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Abstract—This paper develops a general framework for A. Relation to prior work
deriving the spatial throughput and transmission capacity of
spatially Poisson distributed ad hoc networks for {) random The transmission capacity is closely related to the ubig-
(e.g., fadlng) Channels, andl@) random transmission distances. u|t0us transport Capac|ty metnc |ntr0duced by Gupta and
In both of these scenarios the randomness of the channels Kumar [2] and extended to random channels in [3], with the

and ranges invariably lowers both throughput and transmission N ) . . .
capacity assuming that users randomly elect to transmit with ~distinctions that4) a stochastic outage probability require-
some probability (i.e., Aloha). Assuming each node knows mentis introduced, andi) the nodes are Poisson distributed.
the channel state information (CSI, e.g., the channel gain The stochastic outage probability requirement is practical as
and/or Cha“_”e'ld'SFa“Pe) to LUSt hltsl intended fecelver, we el as analytically pragmatic, and corresponds roughly to
propose a simple distributed threshold-based scheduling rule -, packet error rate or other likely performance requirement
and derive the threshold that optimizes throughput. The gains . . - .
are surprisingly large: a factor of three increase in throughput ' @ real ad hoc netw_ork. The SPfit'al Poisson assumption
over Aloha is typical even with no further coordination between is taken for mathematical tractability, but has considerable

the nodes in the network. empirical support; for example, the Poisson assumption for
node positions has been used by numerous cellular service
|. INTRODUCTION operators to successfully predict blocking probabilities [4].

This paper addresses two issues of contemporary interest! "€ outage probability, throughput, and transmission ca-
in the field of ad hoc network capacity. First, we attempPacity are each computable from the distribution of the
to precisely characterize the effect that channel variatioformalized interference level seen by a typical receiver.
(e.g., shadowing and fading) have on the allowable densiﬂhis normalized interference has long been recognized as
of simultaneous transmissions in the network. Second, wsPatial shot noise process [5], [6], [7]. Under the assumed
consider how channel state information available to thBOwer law channel model (capturing path loss attenuation)
transmitter can be used to increase this density by utilizingth® normalized interference is known to béwy stable [6],
simple but effective distributed scheduling algorithm whosé&]: [7]. The impact of fading and other random non-distance

implementation and performance can be described quanti@&Pendent channel effects on the outage probability and
tively. transmission capacity has also been addressed [8], [9]. These

For both of these pursuits, our analytical tools centegharacterizations are exploited in obtaining our performance

around the use of stochastic geometry and marked Poiss@punds.

point processes, and their application to finding the maxi- There has been some notable prior work on quantifying ad
mum number of successful communication links that can Heoc network capacity in the presence of fading wireless chan-
accommodated in a unit area, subject to an outage constraif@ls. One of the earlier works [10] determined that fading
The metric used to quantify performance is termedtthrs- ~ actually increases the achievable rate regions (as opposed to
mission capacityand was introduced in [1] by the authors.the overall ad hoc network capacity) by providing statistical
Stated simply, transmission capacity measures the achievaBigersity, since the best set of transmit-receive pairs can be
rates, or equivalently the instantaneous mutual informatiogelected. This however, would require a global centralized
between an arbitrary pair of nearby (i.e., single-hop) trangearch which is impractical. Using the transport capacity
mitting and receiving nodes from an outage perspectivélamework, some interesting recent results include a study
This metric succinctly quantifies the link-level performance@n entirely random channels (no geometric dependence)
of a large-scale ad hoc network or any unplanned netwotkat showed that shadowing or obstructions could increase

(e.g., open spectrum usage), upon which other networkirife transport capacity [11] and a study on fading channels
functionalities, e.g., multi-hop, can be constructed. with geometric considerations valid for path-loss exponents
greater than 3 that supported those authors’ previous results
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fully exploit fading, some delay must be introduced, whictpermits us to focus on the impact of fading on network
results in a delay-capacity tradeoff. We will not consider thiperformance. The fading effects, denoteddy are modeled
tradeoff in this paper, however. as random variables with distributiafiy; (m). In particular,
Generally speaking, prior work has concentrated primarilyZ;; is the random non-distance dependent channel state from
on the scaling of capacity upper and lower bounds wittransmitter; to receiver;j. The {}4;,} are assumed to be iid.
the number of nodes. In this work, we study an achievablote that the channel modél(d, m) with random {};;}
set of rates, i.e., a capacity lower bound, from an outagacorporates a large number of realistic channel models,
perspective, and are able to accurately quantify scalingcluding, e.g., Rayleigh fading and lognormal shadowing.
constants. Thus, we are able to precisely calculate the effeék$ we are primarily concerned with the reference receiver
of channel fading and channel state information on a vergt the origin, we can represent the state of the system at the
pragmatic capacity lower bound. typical time as a stationarynarked Poisson point process
(MPPP). The required marks for the first model include both
the channels connecting each potential transmitter and its
The results in this paper are distinct from the prior workeceiver {1;;}), and the channels connecting each potential
on scheduling as we do not assume any optimal selectitransmitter with the reference receivetM;o}):
of nodes. Rather than optimally choosing the nodes with the
best channels (which is infeasible in practice), our results are Menan = {(Xi, Mis, Mio) }- 1)

f'r.St based on an ’.*_'Ohf" protocol where the users tr_ansnwe will use the phrasehanto denote quantities specific to
with some probability independent of other users in thﬁqis model
network. We derive an upper bound on the transmission '

capacity and show that when guaranteeing QoS, fading Cﬁ@odel 2: random distances separating pairs.In the

only reduce the capacity. Second, we consider the reallsse ond model we consider the case where the distance

scenario where each user independently monitors the channé . : o ; :
. . . . : .. separating each transmitter and its intended receiver varies
to its desired recipient (either through channel remprocni/

B. Contributions

or a very low rate feedback channel), and then transmi andomly across transmitter receiver pairs. For simplicity, in

- . Ris model we assume a simplified channel model of the
opportunistically only when the channel strength is abovF m h(d) = d—° for a > 2, i.e., we assume a pure path
a threshold. We characterize the optimum such threshold, - o P P

and show that this simple approach increases the capacess channel model. Of course this channel model ignores
N . P PP b f&(ljing and other important random non-distance dependent
significantly (typically around 3X) over a channel-blind

Aloha approach. Note that the proposed scheduling schemeeﬁeCts’ but this qssumptlon perm!ts us to focu; on the '”.‘paCt
the random distances separating communicating pairs on

gxtreme!y snlmple, asit pnly requires transmitter Chf"‘”f‘e' Stair)1eetwork performance. The random distances, denoted by
information; the majority of previous work on distributed

scheduling for ad hoc networks (e.g., [19]) has assumed e modeled as random variables with distributiBp(d).

. : . : In particular, D; is the random distance between potential
higher level of interaction between nodes in the network. o L .
transmitter; and its intended receiver. TH®, } are assumed

II. AD HOC NETWORK MODEL to be iid. The required marks for the second model are the

Consider a large ad hoc network, where the Iocationrs‘:’mdom distances between each potential transmitter and its

of potential transmitters at a typical point in time form o Associated receivey i }):

stationary Poisson point procelis= {X;} on the planeR?. Maise = {(X;, D)} )

Our attention will focus on a (typical) reference receiver,

without loss of generality assumed to be located at thé/e will use the phraseist to denote quantities specific to

origin, o. The spatial density of the point process is denotethis model.

by A, giving the average number of potential transmitters

per unit area. We also assume that each potential transmitterNote that both channel models suffer from a physically

i, has an associated intended receiver (ndiijnand we let unrealistic singularity atd = 0. This singularity can

the index: refer to the pair. We consider two models. be corrected for by using a channel model of the form
h(d,m) =m/(1+d)*, for example, but any such correction

Model 1: fading channels.In the first model we consider significantly complicates the resulting expressions. We have

a channel model of the fornk(d,m) = md~“, where shown in simulation that the impact of the singularity on

d is the distance separating the transmitter and receivaéetwork performance is in most cases negligible.

m is the (random) non-distance dependent channel effect

(incorporating aspects such as fading and shadowing), afuitage probability. A reception is assumed successful

a > 2 is the path loss exponent. It is convenient to definprovided the signal to interference ratio (SIR) seen at the

d = 2/a < 1. For simplicity, in this model we assume receiver is acceptably high. Ambient noise is not included

each transmitter has an assigned intended receiver (notas it does not have a material impact on the character of

II) at a fixed distance. Of course in reality transmitter to the results but significantly complicates the expressions. All

receiver distances will vary across pairs, but this assumptiorodes are assumed to require an SIR exceeding a specified



£ > 0, with an outage resulting if this condition is notthe only metric studied in this work, interference cancellation

satisfied. Lety denote the probability of outage: can indeed be incorporated into this framework [20].
0 Mutual information, or rate, is measured conditioned on
q=PF"(SIR < 3), 3 channel conditions, node locations, and the instantaneous

where the notatior?’(-) is the Palm probability giving the set of trarf1sm:'.ctebr|s. _Tfhus, t_he ?Iuant;tyn;}r} @) irpeasures
receiver-average outage probability computed by consideriﬁlije rate of refiable information tlow fromx; to Y at'
the reference receiver at the origin. a snapshot of the network. In the outage formulation,
Transmitters are assumed to employ constanttransmissig}? mstantgneous mutu_al |nformat|on_ Is treated as a
power), i.e., we do not consider the impact of power controlrandom variable (a function of random interferer locations
The SII’? is independent of since an increase ip achieves and channel conditions) and an outage occurs whenever

a linear increase in both the signal and interference Ievel@.IS randortrj Va_:_'ﬁble ffalls tgetlﬁw ﬂj[e deswtta)db.lr.r;lte. of
Recall thatIl includes all potential transmitters, but the communication. Thus, for ra € outage probablily 15

actual aggregate interference is computed by summing odyren bY Pour = ]P_)(I(X’“;Y’“'H’H) < R)' Slncg there is a _
all actual interferers. Let® C II denote the set of actual ope—to-one mapping between mu_tual information anq SIR in
interferers at the typical time under consideration; we wilfh's expression, outage can equivalently be stated in terms

. o oR
assume that the decisions to transmit or not are made in(fg-SIR’ as in (4) and (5), witl = 2 L.
pendently by each node, and independent of their locatio
It follows that ® is also a stationary MPPP, albeit with a
smaller intensity, denoted as< A. We discuss transmission (1) = p(1 — q(p)), (8)
decision rules for obtaining from II in Sections Il (for

the random channel model) and IV (for the random distandee" the product of the attgrnpted transmission intengiby (
model). times the average probability of succeds—(¢(u)). Using

For the fading channel model, giv@hy.,, C Il¢han, the Lhe Io&/ver ?ﬁu:g on Lhe tou;a:ge fprobability gives apper
outage probability for the typical receiver at the origin is ound on the throughput ot the form

?hroughput. The achieved network throughput is

Moor™
S : Op(}\4i0|Xi|—a < For the case where is independent of: the express_ion for

1€ Pehan the throughput matches the usual form of randomized MAC
where | X;| is the distance of interfering transmittéfrom  throughputGe="¢, whereG is the attempt rate ane"¢
the reference receiver located at the origin. For the randoi® the success probability. In contrast to most “classical”
distance model, give®q;,, C I, the outage probability randomized MAC throughput derivations, however, our

o Tub(p) = pe™ " )
ehan (1) = P° ( 5) ;4

for the typical receiver at the origin is throughput expression incorporatésa spatial model;:) a
realistic channel model, andi) a realistic reception model,
p(Do) ™ all captured inx.
qdist (ILL) = ]P)O I < ﬁ . (5)
Ziecpdm plXil

Transmission capacity. Although the network throughput
It is apparent thay(n) depends upon the sum of a randoms an important system performance metric, it often obscures
number of random variables, and as such a closed forfRe fact that high throughput is sometimes obtained at the ex-
expression forg(x) is not available. As such we resort topense of unacceptably high outage. This is especially impor-
bounds. In particular, we will establish lower bounds of thgant in ad hoc networks as wasted transmissions both cause
form unnecessary interference for other nodes and they waste
qn(p) =1 —exp{—ru}, (6) precious energy. As a simple example of high throughput
. . _.__achieved through high outage, note that classic slotted Aloha

where s may erend ory, depending on the transmissionp5q 5 throughput of the forre=¢, which is maximized

rule for obtaining® from II. for an attempt rate ofG = 1. The optimal throughput

‘ . h . . h based at G = 1is 1/e ~ 0.32, but the outage probability is
Information theoretic interpretation. The SIR-based out- | _ 1/e ~ 0.68. Thus68% of all attempted transmissions

age probability introduced above corresponds very simply Qust fail to achieve the optimal throughput. For many
achievability in the information theoretic sense. If all node

in mind, we define theoptimal contention densityv(e),
I(Xp; Vi |H,II) = log, (1 + SIR), (7) as the maximum spatial _density aftemptedtr_a_msmissions
such that the corresponding outage probability s [0, 1].
where SIR is defined in either (4) or (5). Since only the ternThe parametee serves as a proxy for network quality of
I(Xy; Y |H, II) is considered, an implicit assumption is thatservice. The optimal contention density is found by solving
multi-user interference is treated as noise. Although this ig~) = € for v. Having found the optimal contention density,



we define thetransmission capacityas the corresponding Note that the outage probability that maximizes the transmis-

spatial density obuccessfutransmissions, sion capacity bound is,,; = 1 —1/e, with a corresponding
bound optimal transmission capacity of
c(e) = v(e)(1 — o). (10) P P 1 y
The advantage of the transmission capacity framework is Copt = Cub(€opt) = er  Topty (13)

that it yields the maximum throughput that can be obtaine
subject to a maximum permissible outage probability, i.e.,
QoS requirement.

gssumingx > 1/k. Thus the bound-optimal transmission ca-
Bacity equals the bound-optimal throughput. If the through-
put achievesr,, then there is a corresponding outage
I11. FIRST MODEL: FADING CHANNELS probability associated with that throughput, and as such the

Our purpose in this section is to address the following tw ransmission capacity at that outage probability must achieve
e same throughput.

guestions. Firstwhat is the impact of fading on network per- Theorem 1: Under the fading channels model with iid

formance when nodes make randomized decisions whether T . .
or not to transmit?The motivation behind this question is?adeSM (with distribution 'y ), and with each node making

a randomized transmission decision rule with parameter

the intuition that randomized transmission decisions ma the intensity of attempted transmissions (s —
be harmful in the presence of fading because transmitti y P o HS = Ap.
oreover, the constant in (6) is independent ofp, and

nodes may find the channel to their intended receiver in fence independent gf and is given b
deep fade, and thereby incur an unacceptably high outags P ' 9 y
probability. Secondhow can local channel state information kehan — 7302 B[ MOJE[M ~°). (14)

rand
be exploited to improve network performancBe motiva- .
tion behind this question is the intuition that transmittingThe lower bound on the outage probabﬂn;fg(mnd(u)), the

only when the channel to one’s intended receiver is strorigPPer bound on the network throughputiits, (1)), the
may significantly improve performance above randomizeBound optimal throughputr{®,.;), and the upper bound
transmission decisions. We emphasize there is no claiff the transmission capacity (™, ,4(€)), are given by (6),
that the channel-aware transmission decisions are globa(), (11), and (12), respectively with = x{23. The proof
optimal: global optimality would require global channelis found in the appendix.
state knowledge by each node, which is clearly unrealistic. The expressions for optimal throughput and transmission
Transmitter channel state information, however, is a realist@apacity are best understood in the context of spatial sphere
assumption, especially when channel coherence times extepaeking. In particular, both optimal throughput and trans-
across multiple transmission attempts. mission capacity are proportional 19'x, which in turn are
Motivated by the above two questions, we introduce tw@roportional to1/(xr?). In this form it is clear that the
transmission decision rules) randomized transmissions, impact of the path loss attenuation, the SIR threshold,
made independently across nodes, and independent of theand the channel statistic#;,,, determine the effective
channel states, anid) a threshold rule where each node onlyradius of the transmission-free disk that must surround each
transmits if its channel is sufficiently strong. successful reception.

A. Randomized transmission decisions B. Channel aware transmission decisions

In this scenario each node makes a random decision to\WWe now suppose that each potential transmitter is aware
transmit, independent of its (unknown) channel state to |@f the channel to its intended receiver. Given our stated
receiver, by transmitting with a specified probabilityin this ~assumption that all transmitter receiver pairs are at a fixed
case the intensity of attempted transmissionﬂ is /’L(p) — distance’f', it follows that kn0W|edge of the fad|ng channel
Ap and, as shown below; in (6) is independent of.. It  StateM;; suffices to characterize the channel. Each potential
follows from simple calculus that the optimal transmissioffansmitteri only transmits if its channel is acceptably strong,
probabiiity to maximize the throughput boundp'&at _ 1 i.e., ]\/[“ > t, wheret is the glObal channel state threshold.

AK? .. . . .
and thus the optimal intensity of transmission attempts i§he attempted transmission intensity is

Hopt = é/\ A. The corresponding bound optimal throughput = p(t) = NP(M > t) = AFas (1) (15)
is
Topt = Tub (ftopt) = i7 (11) As we will show below, the constant = x(t) in (6) in this
ex case depends upon the threshgldnd thus onu. It follows
assuming\ > 1/k. We emphasize the optimality holds for that the outage probability bound becomes
the bound, not the throughput itself, however our numerical D) =] er(u(®) 16
and simulation results have shown that the approximation a(t) = € ’ (16)
is valid over most regimes of interest. Using the loweand the corresponding throughput bound becomes
bound on the outage probability gives an upper bound on

_ —r(t t
the transmission capacity of the form Tup () = p(t)e” OO, a7
—(1—¢)In(1 —¢) Theorem 2: Under the fading channels model with fades
cub(€) = : (12)  pr (with distribution Fy;), and with each node making a

K



TABLE |

threshold based transmission decision with threshplthe
NUMERICAL VALUES FOR PARAMETERS

intensity of attempted transmissions jigt) = AFa(t).
Moreover,x(t) is given by Symbol | Description Value
«a path loss exponent 4
chan _ 5,.2 E[Mﬁ]E[M76HA4>t] B SIR requirement 10
Kihresh (t) = T0°T I t) ) (18) r tx-rx distance 5 (meters)
M A density of pot. trans. | 0.01 (1/meters?)
wherel 4 is the indicator random variable of the eve#ht The U Rayleigh fading param 1.0

lower bound on the outage probability;i(3) .., (¥)) and the

upper bound on the network throughpufi{’} ... (t)), are N o
given by (16) and (17) respectively Wiﬂ(ti chan (1), probability and throughput are shown versus the transmission

= Kthresh HR i
The throughput bound (17) is concavetinand the optimal Probability p, which corresponds to a threshold= #(p)
Iving F(t) = p. In the case of Rayleigh fading we

thresholdt,,; that maximizes the throughput bound is the’®

unique solution of the equation havet(p) = —%l.n(p). Numerica! values for the parame-
ters are shown in Table |. Besides the plots for the two
() ( 20, M/(t) n (t)) —1 (19) transmission (_1ecision rul_es we al_so show the performance
w(t) under randomized transmissions without any random channel
The transmission capacity with outage probability constraingffects. The plots illustrate both tha} randomized trans-
¢, is given by missions perform worse under fading conditions, aud
. the fades can be exploited through the threshold rule to
Cub.thresh (€) = (" (€))(1 — €), (20)  achieve superior performance. For example,lftff; outage,

randomized transmission provides a transmission capacity
of only 0.0002, while the threshold rule corresponds to a
k(t)p(t) = —In(1 —¢). (21) capacity of approximatel9.0007.

wheret*(¢) is the unique solution to

The proof is found in the appendix. IV. SECOND MODEL: RANDOM TRANSMISSION

C. Example: Rayleigh fading DISTANCES

Consider a Rayleigh fading channel where the rando@ection in that our focus is to understand how knowledge
non-distance dependent channel state is given by an ex 9

pQ- : ;
nential random variable with parameter> 0, i.e., M ~ Oc% the channel can be_ exploited to improve networ_k per
Exp(u). Then formance. Recall in this model there are no non-distance

dependent random channel effects, i.e., the attenuation is
E[M°] = u~°T(1+0), E[M°]=u’T(1-05), (22) solely due to path loss. However, the distances separating
transmitters and their intended receivers vary across pairs,
, s - which is physically realistic. The intuition is that blind
chan __ 2 . . . .. . . .
Krand = T0°T 7Sin(7r5)’ (23)  randomized transmission decisions, irrespective of the pair
separation distance, could have a significant negative impact
for I'(z) the Gamma function. Note the dependencewon on network performance. On the other hand, knowledge
vanishes. This calculation is all that is needed to computss the separation distance can be exploited to significantly
all the quantities in Theorem 1. For Theorem 2 we computénprove network performance, say as compared with the

E[M°Tpssq] = w®T(1 — 6, tu), (24) fixed pair distance case.

for T'(x, z) the incomplete Gamma function, and thus A. Randomized transmission decisions

chan In this scenario each node makes a random decision
Fittresn (R(t) = 7B r* T (14 60 (1L = o, tup. (28) 4 transmit, independent of its (unknown) distance to its

The quantityt* () is given by receiver, by transmitting with a specified probabilityAgain

we havey = p(p) = Ap and in (6) is independent of:.
t*(e) = lrfl <1 -9, W) , (26) Theorem 3: Under the second model with random pair
u I'(1+6)7Bor2A distancesD with distribution Fp, and with each node mak-

where z = T'(z,s)"! is the inverse incomplete Gammaling a randomized transmission decision rule with parameter

function that solve§'(z, z) = s. From here the transmission p, the intensity of attempted transmissions is = Ap.

Our purpose in this section is similar to that of the previous

and thus

capacity is given by Moreover, the constant in (6) is independent op, and
) hence independent @f, and is given by
cle) = Xe (D1 —¢). (27) '
Krama = TA°E[D?]. (28)

Figure 1 presents the outage probability, throughput, and o
transmission capacity for the fading channels model witAhe lower bound on the outage probabiligff;,,q(1)), the
Rayleigh fading, for both randomized and threshold basedpper bound on the network throughpuﬂlfﬁand(u)), the

transmissions. For easy comparison the channel aware outdogeind optimal throughputTg‘g;‘fmnd), and the upper bound



on the transmission capacitydst . . (¢)), are given by (6), where W_; is the & = —1 branch of Lambert'si¥V(z)

,rand - ) .
(9), (11), and (12), respectively with = &%t . The proof function, which solves: = W (z)e"V(*). Note that we can
is found in the appendix. write P(D < t) = 1—e~“. The transmission capacity is then
B. Distance aware transmission decisions cap(€) = X (1 - e‘““)) (1—e). (36)

We now suppose that each potential transmitter is awa
of the distance to its intended receiver. Each potential tran
mitter ¢ only transmits if its receiver is acceptably close
i.e., D; < t, wheret is the global distance threshold. The
attempted transmission intensity is

Efgure 2 presents the outage probability, throughput, and
fFansmission capacity for the random pair distances model
with nearest neighbor transmissions, for both randomized
and threshold based transmission rules. For easy comparison
the distance aware outage probability and throughput are
1= p(t) = AP(D < t) = AFp(t). (29) shown versus the transmission probability which corre-
sponds to a threshold = ¢(p) solving Fp(t) = p. In
As before, the constamt = «(t) in (6) in this case depends the case of random nearest neighbor distances we have

upon the thrgshold, and thus on. _ t(p) = \/@ All three plots demonstrate the significant
_Theorem 4'. Un_der_ th(_a second mO(_:IeI with random palirmprovement in performance attainable by exploiting local
Q|stancesD with distribution FD.' "’?”d W'th. gach nOde mak- channel state information. At 10% outage, for example, we
ng a Fhresh_old based transmlssmn d.eC|S|on with thresholgiee a tremendous difference in transmission capacity between
t, the intensity .Of qttempted transmissiong:{s) = AFp(t). the randomized and threshold rules. Table | gives the values
Moreover,x(t) is given by of the constants (except foerandw which don’t apply in this

dist  SE[DIp] case). As in Figure 1, we also show the case when there are
Kthresh (t) - Wﬁ

T(t)’ (0) o variations in pair distance, i.e., the fixed distance between
) transmitters and their intended receivers is E[D] = —1-.
The lower bound on the outage probabilit;,f{;@hresh(t)) and 2V2
the upper bound on the network throughpugif;},..., (t)), V. CONCLUSION
are given by (16) and (17) respectively with(t) = The two primary observations from this work ai¢

Kt 1 (t). The throughput bound (17) is concavetinand  randomized transmissions perform poorly in the presence
the optimal threshold:,,; that maximizes the throughput of either fading or variable channel distances, ai)dthese
bound is the unique solution of (19). The transmissioghannel variations can easily be exploited through the use
capacity with outage probability constraint is given by of simple threshold schemes. We emphasize the practical
(20), wheret*(¢) is the unique solution to (21). The proof isnature of the threshold schemes, which require no sharing
found in the appendix. of information among nodes other than with the intended
receiver. There are numerous extensions to this framework,
most notably including power control and an OFDM-like
Consider the case when each node elects to transmit to #i§se where each transmitter may select from onf€ &hown
nearest neighbor. For given potential transmitter II, the channels. Our current work is focused on evaluating the
distance,D;, to its nearest neighbor has distribution performance of our threshold scheme with the throughput

Fo(d) = P(D > d) = P(ILN b(o,d) = ) — TG (31) optimal scheduling schemes found in the literature.

C. Example: nearest neighbor transmissions
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APPENDIX Fiy(w) = / Fag(mw)dFyg,(m) 42)
PROOF OFTHEOREM 1 ¢ . -
Defining the constanty = 5, and the normalized = ﬁ/ Fyr(mw)dFyr(m). (43)
interference w(t) Ji
Mi i
Y (p) = ZW”Xi‘ia’ W, = =10 (37) As in the proof of Theorem 1, we e_rrjploy the result that
Moo a lower bound on the outage probability when the channel

i€d
- ratios are iid{1W;} is given by (40). To get the expression in
3MKeorem 2, we again exchange the order of integration and
use a change of variable= mw:

we can express the outage probability as the complement
cumulative distribution function (CCDF) df:

q(n) = P(Y (1) > y). (38) -
It is known that the random variablE = Y (u) is Lévy ]E[W(t)E]:/O we fuw (w)dw
stable with stability parametér= 2/a < 1 [5], [8]. Bounds 1 0 oo
of this form are shown to be asymptotically tight@s- co = ) / we (/ me(mw)fM(m)dm> dw
in [9]. In the case of randomized transmissions we have both Ml o k o
M;y ~ Fyy and Myg ~ Fpr, which means the distribution = _7/ mfar(m) (/ wifM(mw)dw) dm
of the {W;} is Fy(t) Jy 0
1 e ®rr\e dx
00 - - adt ) =2\
Wi ~ Fiy (w) :/ Fy(mw)dFy(m).  (39) FM(t)/t mfa(m) (/0 (m> fM(x)m> "

0 1 2 s
In [9] we show that the lower bound on outage under the = 7FM(t)]E[MW] om * far(m)dm
single channel randomized transmission model is 1 .

(i) =1—exp{—my SEWS]u}.  (40) Fa(?)



PROOF OFTHEOREM 3 and intensity of) outsideb(o, z~ = t). Using the lower bound
d (49), we obtain

Defining the constant: = 1/ and the normalize
interference X\ qu(t) = 1 —exp {—/ /Lz(l‘)dl‘}
Z(p) = - 44 R?
(1) %<%>, (a2)

_1
B =1—exp —271'/\/ TFD(t)—FD (rziﬂ rdr
we can express the outage probability as the complementary 0

cumulative distribution function (CCDF) of:

=P°(Z(u) > 2). 45
aw) (2w ) (49) where the last step is obtained by writing the CDF as a PDF
Select from® the set of dominant interferers, with domi-and exchanging the order of integration.
nance level:

P, = {(Xi7Di) €D ('g) s z} . (46)
0

The process®, is non-stationary with local intensity at
locationz € R? of

=1—exp {—w)\z’%]E[D2HD<t]} ;

;%m>—up<<ﬁi)_ >z>—+ﬂﬂ%:>wzi) (47)

Define the normalized interference from dominant interfer-

ers: B
Z.=Y (Ig@-) . (48)

icdy 0

Then a lower bound on the outage probability is
qu) =P(Z >2)>P(Z, >2)=1-P(®, =0). (49)

The RHS is a void probability for the nonstationary process
®,, which may be evaluated as

1—eXp{—/R2 uz(x)d:c}
- 1—exp{—27r,u/000 Fp (rzi)rdr}

= 1—exp {—7TZ7%E[D2}M} ,

an ()

where the last step is obtained by writingp(d) =
[.° dFp(d), and exchanging the order of integration.

PROOF OFTHEOREM 4

The distribution of distances from transmitters to their
intended receivers under a distance threshold ief

Fp(d)

——, 0<d<t. 50
Fo®) (50)
Form &, c ®, the dominant interferers with dominance
level z, as in (46). Conditioned on the reference transmitter
electing to transmit, the proceds, is non-stationary with
local intensity

FD\t(d) =

po(x) = AFp(t)Fpy (mzé)

- A [FD(t) ~Fp (mﬁ)} L o] < 2wt
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Fig. 1. Numerical results for the Rayleigh fading channel model withFig. 2. Numerical results for the pure path loss channel model with

outage probability versus transmission probability

outage probability versus transmission probability

a fixed distance separating each transmitter and its intended receiver. Thaedom nearest neighbor distances between transmitters and receivers. The
three curves on each plot aig¢ Rayleigh fading {/ ~ Exp(1)) with  three curves on each plot aievariable transmitter receiver distances with

a randomized transmission rule (with paramet@y ii) pure path loss a randomized transmission rule (with parametgrii) fixed transmitter
attenuation with a randomized transmission rule, &nyl Rayleigh fading  receiver distances (with = E[D]) with a randomized transmission rule, and
with a threshold transmission rule (witllp) satisfyingp = Fas(¢)). The  i4¢) variable transmitter receiver distances with a threshold transmission rule
three plots are of outage probability, throughput, and transmission capacitwith ¢(p) satisfyingp = Fp(t)). The three plots are of outage probability,

All three performance metrics show dramatic improvements when channgiroughput, and transmission capacity. All three performance metrics show
information is exploited. dramatic improvements when channel information is exploited.



