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Abstract— This paper develops a general framework for
deriving the spatial throughput and transmission capacity of
spatially Poisson distributed ad hoc networks for (i) random
(e.g., fading) channels, and (ii) random transmission distances.
In both of these scenarios the randomness of the channels
and ranges invariably lowers both throughput and transmission
capacity assuming that users randomly elect to transmit with
some probability (i.e., Aloha). Assuming each node knows
the channel state information (CSI, e.g., the channel gain
and/or channel distance) to just its intended receiver, we
propose a simple distributed threshold-based scheduling rule
and derive the threshold that optimizes throughput. The gains
are surprisingly large: a factor of three increase in throughput
over Aloha is typical even with no further coordination between
the nodes in the network.

I. I NTRODUCTION

This paper addresses two issues of contemporary interest
in the field of ad hoc network capacity. First, we attempt
to precisely characterize the effect that channel variations
(e.g., shadowing and fading) have on the allowable density
of simultaneous transmissions in the network. Second, we
consider how channel state information available to the
transmitter can be used to increase this density by utilizing a
simple but effective distributed scheduling algorithm whose
implementation and performance can be described quantita-
tively.

For both of these pursuits, our analytical tools center
around the use of stochastic geometry and marked Poisson
point processes, and their application to finding the maxi-
mum number of successful communication links that can be
accommodated in a unit area, subject to an outage constraint.
The metric used to quantify performance is termed thetrans-
mission capacity, and was introduced in [1] by the authors.
Stated simply, transmission capacity measures the achievable
rates, or equivalently the instantaneous mutual information,
between an arbitrary pair of nearby (i.e., single-hop) trans-
mitting and receiving nodes from an outage perspective.
This metric succinctly quantifies the link-level performance
of a large-scale ad hoc network or any unplanned network
(e.g., open spectrum usage), upon which other networking
functionalities, e.g., multi-hop, can be constructed.
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A. Relation to prior work

The transmission capacity is closely related to the ubiq-
uitous transport capacity metric introduced by Gupta and
Kumar [2] and extended to random channels in [3], with the
distinctions that (i) a stochastic outage probability require-
ment is introduced, and (ii) the nodes are Poisson distributed.
The stochastic outage probability requirement is practical as
well as analytically pragmatic, and corresponds roughly to
a packet error rate or other likely performance requirement
in a real ad hoc network. The spatial Poisson assumption
is taken for mathematical tractability, but has considerable
empirical support; for example, the Poisson assumption for
node positions has been used by numerous cellular service
operators to successfully predict blocking probabilities [4].

The outage probability, throughput, and transmission ca-
pacity are each computable from the distribution of the
normalized interference level seen by a typical receiver.
This normalized interference has long been recognized as
a spatial shot noise process [5], [6], [7]. Under the assumed
power law channel model (capturing path loss attenuation)
the normalized interference is known to be Lévy stable [6],
[8], [7]. The impact of fading and other random non-distance
dependent channel effects on the outage probability and
transmission capacity has also been addressed [8], [9]. These
characterizations are exploited in obtaining our performance
bounds.

There has been some notable prior work on quantifying ad
hoc network capacity in the presence of fading wireless chan-
nels. One of the earlier works [10] determined that fading
actually increases the achievable rate regions (as opposed to
the overall ad hoc network capacity) by providing statistical
diversity, since the best set of transmit-receive pairs can be
selected. This however, would require a global centralized
search which is impractical. Using the transport capacity
framework, some interesting recent results include a study
on entirely random channels (no geometric dependence)
that showed that shadowing or obstructions could increase
the transport capacity [11] and a study on fading channels
with geometric considerations valid for path-loss exponents
greater than 3 that supported those authors’ previous results
in the lack of fading [3], [12]. Another notable paper [13]
argued that although fading reduced a transport capacity
lower bound by a logarithmic factor, fading actually in-
creased the overall network capacity. Finally, a different line
of investigation spurred by [14] has considered how mobility,
throughput, and delay interact in the context of time-varying
channels [15], [13], [16], [17], [18]. Essentially, in order to



fully exploit fading, some delay must be introduced, which
results in a delay-capacity tradeoff. We will not consider this
tradeoff in this paper, however.

Generally speaking, prior work has concentrated primarily
on the scaling of capacity upper and lower bounds with
the number of nodes. In this work, we study an achievable
set of rates, i.e., a capacity lower bound, from an outage
perspective, and are able to accurately quantify scaling
constants. Thus, we are able to precisely calculate the effect
of channel fading and channel state information on a very
pragmatic capacity lower bound.

B. Contributions

The results in this paper are distinct from the prior work
on scheduling as we do not assume any optimal selection
of nodes. Rather than optimally choosing the nodes with the
best channels (which is infeasible in practice), our results are
first based on an Aloha protocol where the users transmit
with some probability independent of other users in the
network. We derive an upper bound on the transmission
capacity and show that when guaranteeing QoS, fading can
only reduce the capacity. Second, we consider the realistic
scenario where each user independently monitors the channel
to its desired recipient (either through channel reciprocity
or a very low rate feedback channel), and then transmits
opportunistically only when the channel strength is above
a threshold. We characterize the optimum such threshold,
and show that this simple approach increases the capacity
significantly (typically around 3X) over a channel-blind
Aloha approach. Note that the proposed scheduling scheme is
extremely simple, as it only requires transmitter channel state
information; the majority of previous work on distributed
scheduling for ad hoc networks (e.g., [19]) has assumed a
higher level of interaction between nodes in the network.

II. A D HOC NETWORK MODEL

Consider a large ad hoc network, where the locations
of potential transmitters at a typical point in time form a
stationary Poisson point processΠ = {Xi} on the planeR2.
Our attention will focus on a (typical) reference receiver,
without loss of generality assumed to be located at the
origin, o. The spatial density of the point process is denoted
by λ, giving the average number of potential transmitters
per unit area. We also assume that each potential transmitter,
i, has an associated intended receiver (not inΠ), and we let
the indexi refer to the pair. We consider two models.

Model 1: fading channels. In the first model we consider
a channel model of the formh(d, m) = md−α, where
d is the distance separating the transmitter and receiver,
m is the (random) non-distance dependent channel effect
(incorporating aspects such as fading and shadowing), and
α > 2 is the path loss exponent. It is convenient to define
δ = 2/α < 1. For simplicity, in this model we assume
each transmitter has an assigned intended receiver (not in
Π) at a fixed distancer. Of course in reality transmitter to
receiver distances will vary across pairs, but this assumption

permits us to focus on the impact of fading on network
performance. The fading effects, denoted byM , are modeled
as random variables with distributionFM (m). In particular,
Mij is the random non-distance dependent channel state from
transmitteri to receiverj. The{Mij} are assumed to be iid.
Note that the channel modelh(d,m) with random{Mij}
incorporates a large number of realistic channel models,
including, e.g., Rayleigh fading and lognormal shadowing.
As we are primarily concerned with the reference receiver
at the origin, we can represent the state of the system at the
typical time as a stationarymarkedPoisson point process
(MPPP). The required marks for the first model include both
the channels connecting each potential transmitter and its
receiver ({Mii}), and the channels connecting each potential
transmitter with the reference receiver ({Mi0}):

Πchan = {(Xi,Mii,Mi0)}. (1)

We will use the phrasechan to denote quantities specific to
this model.

Model 2: random distances separating pairs. In the
second model we consider the case where the distance
separating each transmitter and its intended receiver varies
randomly across transmitter receiver pairs. For simplicity, in
this model we assume a simplified channel model of the
form h(d) = d−α for α > 2, i.e., we assume a pure path
loss channel model. Of course this channel model ignores
fading and other important random non-distance dependent
effects, but this assumption permits us to focus on the impact
of the random distances separating communicating pairs on
network performance. The random distances, denoted byD,
are modeled as random variables with distributionFD(d).
In particular,Di is the random distance between potential
transmitteri and its intended receiver. The{Di} are assumed
to be iid. The required marks for the second model are the
random distances between each potential transmitter and its
associated receiver ({Dii}):

Πdist = {(Xi, Di)}. (2)

We will use the phrasedist to denote quantities specific to
this model.

Note that both channel models suffer from a physically
unrealistic singularity atd = 0. This singularity can
be corrected for by using a channel model of the form
h(d,m) = m/(1+d)α, for example, but any such correction
significantly complicates the resulting expressions. We have
shown in simulation that the impact of the singularity on
network performance is in most cases negligible.

Outage probability. A reception is assumed successful
provided the signal to interference ratio (SIR) seen at the
receiver is acceptably high. Ambient noise is not included
as it does not have a material impact on the character of
the results but significantly complicates the expressions. All
nodes are assumed to require an SIR exceeding a specified



β > 0, with an outage resulting if this condition is not
satisfied. Letq denote the probability of outage:

q = P0(SIR < β), (3)

where the notationP0(·) is the Palm probability giving the
receiver-average outage probability computed by considering
the reference receiver at the origin.

Transmitters are assumed to employ constant transmission
powerρ, i.e., we do not consider the impact of power control.
The SIR is independent ofρ since an increase inρ achieves
a linear increase in both the signal and interference levels.
Recall that Π includes all potential transmitters, but the
actual aggregate interference is computed by summing over
all actual interferers. LetΦ ⊂ Π denote the set of actual
interferers at the typical time under consideration; we will
assume that the decisions to transmit or not are made inde-
pendently by each node, and independent of their location.
It follows that Φ is also a stationary MPPP, albeit with a
smaller intensity, denoted asµ ≤ λ. We discuss transmission
decision rules for obtainingΦ from Π in Sections III (for
the random channel model) and IV (for the random distance
model).

For the fading channel model, givenΦchan ⊂ Πchan, the
outage probability for the typical receiver at the origin is

qchan(µ) = P0

(
ρM00r

−α∑
i∈Φchan

ρMi0|Xi|−α
< β

)
, (4)

where |Xi| is the distance of interfering transmitteri from
the reference receiver located at the origin. For the random
distance model, givenΦdist ⊂ Πdist, the outage probability
for the typical receiver at the origin is

qdist(µ) = P0

(
ρ(D0)−α∑

i∈Φdist
ρ|Xi|−α

< β

)
. (5)

It is apparent thatq(µ) depends upon the sum of a random
number of random variables, and as such a closed form
expression forq(µ) is not available. As such we resort to
bounds. In particular, we will establish lower bounds of the
form

qlb(µ) = 1− exp {−κµ} , (6)

whereκ may depend onµ, depending on the transmission
rule for obtainingΦ from Π.

Information theoretic interpretation. The SIR-based out-
age probability introduced above corresponds very simply to
achievability in the information theoretic sense. If all nodes
are assumed to transmit Gaussian symbols and the channel is
narrowband, the mutual information between the transmitting
(Xk) and receiving node (Yk) is given by:

I(Xk;Yk|H,Π) = log2 (1 + SIR) , (7)

where SIR is defined in either (4) or (5). Since only the term
I(Xk;Yk|H,Π) is considered, an implicit assumption is that
multi-user interference is treated as noise. Although this is

the only metric studied in this work, interference cancellation
can indeed be incorporated into this framework [20].

Mutual information, or rate, is measured conditioned on
channel conditions, node locations, and the instantaneous
set of transmitters. Thus, the quantity in (7) measures
the rate of reliable information flow fromXk to Yk at
a snapshot of the network. In the outage formulation,
the instantaneous mutual information is treated as a
random variable (a function of random interferer locations
and channel conditions) and an outage occurs whenever
this random variable falls below the desired rate of
communication. Thus, for rateR the outage probability is
given by Pout = P(I(Xk;Yk|H,Π) < R). Since there is a
one-to-one mapping between mutual information and SIR in
this expression, outage can equivalently be stated in terms
of SIR, as in (4) and (5), withβ = 2R − 1.

Throughput. The achieved network throughput is

τ(µ) = µ(1− q(µ)), (8)

i.e., the product of the attempted transmission intensity (µ)
times the average probability of success (1 − q(µ)). Using
the lower bound on the outage probability gives anupper
bound on the throughput of the form

τub(µ) = µe−κµ. (9)

For the case whereκ is independent ofµ the expression for
the throughput matches the usual form of randomized MAC
throughputGe−κG, whereG is the attempt rate ande−κG

is the success probability. In contrast to most “classical”
randomized MAC throughput derivations, however, our
throughput expression incorporatesi) a spatial model,ii) a
realistic channel model, andiii) a realistic reception model,
all captured inκ.

Transmission capacity. Although the network throughput
is an important system performance metric, it often obscures
the fact that high throughput is sometimes obtained at the ex-
pense of unacceptably high outage. This is especially impor-
tant in ad hoc networks as wasted transmissions both cause
unnecessary interference for other nodes and they waste
precious energy. As a simple example of high throughput
achieved through high outage, note that classic slotted Aloha
has a throughput of the formGe−G, which is maximized
for an attempt rate ofG = 1. The optimal throughput
at G = 1 is 1/e ≈ 0.32, but the outage probability is
1 − 1/e ≈ 0.68. Thus 68% of all attempted transmissions
must fail to achieve the optimal throughput. For many
important network applications, e.g., streaming media, high
levels of outage are unacceptable, and as such it is desirable
that the network operate in a low outage regime. With this
in mind, we define theoptimal contention density, ν(ε),
as the maximum spatial density ofattemptedtransmissions
such that the corresponding outage probability isε ∈ [0, 1].
The parameterε serves as a proxy for network quality of
service. The optimal contention density is found by solving
q(ν) = ε for ν. Having found the optimal contention density,



we define thetransmission capacityas the corresponding
spatial density ofsuccessfultransmissions,

c(ε) = ν(ε)(1− ε). (10)

The advantage of the transmission capacity framework is
that it yields the maximum throughput that can be obtained
subject to a maximum permissible outage probability, i.e., a
QoS requirement.

III. F IRST MODEL: FADING CHANNELS

Our purpose in this section is to address the following two
questions. First:what is the impact of fading on network per-
formance when nodes make randomized decisions whether
or not to transmit?The motivation behind this question is
the intuition that randomized transmission decisions may
be harmful in the presence of fading because transmitting
nodes may find the channel to their intended receiver in a
deep fade, and thereby incur an unacceptably high outage
probability. Second:how can local channel state information
be exploited to improve network performance?The motiva-
tion behind this question is the intuition that transmitting
only when the channel to one’s intended receiver is strong
may significantly improve performance above randomized
transmission decisions. We emphasize there is no claim
that the channel-aware transmission decisions are globally
optimal: global optimality would require global channel
state knowledge by each node, which is clearly unrealistic.
Transmitter channel state information, however, is a realistic
assumption, especially when channel coherence times extend
across multiple transmission attempts.

Motivated by the above two questions, we introduce two
transmission decision rules:i) randomized transmissions,
made independently across nodes, and independent of the
channel states, andii) a threshold rule where each node only
transmits if its channel is sufficiently strong.

A. Randomized transmission decisions

In this scenario each node makes a random decision to
transmit, independent of its (unknown) channel state to its
receiver, by transmitting with a specified probabilityp. In this
case the intensity of attempted transmissions isµ = µ(p) =
λp and, as shown below,κ in (6) is independent ofµ. It
follows from simple calculus that the optimal transmission
probability to maximize the throughput bound ispopt = 1

λκ ,
and thus the optimal intensity of transmission attempts is
µopt = 1

κ ∧ λ. The corresponding bound optimal throughput
is

τopt = τub(µopt) =
1
eκ

, (11)

assumingλ > 1/κ. We emphasize the optimality holds for
the bound, not the throughput itself, however our numerical
and simulation results have shown that the approximation
is valid over most regimes of interest. Using the lower
bound on the outage probability gives an upper bound on
the transmission capacity of the form

cub(ε) =
−(1− ε) ln(1− ε)

κ
. (12)

Note that the outage probability that maximizes the transmis-
sion capacity bound isεopt = 1− 1/e, with a corresponding
bound optimal transmission capacity of

copt = cub(εopt) =
1
eκ

= τopt, (13)

assumingλ > 1/κ. Thus the bound-optimal transmission ca-
pacity equals the bound-optimal throughput. If the through-
put achievesτopt, then there is a corresponding outage
probability associated with that throughput, and as such the
transmission capacity at that outage probability must achieve
the same throughput.

Theorem 1: Under the fading channels model with iid
fadesM (with distributionFM ), and with each node making
a randomized transmission decision rule with parameter
p, the intensity of attempted transmissions isµ = λp.
Moreover, the constantκ in (6) is independent ofp, and
hence independent ofµ, and is given by

κchan
rand = πβδr2E[M δ]E[M−δ]. (14)

The lower bound on the outage probability (qchan
lb,rand(µ)), the

upper bound on the network throughput (τ chan
ub,rand(µ)), the

bound optimal throughput (τ chan
opt,rand), and the upper bound

on the transmission capacity (cchan
ub,rand(ε)), are given by (6),

(9), (11), and (12), respectively withκ = κchan
rand. The proof

is found in the appendix.
The expressions for optimal throughput and transmission

capacity are best understood in the context of spatial sphere
packing. In particular, both optimal throughput and trans-
mission capacity are proportional to1/κ, which in turn are
proportional to1/(πr2). In this form it is clear that the
impact of the path loss attenuation,α, the SIR threshold,
β, and the channel statistics,FM , determine the effective
radius of the transmission-free disk that must surround each
successful reception.

B. Channel aware transmission decisions

We now suppose that each potential transmitter is aware
of the channel to its intended receiver. Given our stated
assumption that all transmitter receiver pairs are at a fixed
distancer, it follows that knowledge of the fading channel
stateMii suffices to characterize the channel. Each potential
transmitteri only transmits if its channel is acceptably strong,
i.e., Mii > t, wheret is the global channel state threshold.
The attempted transmission intensity is

µ = µ(t) = λP(M > t) = λF̄M (t). (15)

As we will show below, the constantκ = κ(t) in (6) in this
case depends upon the thresholdt, and thus onµ. It follows
that the outage probability bound becomes

qlb(t) = 1− e−κ(t)µ(t), (16)

and the corresponding throughput bound becomes

τub(t) = µ(t)e−κ(t)µ(t). (17)

Theorem 2: Under the fading channels model with fades
M (with distribution FM ), and with each node making a



threshold based transmission decision with thresholdt, the
intensity of attempted transmissions isµ(t) = λF̄M (t).
Moreover,κ(t) is given by

κchan
thresh(t) = πβδr2 E[M δ]E[M−δIM>t]

F̄M (t)
, (18)

whereIA is the indicator random variable of the eventA. The
lower bound on the outage probability (qchan

lb,thresh(t)) and the
upper bound on the network throughput (τ chan

ub,thresh(t)), are
given by (16) and (17) respectively withκ(t) = κchan

thresh(t).
The throughput bound (17) is concave int, and the optimal
thresholdtopt that maximizes the throughput bound is the
unique solution of the equation

µ(t)
(

κ′(t)
µ(t)
µ′(t)

+ κ(t)
)

= 1. (19)

The transmission capacity with outage probability constraint
ε, is given by

cchan
ub,thresh(ε) = µ(t∗(ε))(1− ε), (20)

wheret∗(ε) is the unique solution to

κ(t)µ(t) = − ln(1− ε). (21)

The proof is found in the appendix.

C. Example: Rayleigh fading

Consider a Rayleigh fading channel where the random
non-distance dependent channel state is given by an expo-
nential random variable with parameteru > 0, i.e., M ∼
Exp(u). Then

E[M δ] = u−δΓ(1 + δ), E[M−δ] = uδΓ(1− δ), (22)

and thus

κchan
rand = πβδr2 πδ

sin(πδ)
, (23)

for Γ(x) the Gamma function. Note the dependence onu
vanishes. This calculation is all that is needed to compute
all the quantities in Theorem 1. For Theorem 2 we compute

E[M−δIM>t] = uδΓ(1− δ, tu), (24)

for Γ(x, z) the incomplete Gamma function, and thus

κchan
thresh(t)µ(t) = πβδr2Γ(1 + δ)Γ(1− δ, tu)µ. (25)

The quantityt∗(ε) is given by

t∗(ε) =
1
u

Γ−1

(
1− δ,

− log(1− ε)
Γ(1 + δ)πβδr2λ

)
, (26)

where z = Γ(x, s)−1 is the inverse incomplete Gamma
function that solvesΓ(x, z) = s. From here the transmission
capacity is given by

c(ε) = λe−ut∗(ε)(1− ε). (27)

Figure 1 presents the outage probability, throughput, and
transmission capacity for the fading channels model with
Rayleigh fading, for both randomized and threshold based
transmissions. For easy comparison the channel aware outage

TABLE I

NUMERICAL VALUES FOR PARAMETERS

Symbol Description Value
α path loss exponent 4
β SIR requirement 10
r tx-rx distance 5 (meters)
λ density of pot. trans. 0.01 (1/meters2)
u Rayleigh fading param. 1.0

probability and throughput are shown versus the transmission
probability p, which corresponds to a thresholdt = t(p)
solving F̄M (t) = p. In the case of Rayleigh fading we
have t(p) = − 1

u ln(p). Numerical values for the parame-
ters are shown in Table I. Besides the plots for the two
transmission decision rules we also show the performance
under randomized transmissions without any random channel
effects. The plots illustrate both thati) randomized trans-
missions perform worse under fading conditions, andii)
the fades can be exploited through the threshold rule to
achieve superior performance. For example, for10% outage,
randomized transmission provides a transmission capacity
of only 0.0002, while the threshold rule corresponds to a
capacity of approximately0.0007.

IV. SECOND MODEL: RANDOM TRANSMISSION

DISTANCES

Our purpose in this section is similar to that of the previous
section in that our focus is to understand how knowledge
of the channel can be exploited to improve network per-
formance. Recall in this model there are no non-distance
dependent random channel effects, i.e., the attenuation is
solely due to path loss. However, the distances separating
transmitters and their intended receivers vary across pairs,
which is physically realistic. The intuition is that blind
randomized transmission decisions, irrespective of the pair
separation distance, could have a significant negative impact
on network performance. On the other hand, knowledge
of the separation distance can be exploited to significantly
improve network performance, say as compared with the
fixed pair distance case.

A. Randomized transmission decisions

In this scenario each node makes a random decision
to transmit, independent of its (unknown) distance to its
receiver, by transmitting with a specified probabilityp. Again
we haveµ = µ(p) = λp andκ in (6) is independent ofµ.

Theorem 3: Under the second model with random pair
distancesD with distributionFD, and with each node mak-
ing a randomized transmission decision rule with parameter
p, the intensity of attempted transmissions isµ = λp.
Moreover, the constantκ in (6) is independent ofp, and
hence independent ofµ, and is given by

κdist
rand = πβδE[D2]. (28)

The lower bound on the outage probability (qdist
lb,rand(µ)), the

upper bound on the network throughput (τdist
ub,rand(µ)), the

bound optimal throughput (τdist
opt,rand), and the upper bound



on the transmission capacity (cdist
ub,rand(ε)), are given by (6),

(9), (11), and (12), respectively withκ = κdist
rand. The proof

is found in the appendix.

B. Distance aware transmission decisions

We now suppose that each potential transmitter is aware
of the distance to its intended receiver. Each potential trans-
mitter i only transmits if its receiver is acceptably close,
i.e., Di < t, wheret is the global distance threshold. The
attempted transmission intensity is

µ = µ(t) = λP(D < t) = λFD(t). (29)

As before, the constantκ = κ(t) in (6) in this case depends
upon the thresholdt, and thus onµ.

Theorem 4: Under the second model with random pair
distancesD with distributionFD, and with each node mak-
ing a threshold based transmission decision with threshold
t, the intensity of attempted transmissions isµ(t) = λFD(t).
Moreover,κ(t) is given by

κdist
thresh(t) = πβδ E[D2ID<t]

FD(t)
, (30)

The lower bound on the outage probability (qdist
lb,thresh(t)) and

the upper bound on the network throughput (τdist
ub,thresh(t)),

are given by (16) and (17) respectively withκ(t) =
κdist

thresh(t). The throughput bound (17) is concave int, and
the optimal thresholdtopt that maximizes the throughput
bound is the unique solution of (19). The transmission
capacity with outage probability constraintε, is given by
(20), wheret∗(ε) is the unique solution to (21). The proof is
found in the appendix.

C. Example: nearest neighbor transmissions

Consider the case when each node elects to transmit to its
nearest neighbor. For given potential transmitteri ∈ Π, the
distance,Di, to its nearest neighbor has distribution

F̄D(d) = P(D > d) = P(Π ∩ b(o, d) = ∅) = e−πλd2
. (31)

ThenE[D] = 1
2
√

λ
, andE[D2] = 1

πλ ; this is all that is needed
to compute all the quantities in Theorem 3. For Theorem 4,
we can compute

E[DID<t] =
1− 2Q(

√
2πλt)

2
√

λ
− te−πλt2 , (32)

and

E[D2ID<t] =
1− (1 + πλt2)e−πλt2

πλ
, (33)

where Q is the CCDF for a standardN (0, 1) random
variable. Defininga = πλt2, we can parameterizeqlb in
terms ofa:

qlb(a) = 1− exp
{
−z−δ(1 + a)e−a

}
. (34)

Solving qlb(a) = ε for a yields

a(ε) = −1−W−1

(
−1− zδ log(1− ε)

e

)
, (35)

where W−1 is the k = −1 branch of Lambert’sW (z)
function, which solvesz = W (z)eW (z). Note that we can
write P(D < t) = 1−e−a. The transmission capacity is then

cub(ε) = λ
(
1− e−a(ε)

)
(1− ε). (36)

Figure 2 presents the outage probability, throughput, and
transmission capacity for the random pair distances model
with nearest neighbor transmissions, for both randomized
and threshold based transmission rules. For easy comparison
the distance aware outage probability and throughput are
shown versus the transmission probabilityp, which corre-
sponds to a thresholdt = t(p) solving F̄D(t) = p. In
the case of random nearest neighbor distances we have

t(p) =
√

− ln p
π . All three plots demonstrate the significant

improvement in performance attainable by exploiting local
channel state information. At 10% outage, for example, we
see a tremendous difference in transmission capacity between
the randomized and threshold rules. Table I gives the values
of the constants (except forr andu which don’t apply in this
case). As in Figure 1, we also show the case when there are
no variations in pair distance, i.e., the fixed distance between
transmitters and their intended receivers isr = E[D] = 1

2
√

λ
.

V. CONCLUSION

The two primary observations from this work arei)
randomized transmissions perform poorly in the presence
of either fading or variable channel distances, andii) these
channel variations can easily be exploited through the use
of simple threshold schemes. We emphasize the practical
nature of the threshold schemes, which require no sharing
of information among nodes other than with the intended
receiver. There are numerous extensions to this framework,
most notably including power control and an OFDM-like
case where each transmitter may select from one ofK known
channels. Our current work is focused on evaluating the
performance of our threshold scheme with the throughput
optimal scheduling schemes found in the literature.
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APPENDIX

PROOF OFTHEOREM 1

Defining the constanty = 1
βrα , and the normalized

interference

Y (µ) =
∑
i∈Φ

Wi|Xi|−α, Wi =
Mi0

M00
, (37)

we can express the outage probability as the complementary
cumulative distribution function (CCDF) ofY :

q(µ) = P0(Y (µ) > y). (38)

It is known that the random variableY = Y (µ) is Lévy
stable with stability parameterδ = 2/α < 1 [5], [8]. Bounds
of this form are shown to be asymptotically tight asy →∞
in [9]. In the case of randomized transmissions we have both
Mi0 ∼ FM and M00 ∼ FM , which means the distribution
of the {Wi} is

Wi ∼ FW (w) =
∫ ∞

0

FM (mw)dFM (m). (39)

In [9] we show that the lower bound on outage under the
single channel randomized transmission model is

qlb(µ) = 1− exp{−πy−
2
α E[W

2
α ]µ}. (40)

To get the expression in Theorem 1, we simply exchange the
order of integration and use a change of variablex = mw:

E[W
2
α ] =

∫ ∞

0

w
2
α fW (w)dw

=
∫ ∞

0

w
2
α

(∫ ∞

0

mfM (mw)fM (m)dm

)
dw

=
∫ ∞

0

mfM (m)
(∫ ∞

0

w
2
α fM (mw)dw

)
dm

=
∫ ∞

0

mfM (m)
(∫ ∞

0

( x

m

) 2
α

fM (x)
1
m

dx

)
dm

= E[M
2
α ]
∫ ∞

0

m− 2
α fM (m)dm

= E[M
2
α ]E[M− 2

α ].

PROOF OFTHEOREM 2

By our assumption that channel states are independent
across receivers, even from a common transmitter, it fol-
lows that the distribution of theMi0 is independent of the
thresholdt, for all i 6= 0. Considering (37), however, it is
clear that the distribution ofMii = Mii(t) is affected by
the transmission rule. In particular,M00(t) has a distribution
given by:

FM |t(m) = P(M ≤ m | M > t) =
FM (m)− FM (t)

F̄M (t)
,

(41)
for m ≥ t. It follows that the mark ratiosWi(t) =
Mi0/M00(t) in (37) have distribution

FW |t(w) =
∫ ∞

t

FM (mw)dFM |t(m) (42)

=
1

F̄M (t)

∫ ∞

t

FM (mw)dFM (m). (43)

As in the proof of Theorem 1, we employ the result that
a lower bound on the outage probability when the channel
ratios are iid{Wi} is given by (40). To get the expression in
Theorem 2, we again exchange the order of integration and
use a change of variablex = mw:

E[W (t)
2
α ]=

∫ ∞

0

w
2
α fW (w)dw

=
1

F̄M (t)

∫ ∞

0

w
2
α

(∫ ∞

t

mfM (mw)fM (m)dm

)
dw

=
1

F̄M (t)

∫ ∞

t

mfM (m)
(∫ ∞

0

w
2
α fM (mw)dw

)
dm

=
1

F̄M (t)

∫ ∞

t

mfM (m)
(∫ ∞

0

(x

m

) 2
α

fM (x)
dx

m

)
dm

=
1

F̄M (t)
E[M

2
α ]
∫ ∞

t

m− 2
α fM (m)dm

=
1

F̄M (t)
E[M

2
α ]E[M− 2

α IM>t].



PROOF OFTHEOREM 3

Defining the constantz = 1/β and the normalized
interference

Z(µ) =
∑
i∈Φ

(
|Xi|
D0

)−α

, (44)

we can express the outage probability as the complementary
cumulative distribution function (CCDF) ofZ:

q(µ) = P0(Z(µ) > z). (45)

Select fromΦ the set of dominant interferers, with domi-
nance levelz:

Φz =

{
(Xi, Di) ∈ Φ :

(
|Xi|
D0

)−α

> z

}
. (46)

The processΦz is non-stationary with local intensity at
locationx ∈ R2 of

µz(x) = µP

((
|x|
D0

)−α

> z

)
= µP(D0 > |x|z 1

α ). (47)

Define the normalized interference from dominant interfer-
ers:

Zz =
∑
i∈Φβ

(
|Xi|
D0

)−α

. (48)

Then a lower bound on the outage probability is

q(µ) = P(Z > z) > P(Zz > z) = 1− P(Φz = ∅). (49)

The RHS is a void probability for the nonstationary process
Φz, which may be evaluated as

qlb(µ) = 1− exp
{
−
∫

R2
µz(x)dx

}
= 1− exp

{
−2πµ

∫ ∞

0

F̄D

(
rz

1
α

)
rdr

}
= 1− exp

{
−πz−

2
α E[D2]µ

}
,

where the last step is obtained by writinḡFD(d) =∫∞
d

dFD(d), and exchanging the order of integration.

PROOF OFTHEOREM 4

The distribution of distances from transmitters to their
intended receivers under a distance threshold oft is

FD|t(d) =
FD(d)
FD(t)

, 0 ≤ d ≤ t. (50)

Form Φz ⊂ Φ, the dominant interferers with dominance
level z, as in (46). Conditioned on the reference transmitter
electing to transmit, the processΦz is non-stationary with
local intensity

µz(x) = λFD(t)F̄D|t

(
|x|z 1

α

)
= λ

[
FD(t)− FD

(
|x|z 1

α

)]
, |x| < z−

1
α t,

and intensity of0 outsideb(o, z−
1
α t). Using the lower bound

(49), we obtain

qlb(t) = 1− exp
{
−
∫

R2
µz(x)dx

}

= 1− exp

−2πλ

∫ z−
1
α t

0

[
FD(t)− FD

(
rz

1
α

)]
rdr


= 1− exp

{
−πλz−

2
α E[D2ID<t]

}
,

where the last step is obtained by writing the CDF as a PDF
and exchanging the order of integration.
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Fig. 1. Numerical results for the Rayleigh fading channel model with
a fixed distance separating each transmitter and its intended receiver. The
three curves on each plot arei) Rayleigh fading (M ∼ Exp(1)) with
a randomized transmission rule (with parameterp), ii) pure path loss
attenuation with a randomized transmission rule, andiii) Rayleigh fading
with a threshold transmission rule (witht(p) satisfyingp = FM (t)). The
three plots are of outage probability, throughput, and transmission capacity.
All three performance metrics show dramatic improvements when channel
information is exploited.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

ou
ta

ge
 p

ro
ba

bi
lity

transmission probability

outage probability versus transmission probability

variable distance, random tx rule
fixed distance, random tx rule

variable distance, threshold tx rule

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

th
ro

ug
hp

ut

transmission probability

throughput versus transmission probability

variable distance, random tx rule
fixed distance, random tx rule

variable distance, threshold tx rule

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

tra
ns

m
iss

io
n 

ca
pa

cit
y

outage probability QoS requirement (epsilon)

transmission capacity versus QoS requirement

variable distance, random tx rule
fixed distance, random tx rule

variable distance, threshold tx rule

Fig. 2. Numerical results for the pure path loss channel model with
random nearest neighbor distances between transmitters and receivers. The
three curves on each plot arei) variable transmitter receiver distances with
a randomized transmission rule (with parameterp), ii) fixed transmitter
receiver distances (withr = E[D]) with a randomized transmission rule, and
iii) variable transmitter receiver distances with a threshold transmission rule
(with t(p) satisfyingp = FD(t)). The three plots are of outage probability,
throughput, and transmission capacity. All three performance metrics show
dramatic improvements when channel information is exploited.


