users is worth more than one additional feed-
back bit.

B. Relation to random beamforming (RBF)

In the random beamforming (RBF) scheme proposed in [2],
M orthogonal random beams are generated at the transmitter.
Then, each user calculates its SINR for each of theM
beams and feeds back the maximum SINR value (without
quantization) along with a corresponding beam index, after

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Average SNR (dB)

S
um

−
ra

te
 (

bp
s/

H
z)

Sum−capacity
Perfect CSIT
B=20 (SINR)
B=20 (norm)
B=20 (no CQI)
B=12 (SINR)
B=12 (norm)
B=12 (no CQI)
B=6 (SINR)
B=2 (SINR)
RBF

Sum−capacity
Perfect
  CSIT 

B=20

B=12

B=6

Random Beamforming, B=2 

Fig. 1. Sum-rateR versus average SNRP underM = 4, K = 100, and
variousB and feedback types.

which the transmitter chooses the best user for each beam.
Note that dlog2 Me bits are required for feeding back a
user’s beam index. Now, consider our limited feedback system
that employs a randomly generated optimal codebook of size
N = M for CDI quantization. Since the optimal codebook
design for N ≤ M is a set of orthonormal vectors [11],
[18], this codebook is equivalent to the random beamformer.
Also, note that both systems assume perfect SINR feedback.
Therefore, the RBF scheme is essentially equivalent to our
limited feedback scheme withN = M and φ = 0. The
similarity can also be observed by comparingFγ(x) in (11)
with Fs(x) in [2, eq (15)]. Thus, our scheme can be understood
as a generalization of the RBF to the case ofN > M and to
the beamformers which are not necessarily orthonormal.

V. NUMERICAL RESULTS

In this section we present numerical results. In Figure 1
we present the sum-rateR vs. average SNRP for the system
with M = 4 base-station antennas,K = 100 users,ε = 0.25,
and various quantization levelsB = 2, 6, 12, and20 bits. For
CQI feedback we use three different feedback schemes: (A)
SINR (γk(φ)) feedback, (B) channel norm (‖hk‖2) feedback,
and (C) no CQI feedback. For the CDI quantization codebook
for B > log2 M = 2, we use the quantization approximation
in (7) that gives a performance upper bound. ForB = 2, we
use orthonormal codewords, which is optimal [11], [18]. From
the figure it is seen that the sum-rate approaches the perfect
CSIT sum-rate asB increases. Among the three CQI feedback
schemes the SINR feedback performs the best. The channel
norm feedback performs close to the SINR feedback at lowP
(where the system is noise-limited), while at highP (where
the system is interference limited) it is only slightly better than
having no CQI feedback. The rate increase of SINR feedback
over no CQI feedback seems to be rather constant over a wide
SNR range, whereas the benefit of increasingB becomes more
pronounced at high SNR. This implies that a limited feedback
resource should be spent more on CQI quantization at low
SNR and on CDI quantization at high SNR. AsP →∞ all the
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sum-rate curves with quantized feedback eventually converge
to a finite ceiling. Observe that the sum-rate withB = 2 is
the same as that of the RBF.

In Figure 2 we plot the sum-rate vs.K at P = 10 dB.
We see that with the SINR feedback the sum-rate benefits
from multiuser diversity. With the norm feedback, however,
the sum-rate increase is slowed down asK increases and
is eventually upper bounded by (9), although the sum-rate
increase is maintained longer for a largerB. For B = 20
both CQI feedback schemes perform reasonably close to the
perfect CSIT case up to104 users.

In Figure 3 we adaptB and K as B + log2 K = (M −
1) log2 P +c so that a constant gap from the perfect CSIT sum-
rate is maintained. By either fixingK = 6400 and adaptingB,
or fixing B = 6 and adaptingK, we achieve an SNR gap of
about5dB from the perfect CSIT curve, confirming the third
observation in Section IV. We note that this SNR gap is close
to the10 log10

(
1 + P · 2− B

M−1

)
dB gap shown in [13].

VI. CONCLUSION

We have investigated a multiuser multi-antenna downlink
system under partial channel knowledge at the transmitter,
when there are more users than transmit antennas. The SINR
distributions and the sum-rates under quantized channel direc-
tion information (CDI) and various channel quality informa-
tion (CQI) are derived. We have shown that CDI alone does
not achieve the full multiplexing and multiuser diversity gain
simultaneously. To achieve both gains we have shown that CQI
feedback is necessary, and that CQI should be the SINR rather
than just the channel magnitude, since SINR captures both the
channel magnitude and the quantization error. This implies
that any quantization should be applied to SINR rather than
directly to the channel magnitude. We have derived tradeoffs
between the number of feedback bits, the number of users,
and SNR. In particular, for a target performance, having more
users reduces feedback load.
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